1
|
Cobo M, Menéndez Fernández-Miranda P, Bastarrika G, Lloret Iglesias L. Enhancing radiomics and Deep Learning systems through the standardization of medical imaging workflows. Sci Data 2023; 10:732. [PMID: 37865635 PMCID: PMC10590396 DOI: 10.1038/s41597-023-02641-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Affiliation(s)
- Miriam Cobo
- Advanced Computing and e-Science Group, Institute of Physics of Cantabria (IFCA), CSIC - UC, Santander, Spain.
| | | | - Gorka Bastarrika
- Clínica Universidad de Navarra, Department of Radiology, Pamplona, Spain
| | - Lara Lloret Iglesias
- Advanced Computing and e-Science Group, Institute of Physics of Cantabria (IFCA), CSIC - UC, Santander, Spain
| |
Collapse
|
2
|
Jensen LJ, Kim D, Elgeti T, Steffen IG, Schaafs LA, Hamm B, Nagel SN. The role of parametric feature maps to correct different volume of interest sizes: an in vivo liver MRI study. Eur Radiol Exp 2023; 7:48. [PMID: 37670193 PMCID: PMC10480134 DOI: 10.1186/s41747-023-00362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Different volume of interest (VOI) sizes influence radiomic features. This study examined if translating images into feature maps before feature sampling could compensate for these effects in liver magnetic resonance imaging (MRI). METHODS T1- and T2-weighted sequences from three different scanners (two 3-T scanners, one 1.5-T scanner) of 66 patients with normal abdominal MRI were included retrospectively. Three differently sized VOIs (10, 20, and 30 mm in diameter) were drawn in the liver parenchyma (right lobe), excluding adjacent structures. Ninety-three features were extracted conventionally using PyRadiomics. All images were also converted to 93 parametric feature maps using a pretested software. Agreement between the three VOI sizes was assessed with overall concordance correlation coefficients (OCCCs), while OCCCs > 0.85 were rated reproducible. OCCCs were calculated twice: for the VOI sizes of 10, 20, and 30 mm and for those of 20 and 30 mm. RESULTS When extracted from original images, only 4 out of the 93 features were reproducible across all VOI sizes in T1- and T2-weighted images. When the smallest VOI was excluded, 5 features (T1-weighted) and 7 features (T2-weighted) were reproducible. Extraction from parametric maps increased the number of reproducible features to 9 (T1- and T2-weighted) across all VOIs. Excluding the 10-mm VOI, reproducibility improved to 16 (T1-weighted) and 55 features (T2-weighted). The stability of all other features also increased in feature maps. CONCLUSIONS Translating images into parametric maps before feature extraction improves reproducibility across different VOI sizes in normal liver MRI. RELEVANCE STATEMENT The size of the segmented VOI influences the feature quantity of radiomics, while software-based conversion of images into parametric feature maps before feature sampling improves reproducibility across different VOI sizes in MRI of normal liver tissue. KEY POINTS • Parametric feature maps can compensate for different VOI sizes. • The effect seems dependent on the VOI sizes and the MRI sequence. • Feature maps can visualize features throughout the entire image stack.
Collapse
Affiliation(s)
- Laura Jacqueline Jensen
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Damon Kim
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Thomas Elgeti
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Ingo Günter Steffen
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Lars-Arne Schaafs
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Bernd Hamm
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Sebastian Niko Nagel
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
3
|
Li S, Zhou B. A review of radiomics and genomics applications in cancers: the way towards precision medicine. Radiat Oncol 2022; 17:217. [PMID: 36585716 PMCID: PMC9801589 DOI: 10.1186/s13014-022-02192-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The application of radiogenomics in oncology has great prospects in precision medicine. Radiogenomics combines large volumes of radiomic features from medical digital images, genetic data from high-throughput sequencing, and clinical-epidemiological data into mathematical modelling. The amalgamation of radiomics and genomics provides an approach to better study the molecular mechanism of tumour pathogenesis, as well as new evidence-supporting strategies to identify the characteristics of cancer patients, make clinical decisions by predicting prognosis, and improve the development of individualized treatment guidance. In this review, we summarized recent research on radiogenomics applications in solid cancers and presented the challenges impeding the adoption of radiomics in clinical practice. More standard guidelines are required to normalize radiomics into reproducible and convincible analyses and develop it as a mature field.
Collapse
Affiliation(s)
- Simin Li
- grid.412636.40000 0004 1757 9485Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, 110001 Liaoning People’s Republic of China
| | - Baosen Zhou
- grid.412636.40000 0004 1757 9485Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, 110001 Liaoning People’s Republic of China
| |
Collapse
|
4
|
Ibrahim A, Lu L, Yang H, Akin O, Schwartz LH, Zhao B. The Impact of Image Acquisition Parameters and ComBat Harmonization on the Predictive Performance of Radiomics: A Renal Cell Carcinoma Model. APPLIED SCIENCES (BASEL, SWITZERLAND) 2022; 12:9824. [PMID: 37091743 PMCID: PMC10121203 DOI: 10.3390/app12199824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Radiomics, one of the potential methods for developing clinical biomarker, is one of the exponentially growing research fields. In addition to its potential, several limitations have been identified in this field, and most importantly the effects of variations in imaging parameters on radiomic features (RFs). In this study, we investigate the potential of RFs to predict overall survival in patients with clear cell renal cell carcinoma, as well as the impact of ComBat harmonization on the performance of RF models. We assessed the robustness of the results by performing the analyses a thousand times. Publicly available CT scans of 179 patients were retrospectively collected and analyzed. The scans were acquired using different imaging vendors and parameters in different medical centers. The performance was calculated by averaging the metrics over all runs. On average, the clinical model significantly outperformed the radiomic models. The use of ComBat harmonization, on average, did not significantly improve the performance of radiomic models. Hence, the variability in image acquisition and reconstruction parameters significantly affect the performance of radiomic models. The development of radiomic specific harmonization techniques remain a necessity for the advancement of the field.
Collapse
Affiliation(s)
- Abdalla Ibrahim
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence:
| | - Lin Lu
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hao Yang
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lawrence H. Schwartz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Binsheng Zhao
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
5
|
Jensen LJ, Kim D, Elgeti T, Steffen IG, Schaafs LA, Hamm B, Nagel SN. Enhancing the stability of CT radiomics across different volume of interest sizes using parametric feature maps: a phantom study. Eur Radiol Exp 2022; 6:43. [PMID: 36104519 PMCID: PMC9474978 DOI: 10.1186/s41747-022-00297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In radiomics studies, differences in the volume of interest (VOI) are often inevitable and may confound the extracted features. We aimed to correct this confounding effect of VOI variability by applying parametric maps with a fixed voxel size. METHODS Ten scans of a cup filled with sodium chloride solution were scanned using a multislice computed tomography (CT) unit. Sphere-shaped VOIs with different diameters (4, 8, or 16 mm) were drawn centrally into the phantom. A total of 93 features were extracted conventionally from the original images using PyRadiomics. Using a self-designed and pretested software tool, parametric maps for the same 93 features with a fixed voxel size of 4 mm3 were created. To retrieve the feature values from the maps, VOIs were copied from the original images to preserve the position. Differences in feature quantities between the VOI sizes were tested with the Mann-Whitney U-test and agreement with overall concordance correlation coefficients (OCCC). RESULTS Fifty-five conventionally extracted features were significantly different between the VOI sizes, and none of the features showed excellent agreement in terms of OCCCs. When read from the parametric maps, only 8 features showed significant differences, and 3 features showed an excellent OCCC (≥ 0.85). The OCCCs for 89 features substantially increased using the parametric maps. CONCLUSIONS This phantom study shows that converting CT images into parametric maps resolves the confounding effect of VOI variability and increases feature reproducibility across VOI sizes.
Collapse
Affiliation(s)
- Laura J Jensen
- Klinik für Radiologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Damon Kim
- Klinik für Radiologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Thomas Elgeti
- Klinik für Radiologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Ingo G Steffen
- Klinik für Radiologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Lars-Arne Schaafs
- Klinik für Radiologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Bernd Hamm
- Klinik für Radiologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Sebastian N Nagel
- Klinik für Radiologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
6
|
The Next Paradigm Shift in the Management of Clear Cell Renal Cancer: Radiogenomics—Definition, Current Advances, and Future Directions. Cancers (Basel) 2022; 14:cancers14030793. [PMID: 35159060 PMCID: PMC8833879 DOI: 10.3390/cancers14030793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/28/2021] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
With improved molecular characterization of clear cell renal cancer and advances in texture analysis as well as machine learning, diagnostic radiology is primed to enter personalized medicine with radiogenomics: the identification of relationships between tumor image features and underlying genomic expression. By developing surrogate image biomarkers, clinicians can augment their ability to non-invasively characterize a tumor and predict clinically relevant outcomes (i.e., overall survival; metastasis-free survival; or complete/partial response to treatment). It is thus important for clinicians to have a basic understanding of this nascent field, which can be difficult due to the technical complexity of many of the studies. We conducted a review of the existing literature for radiogenomics in clear cell kidney cancer, including original full-text articles until September 2021. We provide a basic description of radiogenomics in diagnostic radiology; summarize existing literature on relationships between image features and gene expression patterns, either computationally or by radiologists; and propose future directions to facilitate integration of this field into the clinical setting.
Collapse
|
7
|
Stability of Liver Radiomics across Different 3D ROI Sizes-An MRI In Vivo Study. Tomography 2021; 7:866-876. [PMID: 34941645 PMCID: PMC8706942 DOI: 10.3390/tomography7040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/20/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
We aimed to evaluate the stability of radiomic features in the liver of healthy individuals across different three-dimensional regions of interest (3D ROI) sizes in T1-weighted (T1w) and T2-weighted (T2w) images from different MR scanners. We retrospectively included 66 examinations of patients without known diseases or pathological imaging findings acquired on three MRI scanners (3 Tesla I: 25 patients, 3 Tesla II: 19 patients, 1.5 Tesla: 22 patients). 3D ROIs of different diameters (10, 20, 30 mm) were drawn on T1w GRE and T2w TSE images into the liver parenchyma (segment V–VIII). We extracted 93 radiomic features from the different ROIs and tested features for significant differences with the Mann–Whitney-U (MWU)-test. The MWU-test revealed significant differences for most second- and higher-order features, indicating a systematic difference dependent on the ROI size. The features mean, median, root mean squared (RMS), 10th percentile, and 90th percentile were not significantly different. We also assessed feature robustness to ROI size variation with overall concordance correlation coefficients (OCCCs). OCCCs across the different ROI-sizes for mean, median, and RMS were excellent (>0.90) in both sequences on all three scanners. These features, therefore, seem robust to ROI-size variation and suitable for radiomic studies of liver MRI.
Collapse
|
8
|
Yoon JH, Sun SH, Xiao M, Yang H, Lu L, Li Y, Schwartz LH, Zhao B. Convolutional Neural Network Addresses the Confounding Impact of CT Reconstruction Kernels on Radiomics Studies. Tomography 2021; 7:877-892. [PMID: 34941646 PMCID: PMC8707549 DOI: 10.3390/tomography7040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022] Open
Abstract
Achieving high feature reproducibility while preserving biological information is one of the main challenges for the generalizability of current radiomics studies. Non-clinical imaging variables, such as reconstruction kernels, have shown to significantly impact radiomics features. In this study, we retrain an open-source convolutional neural network (CNN) to harmonize computerized tomography (CT) images with various reconstruction kernels to improve feature reproducibility and radiomic model performance using epidermal growth factor receptor (EGFR) mutation prediction in lung cancer as a paradigm. In the training phase, the CNN was retrained and tested on 32 lung cancer patients’ CT images between two different groups of reconstruction kernels (smooth and sharp). In the validation phase, the retrained CNN was validated on an external cohort of 223 lung cancer patients’ CT images acquired using different CT scanners and kernels. The results showed that the retrained CNN could be successfully applied to external datasets with different CT scanner parameters, and harmonization of reconstruction kernels from sharp to smooth could significantly improve the performance of radiomics model in predicting EGFR mutation status in lung cancer. In conclusion, the CNN based method showed great potential in improving feature reproducibility and generalizability by harmonizing medical images with heterogeneous reconstruction kernels.
Collapse
Affiliation(s)
- Jin H. Yoon
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY 10039, USA; (J.H.Y.); (S.H.S.); (H.Y.); (L.H.S.); (B.Z.)
| | - Shawn H. Sun
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY 10039, USA; (J.H.Y.); (S.H.S.); (H.Y.); (L.H.S.); (B.Z.)
| | - Manjun Xiao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Hao Yang
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY 10039, USA; (J.H.Y.); (S.H.S.); (H.Y.); (L.H.S.); (B.Z.)
| | - Lin Lu
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY 10039, USA; (J.H.Y.); (S.H.S.); (H.Y.); (L.H.S.); (B.Z.)
- Correspondence: (L.L.); (Y.L.); Tel.: +1-212-342-3018 (L.L.)
| | - Yajun Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China;
- Correspondence: (L.L.); (Y.L.); Tel.: +1-212-342-3018 (L.L.)
| | - Lawrence H. Schwartz
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY 10039, USA; (J.H.Y.); (S.H.S.); (H.Y.); (L.H.S.); (B.Z.)
| | - Binsheng Zhao
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY 10039, USA; (J.H.Y.); (S.H.S.); (H.Y.); (L.H.S.); (B.Z.)
| |
Collapse
|
9
|
Khodabakhshi Z, Amini M, Mostafaei S, Haddadi Avval A, Nazari M, Oveisi M, Shiri I, Zaidi H. Overall Survival Prediction in Renal Cell Carcinoma Patients Using Computed Tomography Radiomic and Clinical Information. J Digit Imaging 2021. [PMID: 34382117 DOI: 10.1007/s10278-021-00500-y/figures/5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
The aim of this work is to investigate the applicability of radiomic features alone and in combination with clinical information for the prediction of renal cell carcinoma (RCC) patients' overall survival after partial or radical nephrectomy. Clinical studies of 210 RCC patients from The Cancer Imaging Archive (TCIA) who underwent either partial or radical nephrectomy were included in this study. Regions of interest (ROIs) were manually defined on CT images. A total of 225 radiomic features were extracted and analyzed along with the 59 clinical features. An elastic net penalized Cox regression was used for feature selection. Accelerated failure time (AFT) with the shared frailty model was used to determine the effects of the selected features on the overall survival time. Eleven radiomic and twelve clinical features were selected based on their non-zero coefficients. Tumor grade, tumor malignancy, and pathology t-stage were the most significant predictors of overall survival (OS) among the clinical features (p < 0.002, < 0.02, and < 0.018, respectively). The most significant predictors of OS among the selected radiomic features were flatness, area density, and median (p < 0.02, < 0.02, and < 0.05, respectively). Along with important clinical features, such as tumor heterogeneity and tumor grade, imaging biomarkers such as tumor flatness, area density, and median are significantly correlated with OS of RCC patients.
Collapse
Affiliation(s)
- Zahra Khodabakhshi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Mehdi Amini
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland
| | - Shayan Mostafaei
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Epidemiology and Biostatistics Unit, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mostafa Nazari
- Department of Biomedical Engineering and Medical Physics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Oveisi
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine , Kings College London, London, UK
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.
- Geneva University Neurocenter, Geneva University, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
10
|
Overall Survival Prediction in Renal Cell Carcinoma Patients Using Computed Tomography Radiomic and Clinical Information. J Digit Imaging 2021; 34:1086-1098. [PMID: 34382117 PMCID: PMC8554934 DOI: 10.1007/s10278-021-00500-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 01/06/2023] Open
Abstract
The aim of this work is to investigate the applicability of radiomic features alone and in combination with clinical information for the prediction of renal cell carcinoma (RCC) patients’ overall survival after partial or radical nephrectomy. Clinical studies of 210 RCC patients from The Cancer Imaging Archive (TCIA) who underwent either partial or radical nephrectomy were included in this study. Regions of interest (ROIs) were manually defined on CT images. A total of 225 radiomic features were extracted and analyzed along with the 59 clinical features. An elastic net penalized Cox regression was used for feature selection. Accelerated failure time (AFT) with the shared frailty model was used to determine the effects of the selected features on the overall survival time. Eleven radiomic and twelve clinical features were selected based on their non-zero coefficients. Tumor grade, tumor malignancy, and pathology t-stage were the most significant predictors of overall survival (OS) among the clinical features (p < 0.002, < 0.02, and < 0.018, respectively). The most significant predictors of OS among the selected radiomic features were flatness, area density, and median (p < 0.02, < 0.02, and < 0.05, respectively). Along with important clinical features, such as tumor heterogeneity and tumor grade, imaging biomarkers such as tumor flatness, area density, and median are significantly correlated with OS of RCC patients.
Collapse
|