1
|
Hosseini SA, Servaes S, Hall B, Bhaduri S, Rajan A, Rosa-Neto P, Brem S, Loevner LA, Mohan S, Chawla S. Quantitative Physiologic MRI Combined with Feature Engineering for Developing Machine Learning-Based Prediction Models to Distinguish Glioblastomas from Single Brain Metastases. Diagnostics (Basel) 2024; 15:38. [PMID: 39795566 PMCID: PMC11720653 DOI: 10.3390/diagnostics15010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
Background: The accurate and early distinction of glioblastomas (GBMs) from single brain metastases (BMs) provides a window of opportunity for reframing treatment strategies enabling optimal and timely therapeutic interventions. We sought to leverage physiologically sensitive parameters derived from diffusion tensor imaging (DTI) and dynamic susceptibility contrast (DSC)-perfusion-weighted imaging (PWI) along with machine learning-based methods to distinguish GBMs from single BMs. Methods: Patients with histopathology-confirmed GBMs (n = 62) and BMs (n = 26) and exhibiting contrast-enhancing regions (CERs) underwent 3T anatomical imaging, DTI and DSC-PWI prior to treatment. Median values of mean diffusivity (MD), fractional anisotropy, linear, planar and spheric anisotropic coefficients, and relative cerebral blood volume (rCBV) and maximum rCBV values were measured from CERs and immediate peritumor regions. Data normalization and scaling were performed. In the next step, most relevant features were extracted (non-interacting features), which were subsequently used to generate a set of new, innovative, high-order features (interacting features) using a feature engineering method. Finally, 10 machine learning classifiers were employed in distinguishing GBMs and BMs. Cross-validation and receiver operating characteristic (ROC) curve analyses were performed to determine the diagnostic performance. Results: A random forest classifier with ANOVA F-value feature selection algorithm using both interacting and non-interacting features provided the best diagnostic performance in distinguishing GBMs from BMs with an area under the ROC curve of 92.67%, a classification accuracy of 87.8%, a sensitivity of 73.64% and a specificity of 97.5%. Conclusions: A machine learning based approach involving the combined use of interacting and non-interacting physiological MRI parameters shows promise to differentiate between GBMs and BMs with high accuracy.
Collapse
Affiliation(s)
- Seyyed Ali Hosseini
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 2B4, Canada
| | - Brandon Hall
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sourav Bhaduri
- Institute for Advancing Intelligence (IAI), The Chatterjee Group—Centre for Research and Education in Science and Technology (TCG CREST), Kolkata 700091, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Archith Rajan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 2B4, Canada
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurie A. Loevner
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Villegas F, Dal Bello R, Alvarez-Andres E, Dhont J, Janssen T, Milan L, Robert C, Salagean GAM, Tejedor N, Trnková P, Fusella M, Placidi L, Cusumano D. Challenges and opportunities in the development and clinical implementation of artificial intelligence based synthetic computed tomography for magnetic resonance only radiotherapy. Radiother Oncol 2024; 198:110387. [PMID: 38885905 DOI: 10.1016/j.radonc.2024.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Synthetic computed tomography (sCT) generated from magnetic resonance imaging (MRI) can serve as a substitute for planning CT in radiation therapy (RT), thereby removing registration uncertainties associated with multi-modality imaging pairing, reducing costs and patient radiation exposure. CE/FDA-approved sCT solutions are nowadays available for pelvis, brain, and head and neck, while more complex deep learning (DL) algorithms are under investigation for other anatomic sites. The main challenge in achieving a widespread clinical implementation of sCT lies in the absence of consensus on sCT commissioning and quality assurance (QA), resulting in variation of sCT approaches across different hospitals. To address this issue, a group of experts gathered at the ESTRO Physics Workshop 2022 to discuss the integration of sCT solutions into clinics and report the process and its outcomes. This position paper focuses on aspects of sCT development and commissioning, outlining key elements crucial for the safe implementation of an MRI-only RT workflow.
Collapse
Affiliation(s)
- Fernanda Villegas
- Department of Oncology-Pathology, Karolinska Institute, Solna, Sweden; Radiotherapy Physics and Engineering, Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Emilie Alvarez-Andres
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Jennifer Dhont
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Institut Jules Bordet, Department of Medical Physics, Brussels, Belgium; Université Libre De Bruxelles (ULB), Radiophysics and MRI Physics Laboratory, Brussels, Belgium
| | - Tomas Janssen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa Milan
- Medical Physics Unit, Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Charlotte Robert
- UMR 1030 Molecular Radiotherapy and Therapeutic Innovations, ImmunoRadAI, Paris-Saclay University, Institut Gustave Roussy, Inserm, Villejuif, France; Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Ghizela-Ana-Maria Salagean
- Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania; Department of Radiation Oncology, TopMed Medical Centre, Targu Mures, Romania
| | - Natalia Tejedor
- Department of Medical Physics and Radiation Protection, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Petra Trnková
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Marco Fusella
- Department of Radiation Oncology, Abano Terme Hospital, Italy
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Rome, Italy.
| | - Davide Cusumano
- Mater Olbia Hospital, Strada Statale Orientale Sarda 125, Olbia, Sassari, Italy
| |
Collapse
|
3
|
张 振, 谢 金, 钟 伟, 梁 芳, 杨 蕊, 甄 鑫. [A multi-modal feature fusion classification model based on distance matching and discriminative representation learning for differentiation of high-grade glioma from solitary brain metastasis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:138-145. [PMID: 38293985 PMCID: PMC10878902 DOI: 10.12122/j.issn.1673-4254.2024.01.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVE To explore the performance of a new multimodal feature fusion classification model based on distance matching and discriminative representation learning for differentiating high-grade glioma (HGG) from solitary brain metastasis (SBM). METHODS We collected multi-parametric magnetic resonance imaging (MRI) data from 61 patients with HGG and 60 with SBM, and delineated regions of interest (ROI) on T1WI, T2WI, T2-weighted fluid attenuated inversion recovery (T2_FLAIR) and post-contrast enhancement T1WI (CE_T1WI) images. The radiomics features were extracted from each sequence using Pyradiomics and fused using a multimodal feature fusion classification model based on distance matching and discriminative representation learning to obtain a classification model. The discriminative performance of the classification model for differentiating HGG from SBM was evaluated using five-fold cross-validation with metrics of specificity, sensitivity, accuracy, and the area under the ROC curve (AUC) and quantitatively compared with other feature fusion models. Visual experiments were conducted to examine the fused features obtained by the proposed model to validate its feasibility and effectiveness. RESULTS The five-fold cross-validation results showed that the proposed multimodal feature fusion classification model had a specificity of 0.871, a sensitivity of 0.817, an accuracy of 0.843, and an AUC of 0.930 for distinguishing HGG from SBM. This feature fusion method exhibited excellent discriminative performance in the visual experiments. CONCLUSION The proposed multimodal feature fusion classification model has an excellent ability for differentiating HGG from SBM with significant advantages over other feature fusion classification models in discrimination and classification tasks between HGG and SBM.
Collapse
Affiliation(s)
- 振阳 张
- 南方医科大学生物医学工程学院,广东 广州 510515School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - 金城 谢
- 南方医科大学生物医学工程学院,广东 广州 510515School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - 伟雄 钟
- 南方医科大学生物医学工程学院,广东 广州 510515School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - 芳蓉 梁
- 华南理工大学医学院,广东 广州 510006School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - 蕊梦 杨
- 华南理工大学附属第二医院(广州市第一人民医院)放射科,广东 广州 510180Department of Radiology, Second Affiliated Hospital of South China University of Technology (Guangzhou First People's Hospital), Guangzhou 510180, China
- 华南理工大学医学院,广东 广州 510006School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - 鑫 甄
- 南方医科大学生物医学工程学院,广东 广州 510515School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Egashira M, Arimura H, Kobayashi K, Moriyama K, Kodama T, Tokuda T, Ninomiya K, Okamoto H, Igaki H. Magnetic resonance-based imaging biopsy with signatures including topological Betti number features for prediction of primary brain metastatic sites. Phys Eng Sci Med 2023; 46:1411-1426. [PMID: 37603131 DOI: 10.1007/s13246-023-01308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
This study incorporated topology Betti number (BN) features into the prediction of primary sites of brain metastases and the construction of magnetic resonance-based imaging biopsy (MRB) models. The significant features of the MRB model were selected from those obtained from gray-scale and three-dimensional wavelet-filtered images, BN and inverted BN (iBN) maps, and clinical variables (age and gender). The primary sites were predicted as either lung cancer or other cancers using MRB models, which were built using seven machine learning methods with significant features chosen by three feature selection methods followed by a combination strategy. Our study dealt with a dataset with relatively smaller brain metastases, which included effective diameters greater than 2 mm, with metastases ranging from 2 to 9 mm accounting for 17% of the dataset. The MRB models were trained by T1-weighted contrast-enhanced images of 494 metastases chosen from 247 patients and applied to 115 metastases from 62 test patients. The most feasible model attained an area under the receiver operating characteristic curve (AUC) of 0.763 for the test patients when using a signature including features of BN and iBN maps, gray-scale and wavelet-filtered images, and clinical variables. The AUCs of the model were 0.744 for non-small cell lung cancer and 0.861 for small cell lung cancer. The results suggest that the BN signature boosted the performance of MRB for the identification of primary sites of brain metastases including small tumors.
Collapse
Affiliation(s)
- Mai Egashira
- Division of Medical Quantum Science, Department of Health Science, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hidetaka Arimura
- Division of Medical Quantum Science, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kazuma Kobayashi
- Department of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Kazutoshi Moriyama
- Division of Medical Quantum Science, Department of Health Science, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takumi Kodama
- Division of Medical Quantum Science, Department of Health Science, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoki Tokuda
- Joint Graduate School of Mathematics for Innovation, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenta Ninomiya
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Hiroyuki Okamoto
- Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroshi Igaki
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
5
|
Felefly T, Roukoz C, Fares G, Achkar S, Yazbeck S, Meyer P, Kordahi M, Azoury F, Nasr DN, Nasr E, Noël G, Francis Z. An Explainable MRI-Radiomic Quantum Neural Network to Differentiate Between Large Brain Metastases and High-Grade Glioma Using Quantum Annealing for Feature Selection. J Digit Imaging 2023; 36:2335-2346. [PMID: 37507581 PMCID: PMC10584786 DOI: 10.1007/s10278-023-00886-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Solitary large brain metastases (LBM) and high-grade gliomas (HGG) are sometimes hard to differentiate on MRI. The management differs significantly between these two entities, and non-invasive methods that help differentiate between them are eagerly needed to avoid potentially morbid biopsies and surgical procedures. We explore herein the performance and interpretability of an MRI-radiomics variational quantum neural network (QNN) using a quantum-annealing mutual-information (MI) feature selection approach. We retrospectively included 423 patients with HGG and LBM (> 2 cm) who had a contrast-enhanced T1-weighted (CE-T1) MRI between 2012 and 2019. After exclusion, 72 HGG and 129 LBM were kept. Tumors were manually segmented, and a 5-mm peri-tumoral ring was created. MRI images were pre-processed, and 1813 radiomic features were extracted. A set of best features based on MI was selected. MI and conditional-MI were embedded into a quadratic unconstrained binary optimization (QUBO) formulation that was mapped to an Ising-model and submitted to D'Wave's quantum annealer to solve for the best combination of 10 features. The 10 selected features were embedded into a 2-qubits QNN using PennyLane library. The model was evaluated for balanced-accuracy (bACC) and area under the receiver operating characteristic curve (ROC-AUC) on the test set. The model performance was benchmarked against two classical models: dense neural networks (DNN) and extreme gradient boosting (XGB). Shapley values were calculated to interpret sample-wise predictions on the test set. The best 10-feature combination included 6 tumor and 4 ring features. For QNN, DNN, and XGB, respectively, training ROC-AUC was 0.86, 0.95, and 0.94; test ROC-AUC was 0.76, 0.75, and 0.79; and test bACC was 0.74, 0.73, and 0.72. The two most influential features were tumor Laplacian-of-Gaussian-GLRLM-Entropy and sphericity. We developed an accurate interpretable QNN model with quantum-informed feature selection to differentiate between LBM and HGG on CE-T1 brain MRI. The model performance is comparable to state-of-the-art classical models.
Collapse
Affiliation(s)
- Tony Felefly
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon.
- ICube Laboratory, University of Strasbourg, Strasbourg, France.
- Radiation Oncology Department, Hôtel-Dieu de Lévis, Lévis, QC, Canada.
| | - Camille Roukoz
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Georges Fares
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
- Physics Department, Saint Joseph University, Beirut, Lebanon
| | - Samir Achkar
- Radiation Oncology Department, Gustave Roussy Cancer Campus, 94805, Villejuif, France
| | - Sandrine Yazbeck
- Department of Radiology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD, 21201, USA
| | - Philippe Meyer
- Medical Physics Department, Institut de Cancérologie de Strasbourg (ICANS), 67200, Strasbourg, France
- IMAGeS Unit, IRIS Platform, ICube, University of Strasbourg, 67085, Strasbourg Cedex, France
| | | | - Fares Azoury
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Dolly Nehme Nasr
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Elie Nasr
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Georges Noël
- Radiotherapy Department, Institut de Cancérologie de Strasbourg (ICANS), 67200, Strasbourg, France
- Radiobiology Department, IMIS Unit, IRIS Platform, ICube, University of Strasbourg, 67085, Strasbourg Cedex, France
- Faculty of Medicine, University of Strasbourg, 67000, Strasbourg, France
| | - Ziad Francis
- Physics Department, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
6
|
Yu L, Yu Z, Sun L, Zhu L, Geng D. A brain tumor computer-aided diagnosis method with automatic lesion segmentation and ensemble decision strategy. Front Med (Lausanne) 2023; 10:1232496. [PMID: 37841015 PMCID: PMC10576559 DOI: 10.3389/fmed.2023.1232496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Objectives Gliomas and brain metastases (Mets) are the most common brain malignancies. The treatment strategy and clinical prognosis of patients are different, requiring accurate diagnosis of tumor types. However, the traditional radiomics diagnostic pipeline requires manual annotation and lacks integrated methods for segmentation and classification. To improve the diagnosis process, a gliomas and Mets computer-aided diagnosis method with automatic lesion segmentation and ensemble decision strategy on multi-center datasets was proposed. Methods Overall, 1,022 high-grade gliomas and 775 Mets patients' preoperative MR images were adopted in the study, including contrast-enhanced T1-weighted (T1-CE) and T2-fluid attenuated inversion recovery (T2-flair) sequences from three hospitals. Two segmentation models trained on the gliomas and Mets datasets, respectively, were used to automatically segment tumors. Multiple radiomics features were extracted after automatic segmentation. Several machine learning classifiers were used to measure the impact of feature selection methods. A weight soft voting (RSV) model and ensemble decision strategy based on prior knowledge (EDPK) were introduced in the radiomics pipeline. Accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) were used to evaluate the classification performance. Results The proposed pipeline improved the diagnosis of gliomas and Mets with ACC reaching 0.8950 and AUC reaching 0.9585 after automatic lesion segmentation, which was higher than those of the traditional radiomics pipeline (ACC:0.8850, AUC:0.9450). Conclusion The proposed model accurately classified gliomas and Mets patients using MRI radiomics. The novel pipeline showed great potential in diagnosing gliomas and Mets with high generalizability and interpretability.
Collapse
Affiliation(s)
- Liheng Yu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Huashan Hospital, Fudan University, Shanghai, China
- Greater BayArea Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou, Guangdong, China
| | - Zekuan Yu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Huashan Hospital, Fudan University, Shanghai, China
- Greater BayArea Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou, Guangdong, China
| | - Linlin Sun
- Department of Radiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Zhu
- Department of Radiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Daoying Geng
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Huashan Hospital, Fudan University, Shanghai, China
- Greater BayArea Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou, Guangdong, China
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Dong W, Wang N, Qi Z. Advances in the application of neuroinflammatory molecular imaging in brain malignancies. Front Immunol 2023; 14:1211900. [PMID: 37533851 PMCID: PMC10390727 DOI: 10.3389/fimmu.2023.1211900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Abstract
The prevalence of brain cancer has been increasing in recent decades, posing significant healthcare challenges. The introduction of immunotherapies has brought forth notable diagnostic imaging challenges for brain tumors. The tumor microenvironment undergoes substantial changes in induced immunosuppression and immune responses following the development of primary brain tumor and brain metastasis, affecting the progression and metastasis of brain tumors. Consequently, effective and accurate neuroimaging techniques are necessary for clinical practice and monitoring. However, patients with brain tumors might experience radiation-induced necrosis or other neuroinflammation. Currently, positron emission tomography and various magnetic resonance imaging techniques play a crucial role in diagnosing and evaluating brain tumors. Nevertheless, differentiating between brain tumors and necrotic lesions or inflamed tissues remains a significant challenge in the clinical diagnosis of the advancements in immunotherapeutics and precision oncology have underscored the importance of clinically applicable imaging measures for diagnosing and monitoring neuroinflammation. This review summarizes recent advances in neuroimaging methods aimed at enhancing the specificity of brain tumor diagnosis and evaluating inflamed lesions.
Collapse
Affiliation(s)
- Wenxia Dong
- Department of Radiology, The First People’s Hospital of Linping District, Hangzhou, China
| | - Ning Wang
- Department of Medical Imaging, Jining Third People’s Hospital, Jining, Shandong, China
| | - Zhe Qi
- Department of Radiology, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
8
|
Aouadi S, Torfeh T, Arunachalam Y, Paloor S, Riyas M, Hammoud R, Al-Hammadi N. Investigation of radiomics and deep convolutional neural networks approaches for glioma grading. Biomed Phys Eng Express 2023; 9:035020. [PMID: 36898146 DOI: 10.1088/2057-1976/acc33a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 03/12/2023]
Abstract
Purpose.To determine glioma grading by applying radiomic analysis or deep convolutional neural networks (DCNN) and to benchmark both approaches on broader validation sets.Methods.Seven public datasets were considered: (1) low-grade glioma or high-grade glioma (369 patients, BraTS'20) (2) well-differentiated liposarcoma or lipoma (115, LIPO); (3) desmoid-type fibromatosis or extremity soft-tissue sarcomas (203, Desmoid); (4) primary solid liver tumors, either malignant or benign (186, LIVER); (5) gastrointestinal stromal tumors (GISTs) or intra-abdominal gastrointestinal tumors radiologically resembling GISTs (246, GIST); (6) colorectal liver metastases (77, CRLM); and (7) lung metastases of metastatic melanoma (103, Melanoma). Radiomic analysis was performed on 464 (2016) radiomic features for the BraTS'20 (others) datasets respectively. Random forests (RF), Extreme Gradient Boosting (XGBOOST) and a voting algorithm comprising both classifiers were tested. The parameters of the classifiers were optimized using a repeated nested stratified cross-validation process. The feature importance of each classifier was computed using the Gini index or permutation feature importance. DCNN was performed on 2D axial and sagittal slices encompassing the tumor. A balanced database was created, when necessary, using smart slices selection. ResNet50, Xception, EficientNetB0, and EfficientNetB3 were transferred from the ImageNet application to the tumor classification and were fine-tuned. Five-fold stratified cross-validation was performed to evaluate the models. The classification performance of the models was measured using multiple indices including area under the receiver operating characteristic curve (AUC).Results.The best radiomic approach was based on XGBOOST for all datasets; AUC was 0.934 (BraTS'20), 0.86 (LIPO), 0.73 (LIVER), (0.844) Desmoid, 0.76 (GIST), 0.664 (CRLM), and 0.577 (Melanoma) respectively. The best DCNN was based on EfficientNetB0; AUC was 0.99 (BraTS'20), 0.982 (LIPO), 0.977 (LIVER), (0.961) Desmoid, 0.926 (GIST), 0.901 (CRLM), and 0.89 (Melanoma) respectively.Conclusion.Tumor classification can be accurately determined by adapting state-of-the-art machine learning algorithms to the medical context.
Collapse
Affiliation(s)
- Souha Aouadi
- Department of Radiation Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, PO Box 3050 Doha, Qatar
| | - Tarraf Torfeh
- Department of Radiation Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, PO Box 3050 Doha, Qatar
| | - Yoganathan Arunachalam
- Department of Radiation Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, PO Box 3050 Doha, Qatar
| | - Satheesh Paloor
- Department of Radiation Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, PO Box 3050 Doha, Qatar
| | - Mohamed Riyas
- Department of Radiation Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, PO Box 3050 Doha, Qatar
| | - Rabih Hammoud
- Department of Radiation Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, PO Box 3050 Doha, Qatar
| | - Noora Al-Hammadi
- Department of Radiation Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, PO Box 3050 Doha, Qatar
| |
Collapse
|
9
|
Wang B, Wang Z, Jia Y, Zhao P, Han G, Meng C, Li X, Bai R, Liu Y. Water exchange detected by shutter speed dynamic contrast enhanced-MRI help distinguish solitary brain metastasis from glioblastoma. Eur J Radiol 2022; 156:110526. [PMID: 36219917 DOI: 10.1016/j.ejrad.2022.110526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE This study aimed to explore the feasibility of transmembrane water exchange parameters detected by brain shutter speed (BSS) dynamic contrast enhanced (DCE)MRI, which is validated to be associated with aquaporin-4 expression, in distinguishing glioblastoma (GBM) from solitary brain metastasis (SBM). METHODS 40 patients (mean age: 58.6 ± 11.7 years old, male/female: 23/17) with GBM and 48 patients (mean age: 61.7 ± 10.5 years old, male/female: 28/20) with SBM were enrolled in this observational study. BSS DCE-MRI was performed before operation. Intravascular water efflux rate constant (kbo) and intracellular water efflux rate constant (kio) within the peritumoral region and enhancing tumor were calculated from SS-DCE, respectively. The difference of these two parameters between GBM and SBM was explored. Immunohistochemical staining aquaporin-4 of was performed to validate its underlying biological mechanism. RESULTS The kbo was found to be statistically different within both peritumoral region {SBM vs. GBM (s-1): 1.0[0.4,1.7] vs. 1.5[0.9,2.1], p = 0.009} and enhanced tumor {SBM vs. GBM (s-1): 0.2[0.1,0.5] vs. 0.4[0.1,1.3], p = 0.034}. Immunohistochemical analysis reveals the high perivascular aquaporin-4 expression in GBM may contribute the higher kbo value than that of SBM. CONCLUSIONS kbo derived from BSS DCE-MRI was an independent pathophysiological parameter for separating GBM from SBM, in which kbo might be associated with the perivascular aquaporin-4 expression.
Collapse
Affiliation(s)
- Bao Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, PR China
| | - Zejun Wang
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, PR China
| | - Yinhang Jia
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Peng Zhao
- Department of Radiology, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Guangxu Han
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, PR China
| | - Cheng Meng
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Xiaomei Li
- Tumor Research and Therapy Center, Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China.
| | - Ruiliang Bai
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, PR China.
| | - Yingchao Liu
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China.
| |
Collapse
|
10
|
Differentiating Glioblastoma Multiforme from Brain Metastases Using Multidimensional Radiomics Features Derived from MRI and Multiple Machine Learning Models. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2016006. [PMID: 36212721 PMCID: PMC9534611 DOI: 10.1155/2022/2016006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Due to different treatment strategies, it is extremely important to differentiate between glioblastoma multiforme (GBM) and brain metastases (MET). It often proves difficult to distinguish between GBM and MET using MRI due to their similar appearance on the imaging modalities. Surgical methods are still necessary for definitive diagnosis, despite the importance of magnetic resonance imaging in detecting, characterizing, and monitoring brain tumors. We introduced an accurate, convenient, and user-friendly method to differentiate between GBM and MET through routine MRI sequence and radiomics analyses. We collected 91 patients from one institution, including 50 with GBM and 41 with MET, which were proven pathologically. The tumors separately were segmented on all MRI images (T1-weighted imaging (T1WI), contrast-enhanced T1-weighted imaging (T1C), T2-weighted imaging (T2WI), and fluid-attenuated inversion recovery (FLAIR)) to form the volume of interest (VOI). Eight ML models and feature reduction strategies were evaluated using routine MRI sequences (T1W, T2W, T1-CE, and FLAIR) in two methods with (second model) and without wavelet transform (first model) radiomics. The optimal model was selected based on each model’s accuracy, AUC-roc, and F1-score values. In this study, we have achieved the result of 0.98, 0.99, and 0.98 percent for accuracy, AUC-roc, and F1-score, respectively, which have yielded a better result than the first model. In most investigated models, there were significant improvements in the multidimensional wavelets model compared to the non-multidimensional wavelets model. Multidimensional discrete wavelet transform can analyze hidden features of the MRI from a different perspective and generate accurate features which are highly correlated with the model accuracy.
Collapse
|
11
|
Wu WF, Shen CW, Lai KM, Chen YJ, Lin EC, Chen CC. The Application of DTCWT on MRI-Derived Radiomics for Differentiation of Glioblastoma and Solitary Brain Metastases. J Pers Med 2022; 12:jpm12081276. [PMID: 36013225 PMCID: PMC9409920 DOI: 10.3390/jpm12081276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background: While magnetic resonance imaging (MRI) is the imaging modality of choice for the evaluation of patients with brain tumors, it may still be challenging to differentiate glioblastoma multiforme (GBM) from solitary brain metastasis (SBM) due to their similar imaging features. This study aimed to evaluate the features extracted of dual-tree complex wavelet transform (DTCWT) from routine MRI protocol for preoperative differentiation of glioblastoma (GBM) and solitary brain metastasis (SBM). Methods: A total of 51 patients were recruited, including 27 GBM and 24 SBM patients. Their contrast-enhanced T1-weighted images (CET1WIs), T2 fluid-attenuated inversion recovery (T2FLAIR) images, diffusion-weighted images (DWIs), and apparent diffusion coefficient (ADC) images were employed in this study. The statistical features of the pre-transformed images and the decomposed images of the wavelet transform and DTCWT were utilized to distinguish between GBM and SBM. Results: The support vector machine (SVM) showed that DTCWT images have a better accuracy (82.35%), sensitivity (77.78%), specificity (87.50%), and the area under the curve of the receiver operating characteristic curve (AUC) (89.20%) than the pre-transformed and conventional wavelet transform images. By incorporating DTCWT and pre-transformed images, the accuracy (86.27%), sensitivity (81.48%), specificity (91.67%), and AUC (93.06%) were further improved. Conclusions: Our studies suggest that the features extracted from the DTCWT images can potentially improve the differentiation between GBM and SBM.
Collapse
Affiliation(s)
- Wen-Feng Wu
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan; (W.-F.W.); (K.-M.L.)
| | - Chia-Wei Shen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan; (C.-W.S.); (Y.-J.C.)
| | - Kuan-Ming Lai
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan; (W.-F.W.); (K.-M.L.)
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
| | - Yi-Jen Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan; (C.-W.S.); (Y.-J.C.)
| | - Eugene C. Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan; (C.-W.S.); (Y.-J.C.)
- Correspondence: (E.C.L.); (C.-C.C.); Tel.: +886-52-720-411 (ext. 66418) (E.C.L.); +886-52-765-041 (ext. 7521) (C.-C.C.)
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (E.C.L.); (C.-C.C.); Tel.: +886-52-720-411 (ext. 66418) (E.C.L.); +886-52-765-041 (ext. 7521) (C.-C.C.)
| |
Collapse
|
12
|
Zhu M, Li S, Kuang Y, Hill VB, Heimberger AB, Zhai L, Zhai S. Artificial intelligence in the radiomic analysis of glioblastomas: A review, taxonomy, and perspective. Front Oncol 2022; 12:924245. [PMID: 35982952 PMCID: PMC9379255 DOI: 10.3389/fonc.2022.924245] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Radiological imaging techniques, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are the standard-of-care non-invasive diagnostic approaches widely applied in neuro-oncology. Unfortunately, accurate interpretation of radiological imaging data is constantly challenged by the indistinguishable radiological image features shared by different pathological changes associated with tumor progression and/or various therapeutic interventions. In recent years, machine learning (ML)-based artificial intelligence (AI) technology has been widely applied in medical image processing and bioinformatics due to its advantages in implicit image feature extraction and integrative data analysis. Despite its recent rapid development, ML technology still faces many hurdles for its broader applications in neuro-oncological radiomic analysis, such as lack of large accessible standardized real patient radiomic brain tumor data of all kinds and reliable predictions on tumor response upon various treatments. Therefore, understanding ML-based AI technologies is critically important to help us address the skyrocketing demands of neuro-oncology clinical deployments. Here, we provide an overview on the latest advancements in ML techniques for brain tumor radiomic analysis, emphasizing proprietary and public dataset preparation and state-of-the-art ML models for brain tumor diagnosis, classifications (e.g., primary and secondary tumors), discriminations between treatment effects (pseudoprogression, radiation necrosis) and true progression, survival prediction, inflammation, and identification of brain tumor biomarkers. We also compare the key features of ML models in the realm of neuroradiology with ML models employed in other medical imaging fields and discuss open research challenges and directions for future work in this nascent precision medicine area.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Sijia Li
- Kirk Kerkorian School of Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Yu Kuang
- Medical Physics Program, Department of Health Physics, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Virginia B. Hill
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lijie Zhai
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Lijie Zhai, ; Shengjie Zhai,
| | - Shengjie Zhai
- Department of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV, United States
- *Correspondence: Lijie Zhai, ; Shengjie Zhai,
| |
Collapse
|
13
|
Eckel-Passow JE, Lachance DH, Decker PA, Kollmeyer TM, Kosel ML, Drucker KL, Slager S, Wrensch M, Tobin WO, Jenkins RB. Inherited genetics of adult diffuse glioma and polygenic risk scores-a review. Neurooncol Pract 2022; 9:259-270. [PMID: 35859544 PMCID: PMC9290891 DOI: 10.1093/nop/npac017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Knowledge about inherited and acquired genetics of adult diffuse glioma has expanded significantly over the past decade. Genomewide association studies (GWAS) stratified by histologic subtype identified six germline variants that were associated specifically with glioblastoma (GBM) and 12 that were associated with lower grade glioma. A GWAS performed using the 2016 WHO criteria, stratifying patients by IDH mutation and 1p/19q codeletion (as well as TERT promoter mutation), discovered that many of the known variants are associated with specific WHO glioma subtypes. In addition, the GWAS stratified by molecular group identified two additional novel regions: variants in D2HGDH that were associated with tumors that had an IDH mutation and a variant near FAM20C that was associated with tumors that had both IDH mutation and 1p/19q codeletion. The results of these germline associations have been used to calculate polygenic risk scores, from which to estimate relative and absolute risk of overall glioma and risk of specific glioma subtypes. We will review the concept of polygenic risk models and their potential clinical utility, as well as discuss the published adult diffuse glioma polygenic risk models. To date, these prior genetic studies have been done on European populations. Using the published glioma polygenic risk model, we show that the genetic associations published to date do not generalize across genetic ancestries, demonstrating that genetic studies need to be done on more diverse populations.
Collapse
Affiliation(s)
- Jeanette E Eckel-Passow
- Corresponding Author: Jeanette E. Eckel-Passow, PhD, Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA ()
| | - Daniel H Lachance
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul A Decker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas M Kollmeyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew L Kosel
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Kristen L Drucker
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Susan Slager
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Margaret Wrensch
- Department of Neurological Surgery, Institute of Human Genetics, University of California, San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
14
|
A Survey of Radiomics in Precision Diagnosis and Treatment of Adult Gliomas. J Clin Med 2022; 11:jcm11133802. [PMID: 35807084 PMCID: PMC9267404 DOI: 10.3390/jcm11133802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Glioma is the most common primary malignant tumor of the adult central nervous system (CNS), which mostly shows invasive growth. In most cases, surgery is often difficult to completely remove, and the recurrence rate and mortality of patients are high. With the continuous development of molecular genetics and the great progress of molecular biology technology, more and more molecular biomarkers have been proved to have important guiding significance in the individualized diagnosis, treatment, and prognosis evaluation of glioma. With the updates of the World Health Organization (WHO) classification of tumors of the CNS in 2021, the diagnosis and treatment of glioma has entered the era of precision medicine in the true sense. Due to its ability to non-invasively achieve accurate identification of glioma from other intracranial tumors, and to predict the grade, genotyping, treatment response, and prognosis of glioma, which provides a scientific basis for the clinical application of individualized diagnosis and treatment model of glioma, radiomics has become a research hotspot in the field of precision medicine. This paper reviewed the research related to radiomics of adult gliomas published in recent years and summarized the research proceedings of radiomics in differential diagnosis, preoperative grading and genotyping, treatment and efficacy evaluation, and survival prediction of adult gliomas.
Collapse
|
15
|
A Systematic Review of the Current Status and Quality of Radiomics for Glioma Differential Diagnosis. Cancers (Basel) 2022; 14:cancers14112731. [PMID: 35681711 PMCID: PMC9179305 DOI: 10.3390/cancers14112731] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Gliomas can be difficult to discern clinically and radiologically from other brain lesions (either neoplastic or non-neoplastic) since their clinical manifestations as well as preoperative imaging features often overlap and appear misleading. Radiomics could be extremely helpful for non-invasive glioma differential diagnosis (DDx). However, implementation in clinical practice is still distant and concerns have been raised regarding the methodological quality of radiomic studies. In this context, we aimed to summarize the current status and quality of radiomic studies concerning glioma DDx in a systematic review. In total, 42 studies were selected and examined in our work. Our study revealed that, despite promising and encouraging results, current studies on radiomics for glioma DDx still lack the quality required to allow its introduction into clinical practice. This work could provide new insights and help to reach a consensus on the use of the radiomic approach for glioma DDx. Abstract Radiomics is a promising tool that may increase the value of imaging in differential diagnosis (DDx) of glioma. However, implementation in clinical practice is still distant and concerns have been raised regarding the methodological quality of radiomic studies. Therefore, we aimed to systematically review the current status of radiomic studies concerning glioma DDx, also using the radiomics quality score (RQS) to assess the quality of the methodology used in each study. A systematic literature search was performed to identify original articles focused on the use of radiomics for glioma DDx from 2015. Methodological quality was assessed using the RQS tool. Spearman’s correlation (ρ) analysis was performed to explore whether RQS was correlated with journal metrics and the characteristics of the studies. Finally, 42 articles were selected for the systematic qualitative analysis. Selected articles were grouped and summarized in terms of those on DDx between glioma and primary central nervous system lymphoma, those aiming at differentiating glioma from brain metastases, and those based on DDx of glioma and other brain diseases. Median RQS was 8.71 out 36, with a mean RQS of all studies of 24.21%. Our study revealed that, despite promising and encouraging results, current studies on radiomics for glioma DDx still lack the quality required to allow its introduction into clinical practice. This work could provide new insights and help to reach a consensus on the use of the radiomic approach for glioma DDx.
Collapse
|
16
|
DTI Abnormalities Related to Glioblastoma: A Prospective Comparative Study with Metastasis and Healthy Subjects. Curr Oncol 2022; 29:2823-2834. [PMID: 35448204 PMCID: PMC9027882 DOI: 10.3390/curroncol29040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Glioblastoma multiforme (GBM) shows complex mechanisms of spreading of the tumor cells, up to remote areas, and little is still known of these mechanisms, thus we focused on MRI abnormalities observable in the tumor and the brain adjacent to the lesion, up to the contralateral hemisphere, with a special interest on tensor diffusion imaging informing on white matter architecture; (2) Material and Methods: volumes, macroscopic volume (MV), brain-adjacent-tumor (BAT) volume and abnormal color-coded DTI volume (aCCV), and region-of-interest samples (probe volumes, ipsi, and contra lateral to the lesion), with their MRI characteristics, apparent diffusion coefficient (ADC), fractional anisotropy (FA) values, and number of fibers (DTI fiber tracking) were analyzed in patients suffering GBM (n = 15) and metastasis (n = 9), and healthy subjects (n = 15), using ad hoc statistical methods (type I error = 5%) (3) Results: GBM volumes were larger than metastasis volumes, aCCV being larger in GBM and BAT ADC was higher in metastasis, ADC decreased centripetally in metastasis, FA increased centripetally either in GBM or metastasis, MV and BAT FA values were higher in GBM, ipsi FA values of GBM ROIs were higher than those of metastasis, and the GBM ipsi number of fibers was higher than the GBM contra number of fibers; (4) Conclusions: The MV, BAT and especially the aCCV, as well as their related water diffusion characteristics, could be useful biomarkers in oncology and functional oncology.
Collapse
|
17
|
Machine Learning Applications for Differentiation of Glioma from Brain Metastasis-A Systematic Review. Cancers (Basel) 2022; 14:cancers14061369. [PMID: 35326526 PMCID: PMC8946855 DOI: 10.3390/cancers14061369] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary We present a systematic review of published reports on machine learning (ML) applications for the differentiation of gliomas from brain metastases by summarizing study characteristics, strengths, and pitfalls. Based on these findings, we present recommendations for future research in this field. Abstract Glioma and brain metastasis can be difficult to distinguish on conventional magnetic resonance imaging (MRI) due to the similarity of imaging features in specific clinical circumstances. Multiple studies have investigated the use of machine learning (ML) models for non-invasive differentiation of glioma from brain metastasis. Many of the studies report promising classification results, however, to date, none have been implemented into clinical practice. After a screening of 12,470 studies, we included 29 eligible studies in our systematic review. From each study, we aggregated data on model design, development, and best classifiers, as well as quality of reporting according to the TRIPOD statement. In a subset of eligible studies, we conducted a meta-analysis of the reported AUC. It was found that data predominantly originated from single-center institutions (n = 25/29) and only two studies performed external validation. The median TRIPOD adherence was 0.48, indicating insufficient quality of reporting among surveyed studies. Our findings illustrate that despite promising classification results, reliable model assessment is limited by poor reporting of study design and lack of algorithm validation and generalizability. Therefore, adherence to quality guidelines and validation on outside datasets is critical for the clinical translation of ML for the differentiation of glioma and brain metastasis.
Collapse
|
18
|
Roesler R, Dini SA, Isolan GR. Neuroinflammation and immunoregulation in glioblastoma and brain metastases: Recent developments in imaging approaches. Clin Exp Immunol 2021; 206:314-324. [PMID: 34591980 DOI: 10.1111/cei.13668] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/12/2023] Open
Abstract
Brain tumors and brain metastases induce changes in brain tissue remodeling that lead to immunosuppression and trigger an inflammatory response within the tumor microenvironment. These immune and inflammatory changes can influence invasion and metastasis. Other neuroinflammatory and necrotic lesions may occur in patients with brain cancer or brain metastases as sequelae from treatment with radiotherapy. Glioblastoma (GBM) is the most aggressive primary malignant brain cancer in adults. Imaging methods such as positron emission tomography (PET) and different magnetic resonance imaging (MRI) techniques are highly valuable for the diagnosis and therapeutic evaluation of GBM and other malignant brain tumors. However, differentiating between tumor tissue and inflamed brain tissue with imaging protocols remains a challenge. Here, we review recent advances in imaging methods that have helped to improve the specificity of primary tumor diagnosis versus evaluation of inflamed and necrotic brain lesions. We also comment on advances in differentiating metastasis from neuroinflammation processes. Recent advances include the radiosynthesis of 18 F-FIMP, an L-type amino acid transporter 1 (LAT1)-specific PET probe that allows clearer differentiation between tumor tissue and inflammation compared to previous probes, and the combination of different advanced imaging protocols with the inclusion of radiomics and machine learning algorithms.
Collapse
Affiliation(s)
- Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Afonso Dini
- The Center for Advanced Neurology and Neurosurgery (CEANNE)-Brazil, Porto Alegre, RS, Brazil
| | - Gustavo R Isolan
- The Center for Advanced Neurology and Neurosurgery (CEANNE)-Brazil, Porto Alegre, RS, Brazil.,Mackenzie Evangelical University of Paraná (FEMPAR), Curitiba, PR, Brazil
| |
Collapse
|