1
|
Chawhan AP, Dsouza N. Identifying the key hub genes linked with lung squamous cell carcinoma by examining the differentially expressed and survival genes. Mol Genet Genomics 2024; 299:76. [PMID: 39097557 DOI: 10.1007/s00438-024-02169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Lung Squamous Cell Carcinoma is characterised by significant alterations in RNA expression patterns, and a lack of early symptoms and diagnosis results in poor survival rates. Our study aimed to identify the hub genes involved in LUSC by differential expression analysis and their influence on overall survival rates in patients. Thus, identifying genes with the potential to serve as biomarkers and therapeutic targets. RNA sequence data for LUSC was obtained from TCGA and analysed using R Studio. Survival analysis was performed on DE genes. PPI network and hub gene analysis was performed on survival-relevant genes. Enrichment analysis was conducted on the PPI network to elucidate the functional roles of hub genes. Our analysis identified 2774 DEGs in LUSC patient datasets. Survival analysis revealed 511 genes with a significant impact on patient survival. Among these, 20 hub genes-FN1, ACTB, HGF, PDGFRB, PTEN, SNAI1, TGFBR1, ESR1, SERPINE1, THBS1, PDGFRA, VWF, BMP2, LEP, VTN, PXN, ABL1, ITGA3 and ANXA5-were found to have lower expression levels associated with better patient survival, whereas high expression of SOX2 correlated with longer survival. Enrichment analysis indicated that these hub genes are involved in critical cellular and cancer-related pathways. Our study has identified six key hub genes that are differentially expressed and exhibit significant influence over LUSC patient survival outcomes. Further, in vitro and in vivo studies must be conducted on the key genes for their utilisation as therapeutic targets and biomarkers in LUSC.
Collapse
Affiliation(s)
| | - Norine Dsouza
- Department of Biotechnology, St. Xavier's College, Mumbai, Maharashtra, 400001, India.
| |
Collapse
|
2
|
Ding Y, Yuan X, Wang Y, Yan J. CASQ2 alleviates lung cancer by inhibiting M2 tumor-associated macrophage polarization and JAK/STAT pathway. J Biochem Mol Toxicol 2024; 38:e23801. [PMID: 39132772 DOI: 10.1002/jbt.23801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Lung cancer (LC) is a major inducer of cancer-related death. We aim to reveal the effect of Calsequestrin2 (CASQ2) on macrophage polarization and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway in LC. Hub genes were determined from protein-protein interaction networks based on GSE21933 and GSE1987 data sets using bioinformatic analysis. Expression of hub genes was verified by real-time quantitative polymerase chain reaction (RT-qPCR). Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, wound-healing, colony formation, and transwell assays were performed to assess the impact of CASQ2 on LC cells. A xenograft mouse model was evaluated using hematoxylin-eosin, immunohistochemistry, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining to investigate the effect of CASQ2 on LC. The role of CASQ2 in regulating macrophage polarization and JAK/STAT pathway was evaluated by western blot andRT-qPCR. We screened out 155 common differentially expressed genes in GSE21933 and GSE1987 data sets. Myomesin-2, tyrosine kinase, sex determining region Y-box 2, platelet and endothelial cell adhesion molecule 1, matrix metallopeptidase 9, claudin-5, caveolin-1, CASQ2, recombinant ATPase, Ca++ transporting, cardiac muscle, slow twitch 2 (ATP2A2), and ankyrin repeat domain 1 were identified as the hub genes with high prediction value. CASQ2 was selected as a pivotal regulator of LC. In vitro experiments and xenograft models revealed that CASQ2 overexpression suppressed proliferation, colony formation, migration, invasion of LC cells, and tumor growth in vivo. Additionally, overexpression of CASQ2 promoted the expression of M1 macrophage markers (cluster of differentiation 80 [CD80], interleukin [IL]-12, inducible nitric oxide synthase [iNOS]), while decreasing the expression of M2 macrophage markers (CD163, IL-10, Arg1) in tumor-associated macrophages and xenograft tissues. Finally, we found that overexpression of CASQ2 inhibited JAK/STAT pathway. CASQ2 is a novel biomarker, which can alleviate LC via inhibiting M2 tumor-associated macrophage polarization and JAK/STAT pathway.
Collapse
Affiliation(s)
- Yan Ding
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Xiaoliang Yuan
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Ying Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Jun Yan
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China
| |
Collapse
|
3
|
Huang X, Huang J, Zhou X, Zhang C, Ding X, Wong PJC, Wang Y, Zhang R. Whole-exome sequencing has revealed novel genetic characteristics in intracranial germ cell tumours in the Chinese. Histopathology 2024; 84:1199-1211. [PMID: 38409885 DOI: 10.1111/his.15155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/02/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
AIMS Intracranial germ cell tumour (IGCT) is a type of rare central nervous system tumour that mainly occurs in children and adolescents, with great variation in its incidence rate and molecular characteristics in patients from different populations. The genetic alterations of IGCT in the Chinese population are still unknown. METHODS AND RESULTS In this study, 47 patients were enrolled and their tumour specimens were analysed by whole-exome sequencing (WES). We found that KIT was the most significantly mutated gene (15/47, 32%), which mainly occurred in the germinoma group (13/20, 65%), and less frequently in NGGCT (2/27, 7%). Copy number variations (CNVs) of FGF6 and TFE3 only appeared in NGGCT patients (P = 0.003 and 0.032, respectively), while CNVs of CXCR4, RAC2, PDGFA, and FEV only appeared in germinoma patients (P = 0.004 of CXCR4 and P = 0.027 for the last three genes). Compared with a previous Japanese cohort, the somatic mutation rates of RELN and SYNE1 were higher in the Chinese. Prognostic analysis showed that the NF1 mutation was associated with shorter overall survival and progression-free survival in IGCT patients. Clonal evolution analysis revealed an early branched evolutionary pattern in two IGCT patients who underwent changes in the histological subtype or degree of differentiation during disease surveillance. CONCLUSION This study indicated that Chinese IGCT patients may have distinct genetic characteristics and identified several possible genetic alterations that have the potential to become prognostic biomarkers of NGGCT patients.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Jianhan Huang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
| | - Xiaoyu Zhou
- GenomiCare Biotechnology (Shanghai) Co. Ltd, Shanghai, China
| | - Chao Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Xinghua Ding
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Peter Jih Cheng Wong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
| | - Yang Wang
- Department of Radiotherapy, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|
4
|
Qi YC, Bai H, Hu SL, Li SJ, Li QZ. Coregulatory effects of multiple histone modifications in key ferroptosis-related genes for lung adenocarcinoma. Epigenomics 2024; 16:609-633. [PMID: 38511238 PMCID: PMC11160448 DOI: 10.2217/epi-2023-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Aim: The present study was designed to investigate the coregulatory effects of multiple histone modifications (HMs) on gene expression in lung adenocarcinoma (LUAD). Materials & methods: Ten histones for LUAD were analyzed using ChIP-seq and RNA-seq data. An innovative computational method is proposed to quantify the coregulatory effects of multiple HMs on gene expression to identify strong coregulatory genes and regions. This method was applied to explore the coregulatory mechanisms of key ferroptosis-related genes in LUAD. Results: Nine strong coregulatory regions were identified for six ferroptosis-related genes with diverse coregulatory patterns (CA9, PGD, CDKN2A, PML, OTUB1 and NFE2L2). Conclusion: This quantitative method could be used to identify important HM coregulatory genes and regions that may be epigenetic regulatory targets in cancers.
Collapse
Affiliation(s)
- Ye-Chen Qi
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Hui Bai
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Si-Le Hu
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Shu-Juan Li
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
- The State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
| |
Collapse
|
5
|
Wong SWK, Tey SK, Mao X, Fung HL, Xiao Z, Wong DKH, Mak L, Yuen M, Ng IO, Yun JP, Gao Y, Yam JWP. Small Extracellular Vesicle-Derived vWF Induces a Positive Feedback Loop between Tumor and Endothelial Cells to Promote Angiogenesis and Metastasis in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302677. [PMID: 37387563 PMCID: PMC10502836 DOI: 10.1002/advs.202302677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is a hypervascular malignancy by which its growth and dissemination are largely driven by the modulation of tumor-derived small extracellular vesicles (sEVs). Proteomic profiling of circulating sEVs of control individuals and HCC patients identifies von Willibrand factor (vWF) to be upregulated progressively along HCC stages. Elevated sEV-vWF levels are found in a larger cohort of HCC-sEV samples and metastatic HCC cell lines compared to their respective normal counterparts. Circulating sEVs of late-stage HCC patients markedly augment angiogenesis, tumor-endothelial adhesion, pulmonary vascular leakiness, and metastasis, which are significantly compromised by anti-vWF antibody. The role of vWF is further corroborated by the enhanced promoting effect of sEVs collected from vWF-overexpressing cells. sEV-vWF modulates endothelial cells through an elevated level of vascular endothelial growth factor A (VEGF-A) and fibroblast growth factor 2 (FGF2). Mechanistically, secreted FGF2 elicits a positive feedback response in HCC via the FGFR4/ERK1 signaling pathway. The co-administration of anti-vWF antibody or FGFR inhibitor significantly improves the treatment outcome of sorafenib in a patient-derived xenograft mouse model. This study reveals mutual stimulation between HCC and endothelial cells by tumor-derived sEVs and endothelial angiogenic factors, facilitating angiogenesis and metastasis. It also provides insights into a new therapeutic strategy involving blocking tumor-endothelial intercellular communication.
Collapse
Affiliation(s)
- Samuel Wan Ki Wong
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Sze Keong Tey
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- Department of SurgerySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Xiaowen Mao
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver Research, The University of Hong KongHong Kong
| | - Hiu Ling Fung
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Zhi‐Jie Xiao
- Research CentreThe Seventh Affiliated HospitalSun Yat‐sen University518107ShenzhenP. R. China
| | - Danny Ka Ho Wong
- Department of MedicineSchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Lung‐Yi Mak
- Department of MedicineSchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Man‐Fung Yuen
- Department of MedicineSchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Irene Oi‐Lin Ng
- State Key Laboratory of Liver Research, The University of Hong KongHong Kong
| | - Jing Ping Yun
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yi Gao
- Department of Hepatobiliary Surgery IIZhuJiang HospitalSouthern Medical UniversityGuangzhouGuangdong510280P. R. China
| | - Judy Wai Ping Yam
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver Research, The University of Hong KongHong Kong
| |
Collapse
|
6
|
Omit SBS, Akhter S, Rana HK, Rana ARMMH, Podder NK, Rakib MI, Nobi A. Identification of Comorbidities, Genomic Associations, and Molecular Mechanisms for COVID-19 Using Bioinformatics Approaches. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6996307. [PMID: 36685671 PMCID: PMC9848821 DOI: 10.1155/2023/6996307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Several studies have been done to identify comorbidities of COVID-19. In this work, we developed an analytical bioinformatics framework to reveal COVID-19 comorbidities, their genomic associations, and molecular mechanisms accomplishing transcriptomic analyses of the RNA-seq datasets provided by the Gene Expression Omnibus (GEO) database, where normal and infected tissues were evaluated. Using the framework, we identified 27 COVID-19 correlated diseases out of 7,092 collected diseases. Analyzing clinical and epidemiological research, we noticed that our identified 27 diseases are associated with COVID-19, where hypertension, diabetes, obesity, and lung cancer are observed several times in COVID-19 patients. Therefore, we selected the above four diseases and performed assorted analyses to demonstrate the association between COVID-19 and hypertension, diabetes, obesity, and lung cancer as comorbidities. We investigated genomic associations with the cross-comparative analysis and Jaccard's similarity index, identifying shared differentially expressed genes (DEGs) and linking DEGs of COVID-19 and the comorbidities, in which we identified hypertension as the most associated illness. We also revealed molecular mechanisms by identifying statistically significant ten pathways and ten ontologies. Moreover, to understand cellular physiology, we did protein-protein interaction (PPI) analyses among the comorbidities and COVID-19. We also used the degree centrality method and identified ten biomarker hub proteins (IL1B, CXCL8, FN1, MMP9, CXCL10, IL1A, IRF7, VWF, CXCL9, and ISG15) that associate COVID-19 with the comorbidities. Finally, we validated our findings by searching the published literature. Thus, our analytical approach elicited interconnections between COVID-19 and the aforementioned comorbidities in terms of remarkable DEGs, pathways, ontologies, PPI, and biomarker hub proteins.
Collapse
Affiliation(s)
- Shudeb Babu Sen Omit
- Department of Computer Science and Telecommunication Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Salma Akhter
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Humayan Kabir Rana
- Department of Computer Science and Engineering, Green University of Bangladesh, Dhaka 1207, Bangladesh
| | - A. R. M. Mahamudul Hasan Rana
- Department of Computer Science and Telecommunication Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Nitun Kumar Podder
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Mahmudul Islam Rakib
- Department of Computer Science and Telecommunication Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Ashadun Nobi
- Department of Computer Science and Telecommunication Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| |
Collapse
|
7
|
Li X, Lu Z. Role of von Willebrand factor in the angiogenesis of lung adenocarcinoma (Review). Oncol Lett 2022; 23:198. [PMID: 35572495 PMCID: PMC9100484 DOI: 10.3892/ol.2022.13319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Xin Li
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
8
|
The Intriguing Connections between von Willebrand Factor, ADAMTS13 and Cancer. Healthcare (Basel) 2022; 10:healthcare10030557. [PMID: 35327035 PMCID: PMC8953111 DOI: 10.3390/healthcare10030557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022] Open
Abstract
von Willebrand factor (VWF) is a complex and large protein that is cleaved by ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13), and together they serve important roles in normal hemostasis. Malignancy can result in both a deficiency or excess of VWF, leading to aberrant hemostasis with either increased bleeding or thrombotic complications, as respectively seen with acquired von Willebrand syndrome and cancer-associated venous thromboembolism. There is emerging evidence to suggest VWF also plays a role in inflammation, angiogenesis and tumor biology, and it is likely that VWF promotes tumor metastasis. High VWF levels have been documented in a number of malignancies and in some cases correlate with more advanced disease and poor prognosis. Tumor cells can induce endothelial cells to release VWF and certain tumor cells have the capacity for de novo expression of VWF, leading to a proinflammatory microenvironment that is likely conducive to tumor progression, metastasis and micro-thrombosis. VWF can facilitate tumor cell adhesion to endothelial cells and aids with the recruitment of platelets into the tumor microenvironment, where tumor/platelet aggregates are able to form and facilitate hematogenous spread of cancer. As ADAMTS13 moderates VWF level and activity, it too is potentially involved in the pathophysiology of these events. VWF and ADAMTS13 have been explored as tumor biomarkers for the detection and prognostication of certain malignancies; however, the results are underdeveloped and so currently not utilized for clinical use. Further studies addressing the basic science mechanisms and real word epidemiology are required to better appreciate the intriguing connections between VWF, ADAMTS13 and malignancy. A better understanding of the role VWF and ADAMTS13 play in the promotion and inhibition of cancer and its metastasis will help direct further translational studies to aid with the development of novel cancer prognostic tools and treatment modalities.
Collapse
|
9
|
Huang C, He J, Dong Y, Huang L, Chen Y, Peng A, Huang H. Identification of Novel Prognostic Markers Associated With Laryngeal Squamous Cell Carcinoma Using Comprehensive Analysis. Front Oncol 2022; 11:779153. [PMID: 35087752 PMCID: PMC8787159 DOI: 10.3389/fonc.2021.779153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 01/02/2023] Open
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is a leading malignant cancer of the head and neck. Patients with LSCC, in which the cancer has infiltrated and metastasized, have a poor prognosis. Therefore, there is an urgent need to identify more potential targets for drugs and biomarkers for early diagnosis. Methods RNA sequence data from LSCC and patients’ clinical traits were obtained from the Gene Expression Omnibus (GEO) (GSE142083) and The Cancer Genome Atlas (TCGA) database. Differentially expressed gene (DEG) analysis and weighted gene co-expression network analysis (WGCNA) were performed to identify hub genes. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, prognostic value analysis, receiver operating characteristic (ROC) curve analysis, gene mutation analysis, tumor-infiltrating immune cell abundance profile estimation, gene set variation analysis (GSVA), and gene set enrichment analysis (GSEA) were performed. Single-gene RNA sequencing data were obtained from the GSE150321 dataset. Cell proliferation and viability were confirmed by the CCK-8 assay and real-time PCR. Results A total of 701 DEGs, including 329 upregulated and 372 downregulated genes, were screened in the GSE142083 dataset. Using WGCNA, three modules were identified to be closely related to LSCC. After intersecting the DEGs and performing univariate and multivariate Cox analyses, a novel prognostic model based on three genes (SLC35C1, HOXB7, and TEDC2) for LSCC was established. Interfering TEDC2 expression inhibited tumor cell proliferation and migration. Conclusions Our results show that SLC35C1, HOXB7, and TEDC2 have the potential to become new therapeutic targets and prognostic biomarkers for LSCC.
Collapse
Affiliation(s)
- Chao Huang
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital Central South University, Changsha, China
| | - Jun He
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital Central South University, Changsha, China
| | - Yi Dong
- Department of Nephrology, Xiangya Hospital Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Li Huang
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital Central South University, Changsha, China
| | - Yichao Chen
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital Central South University, Changsha, China
| | - Anquan Peng
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital Central South University, Changsha, China
| | - Hao Huang
- Department of Nephrology, Xiangya Hospital Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
10
|
Dong B, Wu C, Huang L, Qi Y. Macrophage-Related SPP1 as a Potential Biomarker for Early Lymph Node Metastasis in Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:739358. [PMID: 34646827 PMCID: PMC8502925 DOI: 10.3389/fcell.2021.739358] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Lymph node metastasis is a major factor that affects prognosis in patients with lung adenocarcinoma (LUAD). In some cases, lymph node metastasis has already occurred when the primary tumors are still small (i.e., early T stages), however, relevant studies on early lymph node metastasis are limited, and effective biomarkers remain lacking. This study aimed to explore new molecular biomarker for early lymph node metastasis in LUAD using transcriptome sequencing and experimental validation. Here, we performed transcriptome sequencing on tissues from 16 matched patients with Stage-T1 LUAD (eight cases of lymph node metastasis and eight cases of non-metastasis), and verified the transcriptome profiles in TCGA, GSE68465, and GSE43580 cohorts. With the bioinformatics analysis, we identified a higher abundance of M0 macrophages in the metastatic group using the CIBERSORT algorithm and immunohistochemistry (IHC) analysis and the enrichment of the epithelial–mesenchymal transition (EMT) pathway was identified in patients with higher M0 infiltration levels. Subsequently, the EMT hallmark gene SPP1, encoding secreted phosphoprotein 1 (SPP1), was identified to be significantly correlated with macrophage infiltration and M2 polarization, and was determined to be a key risk indicator for early lymph node metastasis. Notably, SPP1 in the blood, as detected by enzyme-linked immunosorbent assay (ELISA) showed a superior predictive capability for early lymph node metastasis [area under the curve (AUC) = 0.74]. Furthermore, a long non-coding RNA (lncRNA, AC037441), negatively correlated with SPP1 and macrophage infiltration, had also been identified and validated to be involved in the regulation of early lymph node metastasis. In conclusion, we revealed the potential role of macrophages in lymph node metastasis and identified the macrophage-related gene SPP1 as a potential biomarker for early lymph node metastasis in LUAD.
Collapse
Affiliation(s)
- Bo Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunli Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Peláez R, Ochoa R, Pariente A, Villanueva-Martínez Á, Pérez-Sala Á, Larráyoz IM. Sterculic Acid Alters Adhesion Molecules Expression and Extracellular Matrix Compounds to Regulate Migration of Lung Cancer Cells. Cancers (Basel) 2021; 13:cancers13174370. [PMID: 34503180 PMCID: PMC8431022 DOI: 10.3390/cancers13174370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Sterculic acid (SA) is a cyclopropenoid fatty acid isolated from Sterculia foetida seeds. This molecule is a well-known inhibitor of SCD1 enzyme, also known as ∆9-desaturase, which main function is related to lipid metabolism. However, recent studies have demonstrated that it also modifies many other pathways and the underlying gene expression. SCD overexpression, or up-regulated activity, has been associated with tumor aggressiveness and poor prognosis in many cancer types. Scd1 down-regulation, with different inhibitors or molecular strategies, reduces tumor cell survival and cell proliferation, as well as the chemoresistance associated with cancer stem cell presence. However, SA effects over cancer cell migration and extracellular matrix or adhesion molecules have not been described in cancer cells up to now. We used different migration assays and qPCR gene expression analysis to evaluate the effects of SA treatment in cancer cells. The results reveal that SA induces tumoral cell death at high doses, but we also observed that lower SA-treatments induce cell adhesion-migration capacity reduction as a result of modifications in the expression of genes related to integrins and extracellular matrix compounds. Overall, the functional and transcriptomic findings suggest that SA could represent a new inhibitor activity of epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Rafael Peláez
- Correspondence: (R.P.); (I.M.L.); Tel.: +34-941-278-770 ((ext. 84866) (R.P.) & (ext. 89878) (I.M.L.))
| | | | | | | | | | - Ignacio M. Larráyoz
- Correspondence: (R.P.); (I.M.L.); Tel.: +34-941-278-770 ((ext. 84866) (R.P.) & (ext. 89878) (I.M.L.))
| |
Collapse
|