1
|
Calubag MF, Robbins PD, Lamming DW. A nutrigeroscience approach: Dietary macronutrients and cellular senescence. Cell Metab 2024; 36:1914-1944. [PMID: 39178854 PMCID: PMC11386599 DOI: 10.1016/j.cmet.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, a process in which a cell exits the cell cycle in response to stressors, is one of the hallmarks of aging. Senescence and the senescence-associated secretory phenotype (SASP)-a heterogeneous set of secreted factors that disrupt tissue homeostasis and promote the accumulation of senescent cells-reprogram metabolism and can lead to metabolic dysfunction. Dietary interventions have long been studied as methods to combat age-associated metabolic dysfunction, promote health, and increase lifespan. A growing body of literature suggests that senescence is responsive to diet, both to calories and specific dietary macronutrients, and that the metabolic benefits of dietary interventions may arise in part through reducing senescence. Here, we review what is currently known about dietary macronutrients' effect on senescence and the SASP, the nutrient-responsive molecular mechanisms that may mediate these effects, and the potential for these findings to inform the development of a nutrigeroscience approach to healthy aging.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
2
|
Li Q, Tang X, Li W. Potential diagnostic markers and biological mechanism for osteoarthritis with obesity based on bioinformatics analysis. PLoS One 2023; 18:e0296033. [PMID: 38127891 PMCID: PMC10735003 DOI: 10.1371/journal.pone.0296033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Numerous observational studies have shown that obesity (OB) is a significant risk factor in the occurrence and progression of osteoarthritis (OA), but the underlying molecular mechanism between them remains unclear. The study aimed to identify the key genes and pathogeneses for OA with OB. We obtained two OA and two OB datasets from the gene expression omnibus (GEO) database. First, the identification of differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA), and machine learning algorithms were used to identify key genes for diagnosing OA with OB, and then the nomogram and receiver operating characteristic (ROC) curve were conducted to assess the diagnostic value of key genes. Second, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to explore the pathogenesis of OA with OB. Third, CIBERSORT was created to investigate immunocyte dysregulation in OA and OB. In this study, two genes (SOD2, ZNF24) were finally identified as key genes for OA with OB. These two key genes had high diagnostic values via nomogram and ROC curve calculation. Additionally, functional analysis emphasized that oxidative stress and inflammation response were shared pathogenesis of OB and AD. Finally, in OA and OB, immune infiltration analysis showed that SOD2 closely correlated to M2 macrophages, regulatory T cells, and CD8 T cells, and ZNF24 correlated to regulatory T cells. Overall, our findings might be new biomarkers or potential therapeutic targets for OA and OB comorbidity.
Collapse
Affiliation(s)
- Qiu Li
- Department of Cardiovascular, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Xijie Tang
- Department of Orthopedics, Wuhan Third Hospital, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430061, China
| | - Weihua Li
- Department of Cardiovascular, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| |
Collapse
|
3
|
Meng F, Ai C, Yan G, Wang G. Tumor-suppressive zinc finger protein 24 (ZNF24) sensitizes colorectal cancer cells to 5-fluorouracil by inhibiting the Wnt pathway and activating the p53 signaling. Exp Cell Res 2023; 433:113796. [PMID: 37774763 DOI: 10.1016/j.yexcr.2023.113796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/16/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Carcinogenesis and colorectal cancer (CRC) development are associated with dysregulation of various pathways, including Wnt and p53. 5-fluorouracil (5-FU) is a common chemotherapeutic agent for CRC treatment, but its efficacy is restricted by drug resistance. Doxycycline is an orally active tetracycline antibiotic known for its antimicrobial and anticancer cell proliferation activities. This study intends to delineate the potential role of bioinformatically predicted ZNF24 in the 5-FU resistance of CRC cells. The expression of ZNF24 was measured in clinically collected CRC tissues and cells. Afterward, ectopic ZNF24 expression was induced by DOX to evaluate the viability, colony-forming ability and sphere-forming ability of CRC cells. It was found that ZNF24 was validated to be poorly expressed in CRC tissues, and ectopic expression of ZNF24 was revealed to restrict the malignant phenotypes of CRC cells. In addition, restored ZNF24 attenuated 5-FU resistance of CRC cells by inhibiting the Wnt pathway and activating p53 signaling. Furthermore, an inhibitor of Wnt production 2 (IWP-2) treatment was an alternative to ZNF24 up-regulation in sensitizing CRC cells to 5-FU treatment. In conclusion, our results indicate that ZNF24 inhibits 5-FU resistance of CRC cells by suppressing the Wnt pathway and activating p53 signaling, which offers a potential strategy for managing chemoresistance in CRC.
Collapse
Affiliation(s)
- Fanqi Meng
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Chunlong Ai
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Guoqiang Yan
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Guangyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
4
|
Pan G, Jiang B, Yi Z, Yin J, Liu Y. Exosomal miR-105-5p derived from bladder cancer stem cells targets for GPR12 to promote the malignancy of bladder cancer. BMC Urol 2023; 23:155. [PMID: 37789353 PMCID: PMC10548737 DOI: 10.1186/s12894-023-01326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/16/2023] [Indexed: 10/05/2023] Open
Abstract
Bladder cancer stem cells (BCSCs) are considered as the root cause of BC initiation and recurrence, and exosomes derived from BCSCs (CSCs-exo) are the vital tool for establishing a stable tumor microenvironment. miR-105-5p has been revealed to promote tumor growth in a variety of cancers, but the effects on BC are still not included.Characteristics of CSCs-exo were examined by transmission electron microscope and nanoparticle tracking analysis. PKH67 dye was used to observe the cellular uptake of exosomes. Cell viability, migration and invasion were detected by CCK-8, wound healing and transwell invasion assays, respectively. The interaction between miR-105-5p and GPR12 was verified by luciferase activity assay. Xenografts were induced in the nude mice, and H&E staining method was applied to analyze the histological changes of xenografts. CSCs-exo efficiently promoted BC cell viability, migration and invasion. miR-105-5p was highly expressed in CSCs and CSCs-exo treatment significantly upregulated the expression of miR-105-5p in BC cells.GPR12 was subsequently verified to be the target gene of miR-105-5p, and overexpression of GPR12 abrogated the effects of miR-105-5p on BC cell growth and metastasis. Reversely, the anti-tumor function of miR-105-5p antagomir was observed in the xenograft mice.CSCs aggravated the malignancy of BC partly through transmitting exosomal miR-105-5p to BC cells to inhibit the expression of GPR12, which developed a novel aspect for CSC-targeted therapies.
Collapse
Affiliation(s)
- Gaojian Pan
- Department of Urology, The Affiliated Yancheng Hospital Of Southeast University Medical School, NO. 2 Xindu West Road, Yancheng, 224001, China
- Department of Urology, The Yancheng School of Clinical Medicine of Nanjing Medical University, NO. 2 Xindu West Road, Yancheng, 224001, China
| | - Bo Jiang
- Department of Urology, The Affiliated Yancheng Hospital Of Southeast University Medical School, NO. 2 Xindu West Road, Yancheng, 224001, China
- Department of Urology, The Yancheng School of Clinical Medicine of Nanjing Medical University, NO. 2 Xindu West Road, Yancheng, 224001, China
| | - Zhongquan Yi
- Department of Urology, The Affiliated Yancheng Hospital Of Southeast University Medical School, NO. 2 Xindu West Road, Yancheng, 224001, China
- Department of Urology, The Yancheng School of Clinical Medicine of Nanjing Medical University, NO. 2 Xindu West Road, Yancheng, 224001, China
| | - Jiuhu Yin
- Department of Urology, The Affiliated Yancheng Hospital Of Southeast University Medical School, NO. 2 Xindu West Road, Yancheng, 224001, China
- Department of Urology, The Yancheng School of Clinical Medicine of Nanjing Medical University, NO. 2 Xindu West Road, Yancheng, 224001, China
| | - Yadong Liu
- Department of Urology, The Affiliated Yancheng Hospital Of Southeast University Medical School, NO. 2 Xindu West Road, Yancheng, 224001, China.
- Department of Urology, The Yancheng School of Clinical Medicine of Nanjing Medical University, NO. 2 Xindu West Road, Yancheng, 224001, China.
- Department of Urology, Affiliated Hospital 6 of Nantong University, NO. 2 Xindu West Road, Yancheng, 224001, China.
| |
Collapse
|
5
|
Transcriptome-Based Traits of Radioresistant Sublines of Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2023; 24:ijms24033042. [PMID: 36769365 PMCID: PMC9917840 DOI: 10.3390/ijms24033042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Radioresistance is a major obstacle for the successful therapy of many cancers, including non-small cell lung cancer (NSCLC). To elucidate the mechanism of radioresistance of NSCLC cells and to identify key molecules conferring radioresistance, the radioresistant subclones of p53 wild-type A549 and p53-deficient H1299 cell cultures were established. The transcriptional changes between parental and radioresistant NSCLC cells were investigated by RNA-seq. In total, expression levels of 36,596 genes were measured. Changes in the activation of intracellular molecular pathways of cells surviving irradiation relative to parental cells were quantified using the Oncobox bioinformatics platform. Following 30 rounds of 2 Gy irradiation, a total of 322 genes were differentially expressed between p53 wild-type radioresistant A549IR and parental A549 cells. For the p53-deficient (H1299) NSCLC cells, the parental and irradiated populations differed in the expression of 1628 genes and 1616 pathways. The expression of genes associated with radioresistance reflects the complex biological processes involved in clinical cancer cell eradication and might serve as a potential biomarker and therapeutic target for NSCLC treatment.
Collapse
|
6
|
Alhaddad L, Nofal Z, Pustovalova M, Osipov AN, Leonov S. Long-Term Cultured Human Glioblastoma Multiforme Cells Demonstrate Increased Radiosensitivity and Senescence-Associated Secretory Phenotype in Response to Irradiation. Int J Mol Sci 2023; 24:ijms24032002. [PMID: 36768320 PMCID: PMC9916727 DOI: 10.3390/ijms24032002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The overall effect of senescence on cancer progression and cancer cell resistance to X-ray radiation (IR) is still not fully understood and remains controversial. How to induce tumor cell senescence and which senescent cell characteristics will ensure the safest therapeutic strategy for cancer treatment are under extensive investigation. While the evidence for passage number-related effects on malignant primary cells or cell lines is compelling, much less is known about how the changes affect safety and Senescence-Associated Secretory Phenotype (SASP), both of which are needed for the senescence cell-based vaccine to be effective against cancer. The present study aimed to investigate the effects of repeated passaging on the biological (self-renewal capacity and radioresistance) and functional (senescence) characteristics of the different populations of short- and long-term passaging glioblastoma multiforme (GBM) cells responding to senescence-inducing DNA-damaging IR stress. For this purpose, we compared radiobiological effects of X-ray exposure on two isogenic human U87 cell lines: U87L, minimally cultured cells (<15 passages after obtaining from the ATCC) and U87H, long-term cultured cells (>3 years of continuous culturing after obtaining from the ATCC). U87L cells displayed IR dose-related changes in the signs of IR stress-induced premature senescence. These included an increase in the proportion of senescence-associated β-galactosidase (SA-β-Gal)-positive cells, and concomitant decrease in the proportion of Ki67-positive cells and metabolically active cells. However, reproductive survival of irradiated short-term cultured U87L cells was higher compared to long-term cultured U87H cells, as the clonogenic activity results demonstrated. In contrast, the irradiated long-term cultured U87H cells possessed dose-related increases in the proportion of multinucleated giant cancer cells (MGCCs), while demonstrating higher radiosensitivity (lower self-renewal) and a significantly reduced fraction of DNA-replicating cells compared to short-term cultured U87L cells. Conditioned culture medium from U87H cells induced a significant rise of SA-β-Gal staining in U87L cells in a paracrine manner suggesting inherent SASP. Our data suggested that low-dose irradiated long-term cultured GBM cells might be a safer candidate for a recently proposed senescence cell-based vaccine against cancer.
Collapse
Affiliation(s)
- Lina Alhaddad
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
- Department of Environmental Sciences, Faculty of Sciences, Damascus University, Damascus P.O. Box 30621, Syria
| | - Zain Nofal
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
| | - Margarita Pustovalova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
| | - Andreyan N. Osipov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
7
|
Huang W, Hickson LJ, Eirin A, Kirkland JL, Lerman LO. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol 2022; 18:611-627. [PMID: 35922662 PMCID: PMC9362342 DOI: 10.1038/s41581-022-00601-z] [Citation(s) in RCA: 515] [Impact Index Per Article: 171.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a ubiquitous process with roles in tissue remodelling, including wound repair and embryogenesis. However, prolonged senescence can be maladaptive, leading to cancer development and age-related diseases. Cellular senescence involves cell-cycle arrest and the release of inflammatory cytokines with autocrine, paracrine and endocrine activities. Senescent cells also exhibit morphological alterations, including flattened cell bodies, vacuolization and granularity in the cytoplasm and abnormal organelles. Several biomarkers of cellular senescence have been identified, including SA-βgal, p16 and p21; however, few markers have high sensitivity and specificity. In addition to driving ageing, senescence of immune and parenchymal cells contributes to the development of a variety of diseases and metabolic disorders. In the kidney, senescence might have beneficial roles during development and recovery from injury, but can also contribute to the progression of acute kidney injury and chronic kidney disease. Therapies that target senescence, including senolytic and senomorphic drugs, stem cell therapies and other interventions, have been shown to extend lifespan and reduce tissue injury in various animal models. Early clinical trials confirm that senotherapeutic approaches could be beneficial in human disease. However, larger clinical trials are needed to translate these approaches to patient care.
Collapse
Affiliation(s)
- Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|