1
|
Shen C, Wang X, Gu L, Cui X, Zhu W, Wang Y, Zhang X, Chen X. USP41 plays carcinogenic roles in human cutaneous melanoma through PI3K/Akt signaling pathway. Arch Dermatol Res 2025; 317:768. [PMID: 40392309 DOI: 10.1007/s00403-025-04114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 05/22/2025]
Abstract
Cutaneous melanoma is a malignant tumor with a high mortality rate. Ubiquitin-specific protease 41 (USP41) has recently been reported to be overexpressed in various malignancies. However, its role in melanoma remains unclear. Gene Expression Profiling Interactive Analysis (GEPIA) was used to perform pan-cancer analysis using data from the the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Melanoma tissue microarray (TMA), clinical patient tissues, and cells were used to explore USP41 expression profiles by immunohistochemistry (IHC), RT-qPCR or Western blotting. Small interfering RNAs (siRNAs) were used to knock down USP41 in melanoma cells. Cell proliferation, migration, and invasion were assessed using CCK-8, EdU staining, wound healing, and transwell assays, respectively. Cell apoptosis was detected by flow cytometry and TUNEL staining. GEPIA revealed that USP41 is highly expressed in most human cancers, including melanoma. USP41 is overexpressed in melanoma tumor tissues and cells. IHC showed that USP41 was positively stained in melanoma tissues and was significantly correlated with the TNM stage of melanoma. USP41 knockdown inhibited cell proliferation, migration, and invasion while promoting cell apoptosis and inhibiting phosphorylated PI3K, AKT, and mTOR in the PI3K/AKT signaling pathway. The results indicate that USP41 may play a carcinogenic role in melanoma partly via the PI3K/AKT signaling pathway, suggesting that USP41 may be an effective therapeutic target for the treatments of cutaneous melanoma.
Collapse
Affiliation(s)
- Congcong Shen
- Department of Dermatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Xin Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Lixiong Gu
- Department of Dermatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Xiaomei Cui
- Department of Dermatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Wenyan Zhu
- Department of Dermatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Yixiao Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Xin Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Xiaodong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China.
| |
Collapse
|
2
|
Kim S, Han HJ, Rho H, Kang S, Mukherjee S, Kim J, Kim D, Ko HW, Lim SM, Im SS, Chung JY, Song J. Ebastine-mediated destabilization of E3 ligase MKRN1 protects against metabolic dysfunction-associated steatohepatitis. Cell Mol Life Sci 2025; 82:66. [PMID: 39888429 PMCID: PMC11785899 DOI: 10.1007/s00018-024-05535-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/08/2024] [Accepted: 11/29/2024] [Indexed: 02/01/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic condition encompassing metabolic dysfunction-associated steatotic liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), which can progress to fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). The heterogeneous and complex nature of MASLD complicates optimal drug development. Ebastine, an antihistamine, exhibits antitumor activity in various types of cancer. However, its effects on MASH remain unexplored. In the present study, we identified ebastine as a potential treatment for MASH. Our results indicated that ebastine acts as a novel MKRN1 inhibitor by promoting MKRN1 destabilization through self-ubiquitination, leading to AMP-activated protein kinase (AMPK) activation. Ebastine appeared to bind to the C-terminal domain of MKRN1, particularly at residues R298 and K360. Notably, Mkrn1 knockout (KO) mice demonstrated resistance to MASH, including obesity, steatosis, inflammation, and fibrosis under high-fat-high-fructose diet (HFHFD) conditions. Additionally, liver-specific Mkrn1 knockdown using AAV8 alleviated MASH symptoms in HFHFD-fed mice, implicating MKRN1 as a potential therapeutic target. Consistent with these findings, treatment with ebastine significantly reduced the risk of MASH in HFHFD-fed mice, with a decrease in MKRN1 expression and an increase in AMPK activity. Our study suggests that ebastine binds to MKRN1, promoting its destabilization and subsequent degradation by stimulating its ubiquitination. This enhances AMPK stability and activity, suppressing lipid accumulation, inflammation, and fibrosis. Moreover, the knockout of Mkrn1 mice decreased the risk of MASH, suggesting that ebastine could be a promising therapeutic agent for the treatment of MASH.
Collapse
Affiliation(s)
- Seungyeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyun-Ji Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyunjin Rho
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Subin Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sulagna Mukherjee
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Jiwoo Kim
- Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Doyoun Kim
- Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 07292, Republic of Korea
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Biochemistry, College of Life Science and Technology, Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seoul, Republic of Korea
| | - Sang Min Lim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 07292, Republic of Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Department of Biochemistry, College of Life Science and Technology, Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Wang L, Zhang Y, Yu T, Wu H. The Role and Mechanism of Deubiquitinase USP7 in Tumor-Associated Inflammation. Biomedicines 2024; 12:2734. [PMID: 39767641 PMCID: PMC11726842 DOI: 10.3390/biomedicines12122734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Deubiquitinating enzymes are a class of proteases that remove ubiquitin tags from proteins, thereby controlling protein stability and function. Tumor inflammation arises from interactions between tumor cells and their microenvironment, which trigger an inflammatory response. The deubiquitinating enzyme USP7 plays a central role in this process. Research suggests that USP7 may modulate various signaling pathways related to inflammatory responses through its deubiquitinating activity, thereby influencing tumor development and progression, including regulating T cell immune activity, improving macrophage anti-tumor activity, and regulating NF-κB signal pathways. Overall, describing the role and mechanism of USP7 in the tumor inflammatory response is of great importance for elucidating the regulatory mechanism of tumor inflammation and developing new therapeutic strategies. This article mainly reviews the structure, function, role, and mechanism of USP7 in the tumor inflammation response.
Collapse
Affiliation(s)
- Luhong Wang
- Cancer Hospital Affiliated to Dalian University of Technology, Shenyang 110042, China; (L.W.); (Y.Z.)
- Dalian Key Laboratory of Protein Modification and Disease, Faculty of Medicine, School of Biological Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yong Zhang
- Cancer Hospital Affiliated to Dalian University of Technology, Shenyang 110042, China; (L.W.); (Y.Z.)
| | - Tao Yu
- Cancer Hospital Affiliated to Dalian University of Technology, Shenyang 110042, China; (L.W.); (Y.Z.)
| | - Huijian Wu
- Dalian Key Laboratory of Protein Modification and Disease, Faculty of Medicine, School of Biological Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Moralev A, Zenkova MA, Markov AV. Complex Inhibitory Activity of Pentacyclic Triterpenoids against Cutaneous Melanoma In Vitro and In Vivo: A Literature Review and Reconstruction of Their Melanoma-Related Protein Interactome. ACS Pharmacol Transl Sci 2024; 7:3358-3384. [PMID: 39539268 PMCID: PMC11555519 DOI: 10.1021/acsptsci.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Pentacyclic triterpenoids (PTs) are a class of plant metabolites with a wide range of pharmacological activities, including strong antitumor potential against skin malignancies. By acting on multiple signaling pathways that control key cellular processes, PTs are able to exert complex effects on melanoma progression in vitro and in vivo. In this review, we have analyzed the works published in the past decade and devoted to the effects of PTs, both natural and semisynthetic, on cutaneous melanoma pathogenesis, including not only their direct action on melanoma cells but also their influence on the tumor microenvironment and abberant melanogenesis, often associated with melanoma aggressiveness. Special attention will be paid to the molecular basis of the pronounced antimelanoma potency of PTs, including a detailed consideration of the pathways sensitive to PTs in melanoma cells, as well as the reconstruction of the melanoma-related protein interactome of PTs using a network pharmacology approach based on previously published experimentally verified protein targets of PTs. The information collected on the primary targets of PTs was compiled in the Protein Interactome of PTs (PIPTs) database, freely available at http://www.pipts-db.ru/, which can be used to further optimize the mechanistic studies of PTs in the context of melanoma and other malignancies. By summarizing recent research findings, this review provides valuable information to scientists working in the fields related to the evaluation of melanoma pathogenesis and development of PTs-based drug candidates.
Collapse
Affiliation(s)
- Arseny
D. Moralev
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| |
Collapse
|
5
|
Huang H, Huang Y. USP7-stabilised HIPK2 promotes high glucose-induced endothelial cell dysfunctions to accelerate diabetic foot ulcers. Arch Physiol Biochem 2024:1-8. [PMID: 39066661 DOI: 10.1080/13813455.2024.2376815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Background: This study aimed to explore the molecular mechanism of homeodomain-interacting protein kinase 2 (HIPK2) in diabetic foot ulcers (DFU). Methods: High glucose (HG)-induced human umbilical vein endothelial cells (HUVECs) were used to construct DFU cell models. Cell functions were determined using CCK8 assay, EdU assay, flow cytometry, transwell assay, wound healing assay and tube formation assay. Quantitative real-time PCR and western blot were applied to measure the gene expression. Results: HG treatment suppressed HUVECs proliferation, invasion, migration, and angiogenesis, while enhanced apoptosis. HIPK2 was overexpressed in DFU patients, and its knockdown alleviated HG-induced HUVECs dysfunctions. USP7 stabilised HIPK2 protein by reducing its ubiquitination. USP7 overexpression promoted HG-induced HUVECs dysfunctions, and HIPK2 upregulation also reversed the regulation of USP7 knockdown on HG-induced HUVECs dysfunctions. USP7/HIPK2 axis inhibited the activity of PI3K/AKT pathway. Conclusion: Our study revealed that USP7-stabilised HIPK2 contributed to HG-induced HUVECs dysfunctions, thus accelerating DFU process.
Collapse
Affiliation(s)
- Huimin Huang
- Burn & Plastic & Wound Surgery Department, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Yangyong Huang
- Department of Colorectal Surgery, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
He YJ, Chen YR, Song JR, Jiang JX, Liu TT, Li JY, Li L, Jia J. Ubiquitin-specific protease-7 promotes expression of airway mucin MUC5AC via the NF-κB signaling pathway. Heliyon 2024; 10:e30967. [PMID: 38778971 PMCID: PMC11109812 DOI: 10.1016/j.heliyon.2024.e30967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and other respiratory diseases frequently present with airway mucus hypersecretion, which not only affects the patient's quality of life but also poses a constant threat to their life expectancy. Ubiquitin-specific protease 7 (USP7), a deubiquitinating enzyme, affects cell differentiation, tissue growth, and disease development. However, its role in airway mucus hypersecretion induced by COPD remains elusive. In this study, USP7 expression was significantly upregulated in airway epithelial samples from patients with COPD, and USP7 was also overexpressed in mouse lung and human airway epithelial cells in models of airway mucus hypersecretion. Inhibition of USP7 reduced the expression of nuclear factor kappa B (NF-κB), phosphorylated-NF-κB (p-NF-κB), and phosphonated inhibitor of nuclear factor kappa B (p-IκBα), and alleviated the airway mucus hypersecretion in vivo and in vitro. Further research revealed that USP7 stimulated airway mucus hypersecretion through the activation of NF-κB nuclear translocation. In addition, the expression of mucin 5AC (MUC5AC) was suppressed by the NF-κB inhibitor erdosteine. These findings suggest that USP7 stimulates the NF-κB signaling pathway, which promotes airway mucus hypersecretion. This study identifies one of the mechanisms regulating airway mucus secretion and provides a new potential target for its prevention and treatment.
Collapse
Affiliation(s)
- Yi-Jing He
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yi-Rong Chen
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jia-Rui Song
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jin-Xiu Jiang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ting-Ting Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jia-Yao Li
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Liu Li
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
7
|
Gao L, Zhu L, Shen C, Hou X, Chen Y, Zou L, Qiang H, Teichmann AT, Fu W, Luo Y. The transdermal cream of Formestane anti-breast cancer by controlling PI3K-Akt pathway and the tumor immune microenvironment. Front Immunol 2023; 14:1041525. [PMID: 37056757 PMCID: PMC10087521 DOI: 10.3389/fimmu.2023.1041525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Treatment of ER+ breast cancer with intramuscular formulation of Formestane (4-OHA) shrinks the tumor within weeks. Since the tedious way of intramuscular administration and side effects are not suited for adjuvant treatment, Formestane was withdrawn from the market. A new transdermal formulation of 4-OHA cream may overcome the defects and retain the effect of shrinking the breast cancer tumor. However, the effects of 4-OHA cream on breast cancer need further confirmatory studies. METHODS In this work, in vivo, the influence of 4-OHA cream on breast cancer was evaluated using the mode of 7,12-dimethylbenz(a)anthracene (DMBA) induced rat mammary cancer. We explored the common molecule mechanisms of action of 4-OHA cream and its injection formulation on breast cancer through RNA- sequencing-based transcriptome analysis and several biochemical experiments. RESULTS The results showed that the cream substantially reduced the entire quantity, size, and volum of tumors in DMBA-treated rats consistent with 4-OHA injection, and indicated that there were comprehensive signals involved in 4-OHA antitumor activity, such as ECM-receptor interaction, focal adhesion, PI3K-Akt signaling pathway, and proteoglycans in cancer. In addition, we observed that both 4-OHA formulations could enhance immune infiltration, especially CD8+ T cells, B cells, natural killer cells, and macrophages infiltration, in the DMBA-induced mammary tumor tissues. The antitumor effects of 4-OHA partly depended on these immune cells. CONCLUSION 4-OHA cream could inhibit breast cancer growth as its injection formulation and may provide a new way for neoadjuvant treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Lanyang Gao
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Lei Zhu
- West China Hospital, Sichuan University, Chengdu, China
| | - Chen Shen
- West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoming Hou
- West China Hospital, Sichuan University, Chengdu, China
| | - Youyou Chen
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Linglin Zou
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Huiyan Qiang
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Alexander T. Teichmann
- Sichuan Provincial Center for Gynaecology and Breast Disease, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Wenguang Fu
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Yao Luo
- West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Deng X, He X, Yang Z, Huang J, Zhao L, Wen M, Hu X, Zou Z. Clustering analysis and prognostic model based on PI3K/AKT-related genes in pancreatic cancer. Front Oncol 2023; 13:1112104. [PMID: 37124502 PMCID: PMC10140326 DOI: 10.3389/fonc.2023.1112104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Background Pancreatic cancer is one of most aggressive malignancies with a dismal prognosis. Activation of PI3K/AKT signaling is instrumental in pancreatic cancer tumorigenesis. The aims of this study were to identify the molecular clustering, prognostic value, relationship with tumor immunity and targeting of PI3K/AKT-related genes (PARGs) in pancreatic cancer using bioinformatics. Methods The GSEA website was searched for PARGs, and pancreatic cancer-related mRNA data and clinical profiles were obtained through TCGA downloads. Prognosis-related genes were identified by univariate Cox regression analysis, and samples were further clustered by unsupervised methods to identify significant differences in survival, clinical information and immune infiltration between categories. Next, a prognostic model was constructed using Lasso regression analysis. The model was well validated by univariate and multivariate Cox regression analyses, Kaplan-Meier survival analysis and ROC curves, and correlations between risk scores and patient pathological characteristics were identified. Finally, GSEA, drug prediction and immune checkpoint protein analyses were performed. Results Pancreatic cancers were divided into Cluster 1 (C1) and Cluster 2 (C1) according to PARG mRNA expression. C1 exhibited longer overall survival (OS) and higher immune scores and CTLA4 expression, whereas C2 exhibited more abundant PD-L1. A 6-PARG-based prognostic model was constructed to divide pancreatic cancer patients into a high-risk score (HRS) group and a low-risk score (LRS) group, where the HRS group exhibited worse OS. The risk score was defined as an independent predictor of OS. The HRS group was significantly associated with pancreatic cancer metastasis, aggregation and immune score. Furthermore, the HRS group exhibited immunosuppression and was sensitive to radiotherapy and guitarbine chemotherapy. Multidrug sensitivity prediction analysis indicated that the HRS group may be sensitive to PI3K/AKT signaling inhibitors (PIK-93, GSK2126458, CAL-101 and rapamycin) and ATP concentration regulators (Thapsigargin). In addition, we confirmed the oncogenic effect of protein phosphatase 2 regulatory subunit B'' subunit alpha (PPP2R3A) in pancreatic cancer in vitro and in vivo. Conclusions PARGs predict prognosis, tumor immune profile, radiotherapy and chemotherapy drug sensitivity and are potential predictive markers for pancreatic cancer treatment that can help clinicians make decisions and personalize treatment.
Collapse
Affiliation(s)
- Xiangying Deng
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Yiyang Medical College, Yiyang, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xu He
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Yiyang Medical College, Yiyang, China
- Department of Science and Education, Yiyang Central Hospital, Yiyang, China
- The Hunan Provincial Key Laboratory of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China
| | - Zehua Yang
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Yiyang Medical College, Yiyang, China
| | - Jing Huang
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Yiyang Medical College, Yiyang, China
| | - Lin Zhao
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wen
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Yiyang Medical College, Yiyang, China
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiyuan Hu
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zizheng Zou
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Yiyang Medical College, Yiyang, China
- Department of Science and Education, Yiyang Central Hospital, Yiyang, China
- The Hunan Provincial Key Laboratory of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zizheng Zou,
| |
Collapse
|
9
|
The equilibrium of tumor suppression: DUBs as active regulators of PTEN. Exp Mol Med 2022; 54:1814-1821. [PMID: 36385557 PMCID: PMC9723170 DOI: 10.1038/s12276-022-00887-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
PTEN is among the most commonly lost or mutated tumor suppressor genes in human cancer. PTEN, a bona fide lipid phosphatase that antagonizes the highly oncogenic PI3K-AKT-mTOR pathway, is considered a major dose-dependent tumor suppressor. Although PTEN function can be compromised by genetic mutations in inherited syndromes and cancers, posttranslational modifications of PTEN may also play key roles in the dynamic regulation of its function. Notably, deregulated ubiquitination and deubiquitination lead to detrimental impacts on PTEN levels and subcellular partitioning, promoting tumorigenesis. While PTEN can be targeted by HECT-type E3 ubiquitin ligases for nuclear import and proteasomal degradation, studies have shown that several deubiquitinating enzymes, including HAUSP/USP7, USP10, USP11, USP13, OTUD3 and Ataxin-3, can remove ubiquitin from ubiquitinated PTEN in cancer-specific contexts and thus reverse ubiquitination-mediated PTEN regulation. Researchers continue to reveal the precise molecular mechanisms by which cancer-specific deubiquitinases of PTEN regulate its roles in the pathobiology of cancer, and new methods of pharmacologically for modulating PTEN deubiquitinases are critical areas of investigation for cancer treatment and prevention. Here, we assess the mechanisms and functions of deubiquitination as a recently appreciated mode of PTEN regulation and review the link between deubiquitinases and PTEN reactivation and its implications for therapeutic strategies.
Collapse
|
10
|
Ohanna M, Biber P, Deckert M. Emerging Role of Deubiquitinating Enzymes (DUBs) in Melanoma Pathogenesis. Cancers (Basel) 2022; 14:3371. [PMID: 35884430 PMCID: PMC9322030 DOI: 10.3390/cancers14143371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Metastatic melanoma is the leading cause of death from skin cancer. Therapies targeting the BRAF oncogenic pathway and immunotherapies show remarkable clinical efficacy. However, these treatments are limited to subgroups of patients and relapse is common. Overall, the majority of patients require additional treatments, justifying the development of new therapeutic strategies. Non-genetic and genetic alterations are considered to be important drivers of cellular adaptation mechanisms to current therapies and disease relapse. Importantly, modification of the overall proteome in response to non-genetic and genetic events supports major cellular changes that are required for the survival, proliferation, and migration of melanoma cells. However, the mechanisms underlying these adaptive responses remain to be investigated. The major contributor to proteome remodeling involves the ubiquitin pathway, ubiquitinating enzymes, and ubiquitin-specific proteases also known as DeUBiquitinases (DUBs). In this review, we summarize the current knowledge regarding the nature and roles of the DUBs recently identified in melanoma progression and therapeutic resistance and discuss their potential as novel sources of vulnerability for melanoma therapy.
Collapse
Affiliation(s)
- Mickael Ohanna
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Pierric Biber
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Marcel Deckert
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| |
Collapse
|
11
|
Ren X, Geng M, Xu K, Lu C, Cheng Y, Kong L, Cai Y, Hou W, Lu Y, Aihaiti Y, Xu P. Quantitative Proteomic Analysis of Synovial Tissue Reveals That Upregulated OLFM4 Aggravates Inflammation in Rheumatoid Arthritis. J Proteome Res 2021; 20:4746-4757. [PMID: 34496567 DOI: 10.1021/acs.jproteome.1c00399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tandem mass tag (TMT)-coupled liquid chromatography coupled with tandem mass spectrometry is a powerful method to investigate synovial tissue protein profiles in patients with rheumatoid arthritis (RA) and osteoarthritis (OA). Protein was isolated from synovial tissue samples of 22 patients and labeled with a TMT kit. Over 500 proteins were identified as the differential expression protein on comparing RA and OA synovial tissue, including 239 upregulated and 271 downregulated proteins. Data are available via ProteomeXchange with identifier PXD027703. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed that the majority participated in the developmental processes and protein processing in the endoplasmic reticulum. Olfactomedin 4 (OLFM4), a secreted glycoprotein, in joint inflammation of RA was explored. OLFM4 was upregulated in RA synovial tissue samples. In fibroblast-like synoviocytes (FLS), inflammation cytokines, TNF-α, interleukin (IL)-1β, and LPS can upregulate OLFM4. After OLFM4 knockdown under TNF-α stimulation, RA FLS proliferation was inhibited and the expression of CXCL9, CXCL11, and MMP-1 was decreased. Overall, the RA synovial tissue protein expression profile by proteomic analysis shows some unique targets in RA pathophysiology, and OLFM4 in FLS plays an important role in RA joint inflammation. OLFM4 can be a promising therapeutic target in RA synovial tissue.
Collapse
Affiliation(s)
- Xiaoyu Ren
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P. R. China
| | - Manman Geng
- Precision Medicine Institute, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, P. R. China.,National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an 710004, Shaanxi, P. R. China
| | - Ke Xu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P. R. China
| | - Chao Lu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P. R. China
| | - Yuanyuan Cheng
- Precision Medicine Institute, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, P. R. China.,National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an 710004, Shaanxi, P. R. China
| | - Linbo Kong
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P. R. China
| | - Yongsong Cai
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P. R. China
| | - Weikun Hou
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P. R. China
| | - Yufeng Lu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P. R. China
| | - Yirixiati Aihaiti
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P. R. China
| | - Peng Xu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P. R. China
| |
Collapse
|
12
|
Pan T, Li X, Li Y, Tao Z, Yao H, Wu Y, Chen G, Zhang K, Zhou Y, Huang Y. USP7 inhibition induces apoptosis in glioblastoma by enhancing ubiquitination of ARF4. Cancer Cell Int 2021; 21:508. [PMID: 34556124 PMCID: PMC8461901 DOI: 10.1186/s12935-021-02208-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/11/2021] [Indexed: 12/21/2022] Open
Abstract
Background Glioblastomas (GBMs) are grade IV central nervous system tumors characterized by a poor prognosis and a short median overall survival. Effective induction of GBM cell death is difficult because the GBM cell population is genetically unstable, resistant to chemotherapy and highly angiogenic. In recent studies, ubiquitin-specific protease 7 (USP7) is shown to scavenge ubiquitin from oncogenic protein substrates, so effective inhibition of USP7 may be a potential key treatment for GBM. Methods Immunohistochemistry and western blotting were used to detect the expression of USP7 in GBM tissues. In vitro apoptosis assay of USP7 inhibition was performed by western blotting, immunofluorescence, and flow cytometry. Anti-apoptotic substrates of USP7 were defined by Co-IP and TMT proteomics. Western blotting and IP were used to verify the relationship between USP7 and its substrate. In an in vivo experiment using an intracranial xenograft model in nude mice was constructed to assess the therapeutic effect of target USP7. Results Immunohistochemistry and western blotting confirmed that USP7 was significantly upregulated in glioblastoma samples. In in vitro experiments, inhibition of USP7 in GBM induced significant apoptosis. Co-IP and TMT proteomics identified a key anti-apoptotic substrate of USP7, ADP-ribosylation factor 4 (ARF4). Western blotting and IP confirmed that USP7 interacted directly with ARF4 and catalyzed the removal of the K48-linked polyubiquitinated chain that binded to ARF4. In addition, in vivo experiments revealed that USP7 inhibition significantly suppressed tumor growth and promoted the expression of apoptotic genes. Conclusions Targeted inhibition of USP7 enhances the ubiquitination of ARF4 and ultimately mediates the apoptosis of GBM cells. In a clinical sense, P5091 as a novel specific inhibitor of USP7 may be an effective approach for the treatment of GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02208-z.
Collapse
Affiliation(s)
- Tingzheng Pan
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, People's Republic of China
| | - Xuetao Li
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Jiangsu, Suzhou, People's Republic of China
| | - Yanyan Li
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, People's Republic of China
| | - Zhennan Tao
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, People's Republic of China
| | - Hui Yao
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, People's Republic of China
| | - Yue Wu
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, People's Republic of China
| | - Guangliang Chen
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, People's Republic of China
| | - Kai Zhang
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, People's Republic of China
| | - Youxin Zhou
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, People's Republic of China.
| | - Yulun Huang
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, People's Republic of China. .,Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Jiangsu, Suzhou, People's Republic of China.
| |
Collapse
|