1
|
Wang MT, Ni CH, Lu YQ, Zheng W, Zhang SL, Chen MH, Zheng B, Chen C. Next-generation sequencing in early-stage multiple primary lung cancer: The prognostic significance of genomic accumulation status and BCL2L11 del. Transl Oncol 2025; 55:102383. [PMID: 40186984 PMCID: PMC12002891 DOI: 10.1016/j.tranon.2025.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025] Open
Abstract
OBJECTIVE This study aimed to define the genomic features of tumors and to delineate the potential mutational pattern underlying the prognosis of patients using large-panel next-generation sequencing (NGS) assays. Additionally, the study sought to explore the biological functions and prognostic significance of PRMT8 in BCL2L11del lung cancer. METHODS A total of 53 patients were enrolled, with a total of 130 malignant tumors. Clinical variables were collected, and the NGS sequencing of a large panel of 116 tumor-associated genes was performed. According to the gene mutation series and the number of mutation sites, the patients were divided into a series of groups. We then utilized the TCGA-LUAD database to conduct differential gene expression analysis, KEGG enrichment analysis, GSEA, and prognostic evaluation. Cell experiments (transwell migration assays, wound healing assay, CCK8 assay, and apoptosis assay) were utilized to verify the roles of PRMT8 on A549 cell. Western blotting was used to investigate the effect of PRMT8 on the mTORC1 signaling pathway. RESULTS The patients exceeding the IA stage were associated with a significantly shorter DFS than those in the IA stage (mean time: 27.5 vs. 50.6 months, p = 0.044), and BCL2L11del subsets were associated with a significantly worse DFS (31.9 vs. 50.2 months, p = 0.047). In the subgroups, the patients with a single gene mutation series with multiple gene mutation sites had a shorter DFS than those with a single mutation site (37.6 vs. 53.9 months, p = 0.047); and those with four gene series with over four mutation sites displayed a longer DFS than those with four sites (25.7 vs. 58 months, p = 0.034). In a Cox Multivariate analysis, exceeding the IA stage and a BCL2L11del mutation were considered unfavorable independent prognostic factors (HR = 5.102, 95 %CI: 1.526 to 17.054; p = 0.008, and HR = 6.010, 95 %CI: 1.636 to 22.079; p = 0.007, respectively). A lower gene mutation series (≤2) was an independent factor for a longer DFS (HR = 0.276, 95 %CI: 0.086 to 0.882; p = 0.03). Our study found that PRMT8 was upregulated in the BCL2L11del group and associated with increased patient survival. Biological experiments showed that PRMT8 overexpression reduced cell viability, promoted apoptosis, inhibited migration and invasion, and suppressed mTORC1 pathway phosphorylation. CONCLUSIONS The prognosis of patients with early-stage MPLC may potentially be related to the accumulation status of gene mutation series and sites; their driving powers may offset each other. Taken together, the application of genomic profiling may prove to be useful for subdividing and precisely managing patients with MPLC. In addition, high expression of PRMT8 presented as an independent prognostic biomarker in lung cancer patients harboring the BCL2L11del mutation.
Collapse
Affiliation(s)
- Mu-Ting Wang
- The Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001, PR China
- The Department of Cardio-Thoracic Surgery, Shantou Central Hospital, Shantou, 515000, PR China
| | - Chen-Hui Ni
- The Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001, PR China
| | - Yan-Qi Lu
- The Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001, PR China
| | - Wei Zheng
- The Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001, PR China
| | - Shu-Liang Zhang
- The Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001, PR China
| | - Mao-Hui Chen
- The Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001, PR China
| | - Bin Zheng
- The Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001, PR China
| | - Chun Chen
- The Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001, PR China
| |
Collapse
|
2
|
Liu A, Sun T, Qiu T, Chen Y, Qi H, Du W, Wu Z, Huang Z, Su W, Zhu C, Jiao W. CXCL1 and CXCL8: Reliable and feasible biomarkers differentiating intrapulmonary metastasis from multiple primary neoplasms in non-small cell lung cancers. Cancer Biomark 2025; 42:18758592241308730. [PMID: 40235059 DOI: 10.1177/18758592241308730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
ObjectiveIn NSCLC, the main approach to differentiate between intrapulmonary metastases (IPM) and multiple primary lung cancer (MPLC) is to integrate histopathological and genomic information. Here, we identified viable biomarkers that can distinguish IPM from MPLC by integrating comprehensive genomic profiling (CGP) and targeted RNA sequencing.MethodsWe retrospectively collected tissues from at least two lesions in 34 patients. 29 and 5 out of 34 patients determined as pathologic MPLC (pMPLC) and pathologic IPM, respectively, according to Martini-Melamed criteria (M-M criteria). A comprehensive investigation at genomic and transcriptomic level was conducted.ResultsNine of the 29 pMPLCs shared trunk mutations in their lesions and were consequently reclassified as IPM. Survival analyses revealed that classification integrated M-M criteria and mutational profiling could distinguish IPM/MPLC more accurately. Further exploration at the transcriptomic level revealed elevated expression levels of genes related to epithelial-mesenchymal transition and immunomodulatory pathways in IPM. Notably, the expression of CXCL1 and CXCL8 was significantly upregulated in IPM.ConclusionsWe found that the expression of CXCL1 and CXCL8 in any tumor lesion within a patient could reliably indicate IPM. Additionally, assessing the transcriptional levels of CXCL1 and CXCL8 also provide a dependable and practical approach to identify IPM from MPLC.
Collapse
Affiliation(s)
- Ao Liu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tianlin Sun
- Department of Translational Medicine, Amoy Diagnostics Co., Ltd, Haicang District, Xiamen, China
| | - Tong Qiu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yunqing Chen
- Department of Pathology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Huiyang Qi
- Department of Pathology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Wenxing Du
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhe Wu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhan Huang
- Department of Translational Medicine, Amoy Diagnostics Co., Ltd, Haicang District, Xiamen, China
| | - Wenqing Su
- Department of Translational Medicine, Amoy Diagnostics Co., Ltd, Haicang District, Xiamen, China
| | - Changbin Zhu
- Department of Translational Medicine, Amoy Diagnostics Co., Ltd, Haicang District, Xiamen, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Chou TY, Dacic S, Wistuba I, Beasley MB, Berezowska S, Chang YC, Chung JH, Connolly C, Han Y, Hirsch FR, Hwang DM, Janowczyk A, Joubert P, Kerr KM, Lin D, Minami Y, Mino-Kenudson M, Nicholson AG, Papotti M, Rekhtman N, Roden AC, von der Thüsen JH, Travis W, Tsao MS, Yatabe Y, Yeh YC, Bubendorf L, Chang WC, Denninghoff V, Fernandes Tavora FR, Hayashi T, Hofman P, Jain D, Kim TJ, Lantuejoul S, Le Quesne J, Lopez-Rios F, Matsubara D, Noguchi M, Radonic T, Saqi A, Schalper K, Shim HS, Sholl L, Weissferdt A, Cooper WA. Differentiating Separate Primary Lung Adenocarcinomas From Intrapulmonary Metastases With Emphasis on Pathological and Molecular Considerations: Recommendations From the International Association for the Study of Lung Cancer Pathology Committee. J Thorac Oncol 2025; 20:311-330. [PMID: 39579981 DOI: 10.1016/j.jtho.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/12/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
INTRODUCTION With the implementation of low-dose computed tomography screening, multiple pulmonary tumor nodules are diagnosed with increasing frequency and the selection of surgical treatments versus systemic therapies has become challenging on a daily basis in clinical practice. In the presence of multiple carcinomas, especially adenocarcinomas, pathologically determined to be of pulmonary origin, the distinction between separate primary lung carcinomas (SPLCs) and intrapulmonary metastases (IPMs) is important for staging, management, and prognostication. METHODS We systemically reviewed various means that aid in the differentiation between SPLCs and IPMs explored by histopathologic evaluation and molecular profiling, the latter includes DNA microsatellite analysis, array comparative genomic hybridization, TP53 and oncogenic driver mutation testing and, more recently, with promising effectiveness, next-generation sequencing comprising small- or large-scale multi-gene panels. RESULTS Comprehensive histologic evaluation may suffice to differentiate between SPLCs and IPMs. Nevertheless, molecular profiling using larger-scale next-generation sequencing typically provides superior discriminatory power, allowing for more accurate classification. On the basis of the literature review and expert opinions, we proposed a combined four-step histologic and molecular classification algorithm for addressing multiple pulmonary tumor nodules of adenocarcinoma histology that encourages a multidisciplinary approach. It is also noteworthy that new technologies combining machine learning and digital pathology may develop into valuable diagnostic tools for distinguishing SPLCs from IPMs in the future. CONCLUSIONS Although histopathologic evaluation is often adequate to differentiate SPLCs from IPMs, molecular profiling should be performed when possible, especially in cases with tumors exhibiting similar morphology. This manuscript summarized the previous efforts in resolving the current challenges and highlighted the recent progress in the differentiation methods and algorithms used in categorizing multiple lung adenocarcinomas into SPLCs or IPMs, which are becoming more and more critical in precision lung cancer management.
Collapse
Affiliation(s)
- Teh-Ying Chou
- Department of Pathology and Precision Medicine Research Center, Taipei Medical University Hospital and Graduate Institute of Clinical Medicine, School of Medicine and Precision Health Center, Taipei Medical University, Taipei, Taiwan.
| | - Sanja Dacic
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mary Beth Beasley
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sabina Berezowska
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yeun-Chung Chang
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Haeng Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Casey Connolly
- International Association for the Study of Lung Cancer, Denver, Colorado
| | - Yuchen Han
- Department of Pathology, Shanghai Chest Hospital, Jiaotong University, Shanghai, People's Republic of China
| | - Fred R Hirsch
- Center for Thoracic Oncology, The Tisch Cancer Institute, New York, New York and Icahn School of Medicine, Mount Sinai Health System, New York, New York
| | - David M Hwang
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Odette Cancer Centre, Ontario, Canada
| | - Andrew Janowczyk
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec - Université Laval, Quebec City, Canada
| | - Keith M Kerr
- Department of Pathology, Aberdeen University School of Medicine and Aberdeen Royal Infirmary, Aberdeen, Scotland
| | - Dongmei Lin
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing) and Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Yuko Minami
- Department of Pathology, National Hospital Organization Ibarakihigashi National Hospital, The Center of Chest Diseases and Severe Motor & Intellectual Disabilities, Tokai, Ibaraki, Japan
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts
| | - Andrew G Nicholson
- Department of Histopathology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Mauro Papotti
- Department of Oncology, University of Turin, Torino, Italy
| | - Natasha Rekhtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - William Travis
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ming-Sound Tsao
- Department of Pathology, University Health Network and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital and Department of Pathology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Wei-Chin Chang
- Department of Pathology, Taipei Medical University Hospital and Taipei Medical University, Taipei, Taiwan
| | - Valeria Denninghoff
- Molecular-Clinical Laboratory, University of Buenos Aires-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Fabio Rocha Fernandes Tavora
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Tae-Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Sylvie Lantuejoul
- Université de Grenoble Alpes, Grenoble and Department of Pathology, Centre Leon Berard, Lyon, France
| | - John Le Quesne
- Beatson Cancer Research Institute, University of Glasgow, NHS Greater Glasgow and Clyde Glasgow, Glasgow, United Kingdom
| | | | - Daisuke Matsubara
- Department of Pathology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masayuki Noguchi
- Department of Pathology, Narita Tomisato Tokushukai Hospital, Chiba, Japan
| | - Teodora Radonic
- Department of Pathology, Amsterdam University Medical Center, Free University Amsterdam, Amsterdam, The Netherlands
| | - Anjali Saqi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Kurt Schalper
- Department of Pathology and Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Lynette Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Annikka Weissferdt
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston
| | - Wendy A Cooper
- Royal Prince Alfred Hospital, NSW Health Pathology, Camperdown, New South Wales, Australia
| |
Collapse
|
4
|
Wang Z, Yuan X, Nie Y, Wang J, Jiang G, Chen K. Next-Generation Sequencing vs. Clinical-Pathological Assessment in Diagnosis of Multiple Lung Cancers: A Systematic Review and Meta-Analysis. Thorac Cancer 2025; 16:e70039. [PMID: 40118796 PMCID: PMC11928291 DOI: 10.1111/1759-7714.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/23/2025] Open
Abstract
Accurately distinguishing between multiple primary lung cancers (MPLC) and intrapulmonary metastasis (IPM) is crucial for tailoring treatment strategies and improving patient outcomes. While molecular methods offer significant advantages over traditional clinical-pathological evaluations, they lack standardized diagnostic protocols and validated prognostic value. This study systematically compared the diagnostic and prognostic performance of molecular methods versus clinical-pathological evaluations in diagnosing multiple lung cancers (MLCs), specifically focusing on the impact of next-generation sequencing (NGS) parameters on diagnostic accuracy. A review of 41 studies encompassing 1266 patients revealed that two molecular methods, Mole1 (manually counting shared mutations) and Mole2 (bioinformatics-assisted clonal probability calculation), both demonstrated superior diagnostic accuracy and prognostic discrimination capabilities. Molecular assessment, particularly Mole1, effectively stratified prognosis for MPLC and IPM, leading to significantly improved disease-free survival (DFS: HR = 0.24, 95% CI: 0.15-0.39) and overall survival (OS: HR = 0.33, 95% CI: 0.18-0.58). Further analysis suggests that a minimal panel of 30-50 genes may be sufficient to effectively differentiate prognoses. Compared to Mole1, Mole2 demonstrated greater specificity and stability across various panels, achieving AUC values from 0.962 to 0.979. Clinical-pathological evaluations proved unreliable, not only failing to distinguish prognosis effectively but also exhibiting a potential misdiagnosis rate of 35.5% and 33.6% compared to the reference diagnosis. To improve both cost-effectiveness and diagnostic accuracy, bioinformatics-assisted molecular diagnostics should be integrated into multidisciplinary assessments, especially for high-risk cases where diagnostic errors are common.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Thoracic Oncology InstitutePeking University People's HospitalBeijingChina
- Research Unit of Intelligence Diagnosis and Treatment in Early Non‐small Cell, Lung CancerChinese Academy of Medical Sciences, Peking University, People's HospitalBeijingChina
| | - Xiaoqiu Yuan
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Thoracic Oncology InstitutePeking University People's HospitalBeijingChina
- Research Unit of Intelligence Diagnosis and Treatment in Early Non‐small Cell, Lung CancerChinese Academy of Medical Sciences, Peking University, People's HospitalBeijingChina
| | - Yuntao Nie
- China‐Japan Friendship HospitalBeijingChina
| | - Jun Wang
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Thoracic Oncology InstitutePeking University People's HospitalBeijingChina
- Research Unit of Intelligence Diagnosis and Treatment in Early Non‐small Cell, Lung CancerChinese Academy of Medical Sciences, Peking University, People's HospitalBeijingChina
| | - Guanchao Jiang
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Thoracic Oncology InstitutePeking University People's HospitalBeijingChina
- Research Unit of Intelligence Diagnosis and Treatment in Early Non‐small Cell, Lung CancerChinese Academy of Medical Sciences, Peking University, People's HospitalBeijingChina
| | - Kezhong Chen
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Thoracic Oncology InstitutePeking University People's HospitalBeijingChina
- Research Unit of Intelligence Diagnosis and Treatment in Early Non‐small Cell, Lung CancerChinese Academy of Medical Sciences, Peking University, People's HospitalBeijingChina
| |
Collapse
|
5
|
Liu Y, Fang L, Wang Y, Fan T, Wang L, Xiao C, Deng Z, Cai W, Zheng B, Qiu J, Li C, He J. The pathogenic germline ETV4 P433L mutation identified in multiple primary lung cancer affect tumor stem-like property by Wnt/β-catenin pathway. Cell Death Dis 2024; 15:738. [PMID: 39389944 PMCID: PMC11467305 DOI: 10.1038/s41419-024-07129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
The occurrence of multiple primary lung cancer (MPLC) has witnessed a significant surge in recent years within the Chinese population. MPLC is distinguished by its potential genetic susceptibility and notable genetic heterogeneity. Investigating the etiology of MPLC holds substantial clinical importance.The whole genome sequencing (WGS) and genome-wide linkage analysis were performed in a family affected by a dominant form of lung abnormalities. Specifically, five family members were diagnosed with MPLC, while nine members had pulmonary nodules and one normal member. To confirm the potential pathogenic germline mutations sites, Sanger sequencing was performed in an additional 162 MPLC family patients. Furthermore, molecular biology experiments were conducted to investigate the function and the mechanism of the identified pathogenic mutation site in lung cancer A549 and H322, both in vitro and in vivo. Linkage analysis revealed the presence of shared genomic regions among affected family members. Subsequent exome sequencing identified a deleterious variant within these linkage intervals, specifically a heterozygous mutation in ETS-oncogene transcription factors 4 (ETV4). This particular variant was found in affected family members at a rate of 13 out of 15 individuals. Furthermore, ETV4 P433L mutation could be detected in an additional MPLC family patients and mutation frequency was 3.7% (6 out of 162). The ETV4 P433L mutations site was introduced into lung cancer cell lines, resulting in altered migration and stem-like properties of the cancer cells. Further investigation revealed that the activation of the Wnt/β-catenin signaling pathway, which is associated with stemness, could be attributed to the presence of the ETV4 P433L mutation, suggesting its involvement in tumor promotion. A novel pathogenic germline mutation, ETV4 P433L, was identified in a dominant MPLC family, with a mutation rate of 3.7% among MPLC family patients. The ETV4 P433L mutation was found to impact the stem-like properties and migration of tumors through Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yu Liu
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingling Fang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yalong Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Zheng
- Department of pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junfeng Qiu
- China Economics and Management Academy, Central University of Finance and Economics, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Li H, Huang Z, Guo C, Wang Y, Li B, Wang S, Bai N, Chen H, Xue J, Wang D, Zheng Z, Bing Z, Song Y, Xu Y, Huang G, Yu X, Li R, Fung KL, Li J, Song L, Zhu Z, Liu S, Liang N, Li S. Super multiple primary lung cancers harbor high-frequency BRAF and low-frequency EGFR mutations in the MAPK pathway. NPJ Precis Oncol 2024; 8:229. [PMID: 39384982 PMCID: PMC11464572 DOI: 10.1038/s41698-024-00726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
The incidence of multiple primary lung cancer (MPLC) is increasing, with some of our surgical patients exhibiting numerous lesions. We defined lung cancer with five or more primary lesions as super MPLCs. Elucidating the genomic characteristics of this special MPLC subtype can help reduce disease burden and understand tumor evolution. In our cohort of synchronous super early-stage MPLCs (PUMCH-ssesMPLC), whole-exome sequencing on 130 resected malignant specimens from 18 patients provided comprehensive super-MPLC genomic landscapes. Mutations are enriched in PI3k-Akt and MAPK pathways. Their BRAF mutation frequency (31.5%) is significantly higher than MPLC with fewer lesions and early-stage single-lesion cancer, while EGFR mutations are significantly fewer (13.8%). As lesion counts increase, BRAF mutations gradually become dominant. Also, invasive lesions more tend to have classic super-MPLC mutation patterns. High-frequency BRAF mutations, especially Class II, and low-frequency EGFR mutations could be a reason for the limited effectiveness of targeted therapy in super-MPLC patients.
Collapse
Affiliation(s)
- Haochen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhicheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chao Guo
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bowen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Sha Wang
- Geneseeq Research Institute, Geneseeq Technology Inc., Nanjing, 210032, China
| | - Na Bai
- Geneseeq Research Institute, Geneseeq Technology Inc., Nanjing, 210032, China
| | - Hanlin Chen
- Geneseeq Research Institute, Geneseeq Technology Inc., Nanjing, 210032, China
| | - Jianchao Xue
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Daoyun Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhibo Zheng
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhongxing Bing
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yang Song
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuan Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guanghua Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoqing Yu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruirui Li
- Department of Thoracic Surgery, Aviation General Hospital, Beijing, 100025, China
| | | | - Ji Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lan Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ziwei Zhu
- Zhenyuan (Tianjin) Medical Technology Co. Ltd., Tianjin, 300385, China
| | - Songtao Liu
- Zhenyuan (Tianjin) Medical Technology Co. Ltd., Tianjin, 300385, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
7
|
Dong H, Tian Y, Xin S, Jiang S, Guo Y, Wan Z, Han Y. Diagnosis and management of multiple primary lung cancer. Front Oncol 2024; 14:1392969. [PMID: 39411141 PMCID: PMC11473257 DOI: 10.3389/fonc.2024.1392969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024] Open
Abstract
Multiple primary lung cancer (MPLC), can be categorized as synchronous multiple primary lung cancer (sMPLC) and metachronous multiple primary lung cancer (mMPLC), which are becoming increasingly common in clinical practice. A precise differential diagnosis between MPLC and intrapulmonary metastases (IPM) is essential for determining the appropriate management strategy. MPLC is primarily diagnosed through histology, imaging, and molecular methods. Imaging serves as an essential foundation for preoperative diagnosis, while histology is a critical tool for establishing a definitive diagnosis. As molecular biology advances, the diagnosis of MPLC has stepped into the era of molecular precision. Surgery is the preferred treatment approach, with stereotactic radiotherapy and ablation being viable options for unresectable lesions. Targeted therapy and immunotherapy can be considered for specific patients. A multidisciplinary team approach to evaluation and the application of combination therapy can benefit more patients. Looking ahead, the development of more authoritative guidelines will be instrumental in streamlining the diagnosis and management of MPLC.
Collapse
Affiliation(s)
- Honghong Dong
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, Beijing, China
| | - Yahui Tian
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, Beijing, China
| | - Shaowei Xin
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, Beijing, China
- Department of Thoracic Surgery, 962 Hospital of the joint Logistics Support Force, Harbin, China
| | - Suxin Jiang
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, Beijing, China
- Graduate School of China Medical University, Shenyang, China
| | - Yujie Guo
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, Beijing, China
- Graduate School of China Medical University, Shenyang, China
| | - Zitong Wan
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, Beijing, China
- College of Life Sciences, Northwestern University, Xi’an, China
| | - Yong Han
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, Beijing, China
| |
Collapse
|
8
|
Wang Z, Zhang Q, Wang C, Herth FJF, Guo Z, Zhang X. Multiple primary lung cancer: Updates and perspectives. Int J Cancer 2024; 155:785-799. [PMID: 38783577 DOI: 10.1002/ijc.34994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/14/2024] [Accepted: 03/28/2024] [Indexed: 05/25/2024]
Abstract
Management of multiple primary lung cancer (MPLC) remains challenging, partly due to its increasing incidence, especially with the significant rise in cases of multiple lung nodules caused by low-dose computed tomography screening. Moreover, the indefinite pathogenesis, diagnostic criteria, and treatment selection add to the complexity. In recent years, there have been continuous efforts to dissect the molecular characteristics of MPLC and explore new diagnostic approaches as well as treatment modalities, which will be reviewed here, with a focus on newly emerging evidence and future perspectives, hope to provide new insights into the management of MPLC and serve as inspiration for future research related to MPLC.
Collapse
Affiliation(s)
- Ziqi Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Diagnosis and Treatment for Pulmonary Nodules, Zhengzhou, Henan, China
| | - Quncheng Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Diagnosis and Treatment for Pulmonary Nodules, Zhengzhou, Henan, China
| | - Chaoyang Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Diagnosis and Treatment for Pulmonary Nodules, Zhengzhou, Henan, China
| | - Felix J F Herth
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Diagnosis and Treatment for Pulmonary Nodules, Zhengzhou, Henan, China
- Department of Pneumology and Critical Care Medicine Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Zhiping Guo
- Department of Health Management, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan Provincial Key Laboratory of Chronic Diseases and Health Management, Zhengzhou, Henan, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Diagnosis and Treatment for Pulmonary Nodules, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Yao M, Chen H, Chen Z, Wang Y, Shi D, Wu D, Li W, Huang J, Chen G, Zheng Q, Ye Z, Zheng C, Yang Y. Genomic and transcriptomic significance of multiple primary lung cancers detected by next-generation sequencing in clinical settings. Carcinogenesis 2024; 45:387-398. [PMID: 38693810 DOI: 10.1093/carcin/bgae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
Effective diagnosis and understanding of the mechanism of intrapulmonary metastasis (IM) from multiple primary lung cancers (MPLC) aid clinical management. However, the actual detection panels used in the clinic are variable. Current research on tumor microenvironment (TME) of MPLC and IM is insufficient. Therefore, additional investigation into the differential diagnosis and discrepancies in TME between two conditions is crucial. Two hundred and fourteen non-small cell lung cancer patients with multiple tumors were enrolled and 507 samples were subjected to DNA sequencing (NGS 10). Then, DNA and RNA sequencing (master panel) were performed on the specimens from 32 patients, the TME profiles between tumors within each patient and across patients and the differentially expressed genes were compared. Four patients were regrouped with NGS 10 results. Master panel resolved the classifications of six undetermined patients. The TME in MPLC exhibited a high degree of infiltration by natural killer (NK) cells, CD56dim NK cells, endothelial cells, etc., P < 0.05. Conversely, B cells, activated B cells, regulatory cells, immature dendritic cells, etc., P < 0.001, were heavily infiltrated in the IM. NECTIN4 and LILRB4 mRNA were downregulated in the MPLC (P < 0.0001). Additionally, NECTIN4 (P < 0.05) and LILRB4 were linked to improved disease-free survival in the MPLC. In conclusion, IM is screened from MPLC by pathology joint NGS 10 detections, followed by a large NGS panel for indistinguishable patients. A superior prognosis of MPLC may be associated with an immune-activating TME and the downregulation of NECTIN4 and LILRB4 considered as potential drug therapeutic targets.
Collapse
Affiliation(s)
- Meihong Yao
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Hu Chen
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Zui Chen
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Yingying Wang
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Dongliang Shi
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Dan Wu
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Wen Li
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Jianping Huang
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Guizhen Chen
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Qiaoling Zheng
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Zhengtao Ye
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| | - Chenxin Zheng
- School of Economics, Xiamen University, No.422 Siming South Road, Siming District, Xiamen 361005, Fujian Province, China
| | - Yinghong Yang
- Department of Pathology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Gulou District, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
10
|
Pei G, Sun K, Yang Y, Wang S, Li M, Ma X, Wang H, Chen L, Qin J, Cao S, Liu J, Huang Y. Classification of multiple primary lung cancer in patients with multifocal lung cancer: assessment of a machine learning approach using multidimensional genomic data. Front Oncol 2024; 14:1388575. [PMID: 38764572 PMCID: PMC11100425 DOI: 10.3389/fonc.2024.1388575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/08/2024] [Indexed: 05/21/2024] Open
Abstract
Background Multiple primary lung cancer (MPLC) is an increasingly well-known clinical phenomenon. However, its molecular characterizations are poorly understood, and still lacks of effective method to distinguish it from intrapulmonary metastasis (IM). Herein, we propose an identification model based on molecular multidimensional analysis in order to accurately optimize treatment. Methods A total of 112 Chinese lung cancers harboring at least two tumors (n = 270) were enrolled. We retrospectively selected 74 patients with 121 tumor pairs and randomly divided the tumor pairs into a training cohort and a test cohort in a 7:3 ratio. A novel model was established in training cohort, optimized for MPLC identification using comprehensive genomic profiling analyzed by a broad panel with 808 cancer-related genes, and evaluated in the test cohort and a prospective validation cohort of 38 patients with 112 tumors. Results We found differences in molecular characterizations between the two diseases and rigorously selected the characterizations to build an identification model. We evaluated the performance of the classifier using the test cohort data and observed an 89.5% percent agreement (PA) for MPLC and a 100.0% percent agreement for IM. The model showed an excellent area under the curve (AUC) of 0.947 and a 91.3% overall accuracy. Similarly, the assay achieved a considerable performance in the independent validation set with an AUC of 0.938 and an MPLC predictive value of 100%. More importantly, the MPLC predictive value of the classification achieved 100% in both the test set and validation cohort. Compared to our previous mutation-based method, the classifier showed better κ consistencies with clinical classification among all 112 patients (0.84 vs. 0.65, p <.01). Conclusion These data provide novel evidence of MPLC-specific genomic characteristics and demonstrate that our one-step molecular classifier can accurately classify multifocal lung tumors as MPLC or IM, which suggested that broad panel NGS may be a useful tool for assisting with differential diagnoses.
Collapse
Affiliation(s)
- Guotian Pei
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Kunkun Sun
- Department of Pathology, Peking University People’s Hospital, Beijing, China
| | - Yingshun Yang
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Shuai Wang
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Mingwei Li
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Xiaoxue Ma
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Huina Wang
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Libin Chen
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Jiayue Qin
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Shanbo Cao
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Jun Liu
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Yuqing Huang
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| |
Collapse
|
11
|
Li Z, Lv H, Zhang F, Zhu Z, Guo Q, Wang M, Huang C, Guo L, Meng F, Tian Z. Using molecular characteristics to distinguish multiple primary lung cancers and intrapulmonary metastases. PeerJ 2024; 12:e16808. [PMID: 38313018 PMCID: PMC10838092 DOI: 10.7717/peerj.16808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024] Open
Abstract
Objectives Multiple lung cancers may present as multiple primary lung cancers (MPLC) or intrapulmonary metastasis (IPM) with variations in clinical stage, treatment, and prognosis. However, the existing differentiation criteria based on histology do not fully meet the clinical needs. Next-generation sequencing (NGS) may play an important role in assisting the identification of different pathologies. Here, we extended the relevant data by combining histology and NGS to develop detailed identification criteria for MPLC and IPM. Materials and Methods Patients with lung cancer (each patient had ≥2 tumors) were enrolled in the training (n = 22) and validation (n = 13) cohorts. Genomic profiles obtained from 450-gene-targeted NGS were analyzed, and the new criteria were developed based on our findings and pre-existing Martini & Melamed criteria and molecular benchmarks. Results The analysis of the training cohort indicated that patients identified with MPLC had no (or <2) trunk or shared mutations. However, 98.02% of mutations were branch mutations, and 69.23% of MPLC had no common mutations. In contrast, a higher percentage of trunk (33.08%) or shared (9.02%) mutations were identified in IPM, suggesting significant differences among mutated components. Subsequently, eight MPLC and five IPM cases were identified in the validation cohort, aligning with the independent imaging and pathologic distinction. Overall, the percentage of trunk and shared mutations was higher in patients with IPM than in patients with MPLC. Based on these results and the establishment of new determination criteria for MPLC and IPM, we emphasize that the type and number of shared variants based on histologic consistency assist in identification. Conclusion Determining genetic alterations may be an effective method for differentiating MPLC and IPM, and NGS can be used as a valuable assisting tool.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huilai Lv
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fan Zhang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ziming Zhu
- Department of Thoracic Surgery, The First Hospital of Xingtai, Xingtai, China
| | - Qiang Guo
- Department of Thoracic Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Mingbo Wang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Huang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | - Ziqiang Tian
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Song Y, Zhou J, Zhao X, Zhang Y, Xu X, Zhang D, Pang J, Bao H, Ji Y, Zhan M, Wang Y, Ou Q, Hu J. Lineage tracing for multiple lung cancer by spatiotemporal heterogeneity using a multi-omics analysis method integrating genomic, transcriptomic, and immune-related features. Front Oncol 2023; 13:1237308. [PMID: 37799479 PMCID: PMC10548834 DOI: 10.3389/fonc.2023.1237308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction The distinction between multiple primary lung cancer (MPLC) and intrapulmonary metastasis (IPM) holds clinical significance in staging, therapeutic intervention, and prognosis assessment for multiple lung cancer. Lineage tracing by clinicopathologic features alone remains a clinical challenge; thus, we aimed to develop a multi-omics analysis method delineating spatiotemporal heterogeneity based on tumor genomic profiling. Methods Between 2012 and 2022, 11 specimens were collected from two patients diagnosed with multiple lung cancer (LU1 and LU2) with synchronous/metachronous tumors. A novel multi-omics analysis method based on whole-exome sequencing, transcriptome sequencing (RNA-Seq), and tumor neoantigen prediction was developed to define the lineage. Traditional clinicopathologic reviews and an imaging-based algorithm were performed to verify the results. Results Seven tissue biopsies were collected from LU1. The multi-omics analysis method demonstrated that three synchronous tumors observed in 2018 (LU1B/C/D) had strong molecular heterogeneity, various RNA expression and immune microenvironment characteristics, and unique neoantigens. These results suggested that LU1B, LU1C, and LU1D were MPLC, consistent with traditional lineage tracing approaches. The high mutational landscape similarity score (75.1%), similar RNA expression features, and considerable shared neoantigens (n = 241) revealed the IPM relationship between LU1F and LU1G which were two samples detected simultaneously in 2021. Although the multi-omics analysis method aligned with the imaging-based algorithm, pathology and clinicopathologic approaches suggested MPLC owing to different histological types of LU1F/G. Moreover, controversial lineage or misclassification of LU2's synchronous/metachronous samples (LU2B/D and LU2C/E) traced by traditional approaches might be corrected by the multi-omics analysis method. Spatiotemporal heterogeneity profiled by the multi-omics analysis method suggested that LU2D possibly had the same lineage as LU2B (similarity score, 12.9%; shared neoantigens, n = 71); gefitinib treatment and EGFR, TP53, and RB1 mutations suggested the possibility that LU2E might result from histology transformation of LU2C despite the lack of LU2C biopsy and its histology. By contrast, histological interpretation was indeterminate for LU2D, and LU2E was defined as a primary or progression lesion of LU2C by histological, clinicopathologic, or imaging-based approaches. Conclusion This novel multi-omics analysis method improves the accuracy of lineage tracing by tracking the spatiotemporal heterogeneity of serial samples. Further validation is required for its clinical application in accurate diagnosis, disease management, and improving prognosis.
Collapse
Affiliation(s)
- Yijun Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiebai Zhou
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaotian Zhao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Yong Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaobo Xu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Donghui Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Pulmonary and Critical Care Medicine, Shanghai Geriatric Center, Shanghai, China
| | - Jiaohui Pang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Hairong Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengna Zhan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yulin Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Jie Hu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Pulmonary and Critical Care Medicine, Shanghai Geriatric Center, Shanghai, China
| |
Collapse
|
13
|
Wang Z, Yuan X, Jiang G, Li Y, Yang F, Wang J, Chen K. Towards the molecular era of discriminating multiple lung cancers. EBioMedicine 2023; 90:104508. [PMID: 36958271 PMCID: PMC10040518 DOI: 10.1016/j.ebiom.2023.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/25/2023] Open
Abstract
In the era of histopathology-based diagnosis, the discrimination between multiple lung cancers (MLCs) poses significant uncertainties and has thus become a clinical dilemma. However, recent significant advances and increased application of molecular technologies in clonal relatedness assessment have led to more precision in distinguishing between multiple primary lung cancers (MPLCs) and intrapulmonary metastasis (IPMs). This review summarizes recent advances in the molecular identification of MLCs and compares various methods based on somatic mutations, chromosome alterations, microRNAs, and tumor microenvironment markers. The paper also discusses current challenges at the forefront of genomics-based discrimination, including the selection of detection technology, application of next-generation sequencing, and intratumoral heterogeneity (ITH). In summary, this paper highlights an entrance into the primary stage of molecule-based diagnostics.
Collapse
Affiliation(s)
- Ziyang Wang
- Thoracic Oncology Institute and Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaoqiu Yuan
- Peking University Health Science Center, Beijing, 100191, China
| | - Guanchao Jiang
- Thoracic Oncology Institute and Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Yun Li
- Thoracic Oncology Institute and Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Fan Yang
- Thoracic Oncology Institute and Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Jun Wang
- Thoracic Oncology Institute and Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Kezhong Chen
- Thoracic Oncology Institute and Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
14
|
Tian H, Wang Y, Yang Z, Chen P, Xu J, Tian Y, Fan T, Xiao C, Bai G, Li L, Zheng B, Li C, He J. Genetic trajectory and clonal evolution of multiple primary lung cancer with lymph node metastasis. Cancer Gene Ther 2023; 30:507-520. [PMID: 36653483 PMCID: PMC10014582 DOI: 10.1038/s41417-022-00572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 01/20/2023]
Abstract
Multiple primary lung cancer (MPLC) with lymph node metastasis (LNM) is a rare phenomenon of multifocal lung cancer. The genomic landscapes of MPLC and the clonal evolution pattern between primary lung lesions and lymph node metastasis haven't been fully illustrated. We performed whole-exome sequencing (WES) on 52 FFPE (Formalin-fixed Paraffin-Embedded) samples from 11 patients diagnosed with MPLC with LNM. Genomic profiling and phylogenetic analysis were conducted to infer the evolutional trajectory within each patient. The top 5 most frequently mutated genes in our study were TTN (76.74%), MUC16 (62.79%), MUC19 (55.81%), FRG1 (46.51%), and NBPF20 (46.51%). For most patients in our study, a substantial of genetic alterations were mutually exclusive among the multiple pulmonary tumors of the same patient, suggesting their heterogenous origins. Individually, the genetic profile of lymph node metastatic lesions overlapped with that of multiple lung cancers in different degrees but are more genetically related to specific pulmonary lesions. SETD2 was a potential metastasis biomarker of MPLC. The mean putative neo-antigen number of the primary tumor (646.5) is higher than that of lymph node metastases (300, p = 0.2416). Primary lung tumors and lymph node metastases are highly heterogenous in immune repertoires. Our findings portrayed the comprehensive genomic landscape of MPLC with LNM. We characterized the genomic heterogeneity among different tumors. We offered novel clues to the clonal evolution between MPLC and their lymphatic metastases, thus advancing the treatment strategies and preventions of MPLC with LNM.
Collapse
Affiliation(s)
- He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Yalong Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Ping Chen
- Department of Medical Oncology, Yancheng No. 1 People's Hospital, Yancheng, Jiangsu, 224000, China
| | - Jiachen Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Guangdong Provincial People's Hospital/Guangdong Provincial Academy of Medical Sciences, Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer, Guangzhou, China
| | - Yanhua Tian
- Department of Thoracic Surgery/Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
15
|
Liu Z, Wang L, Gao S, Xue Q, Tan F, Li Z, Gao Y. Plasma metabolomics study in screening and differential diagnosis of multiple primary lung cancer. Int J Surg 2023; 109:297-312. [PMID: 36928390 PMCID: PMC10389222 DOI: 10.1097/js9.0000000000000006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/28/2022] [Indexed: 03/18/2023]
Abstract
BACKGROUND Multiple primary lung cancer (MPLC) is becoming increasingly common in clinical practice. Imaging examination is sometimes difficult to differentiate from intrapulmonary metastasis (IM) or single primary lung cancer (SPLC) before surgery. There is a lack of effective blood biomarkers as an auxiliary diagnostic method. PARTICIPANTS AND METHODS A total of 179 patients who were hospitalized and operated in our department from January to June 2019 were collected, and they were divided into SPLC with 136 patients, MPLC with 24 patients, and IM with 19 patients. In total, 96 healthy people without lung cancer were enrolled. Medical history, imaging, and pathology data were assembled from all participants. Plasma metabolomics analysis was performed by quadrupole time-of-flight tandem mass spectrometry, and data were analyzed using SPSS19.0/Simca 14.1/MetaboAnalyst5.0 software. Significant metabolites were selected by variable importance in projection, P value, and fold change. The area under the receiver operating characteristic curve was used to evaluate their diagnostic ability. RESULTS There were significant differences in plasma metabolite profiles between IM and MPLC. Seven metabolites were screened out. Two metabolites had higher levels in IM, and five metabolites had higher levels in MPLC. All had favorable discriminating capacity. Phosphatidyl ethanolamine (38:5) showed the highest sensitivity (0.95) and specificity (0.92). It was followed by l -histidine with sensitivity 0.92 and specificity 0.84. l -tyrosine can be used to identify SPLC and MPLC. The panel composed of related metabolites exhibited higher diagnostic ability. Eight principal metabolites caused remarkable differences between healthy people and MPLC, and five of them had area under the curves greater than 0.85, showing good discriminating power. CONCLUSION Through the study of plasma metabolomics, it was found that there were obvious differences in the metabolite profiles of MPLC, IM, SPLC, and the healthy population. Some discovered metabolites possessed excellent diagnostic competence with high sensitivity and specificity. They had the potential to act as biomarkers for the screening and differential diagnosis of MPLCs.
Collapse
Affiliation(s)
- Zixu Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Langfang, People’s Republic of China
| | - Ling Wang
- Department of Hematology, Beijing Chuiyangliu Hospital, Beijing
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Langfang, People’s Republic of China
| |
Collapse
|
16
|
Tian S, Li F, Pu J, Zheng Y, Shi H, Dong Y, Chen R, Bai C. Differential Diagnostic Value of Histology in MPLC and IPM: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:871827. [PMID: 35574321 PMCID: PMC9099226 DOI: 10.3389/fonc.2022.871827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/29/2022] [Indexed: 11/27/2022] Open
Abstract
Background The paramount issue regarding multiple lung cancer (MLC) is whether it represents multiple primary lung cancer (MPLC) or intrapulmonary metastasis (IPM), as this directly affects both accurate staging and subsequent clinical management. As a classic method, histology has been widely utilized in clinical practice. However, studies examining the clinical value of histology in MLC have yielded inconsistent results; thus, this remains to be evaluated. Here, we performed a meta-analysis to assess the differential diagnostic value of histology in MPLC and IPM and to provide evidence-based medicine for clinical work. Methods PubMed, Embase, and Web of Science databases were searched to collect relevant literature according to PRISMA, and inclusion and exclusion criteria were set up to screen and assess the literature. The data required for reconstructing a 2 × 2 contingency table were extracted directly or calculated indirectly from the included studies, and statistical analysis was carried out by using Stata 15, Meta-DiSc 1.4, and Review Manager 5.4 software. Results A total of 34 studies including 1,075 pairs of tumors were included in this meta-analysis. Among these studies, 11 were about the M-M standard and the pooled sensitivity and specificity were 0.78 (95% CI: 0.71–0.84) and 0.47 (95% CI: 0.38–0.55), respectively; 20 studies were about CHA and the pooled sensitivity and specificity were 0.76 (95% CI: 0.72–0.80) and 0.74 (95% CI: 0.68–0.79), respectively; and 3 studies were about the “CHA & Lepidic” criteria and the pooled sensitivity and specificity were 0.96 (95% CI: 0.85–0.99) and 0.47 (95% CI: 0.21–0.73), respectively. The combined pooled sensitivity, specificity, PLR, NLR, DOR, and the area under the SROC curve of the 34 studies were 0.80 (95% CI: 0.73–0.86), 0.64 (95% CI: 0.51–0.76), 2.25 (95% CI: 1.59–3.17), 0.31 (95% CI: 0.23–0.43), 7.22 (95% CI: 4.06–12.81), and 0.81 (95% CI: 0.77–0.84), respectively. Conclusion The current evidence indicated that histology had a moderate differential diagnostic value between MPLC and IPM. Among the three subgroups, the “CHA & Lepidic” criteria showed the highest sensitivity and CHA showed the highest specificity. Further research is necessary to validate these findings and to improve clinical credibility. Systematic Review Registration PROSPERO, identifier CRD42022298180.
Collapse
Affiliation(s)
- Sen Tian
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, the First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Fuqi Li
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, the First Affiliated Hospital of Second Military Medical University, Shanghai, China
- Department of Pathology, Shanghai Changhai Hospital, the First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jin Pu
- Department of Special Diagnosis and Treatment, Shanghai Changhai Hospital, the First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Yi Zheng
- Department of Statistics, Shanghai Changhai Hospital, the First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Hui Shi
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, the First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Yuchao Dong
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, the First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Ruohua Chen
- Department of Special Diagnosis and Treatment, Shanghai Changhai Hospital, the First Affiliated Hospital of Second Military Medical University, Shanghai, China
- *Correspondence: Chong Bai, ; Ruohua Chen,
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, the First Affiliated Hospital of Second Military Medical University, Shanghai, China
- *Correspondence: Chong Bai, ; Ruohua Chen,
| |
Collapse
|
17
|
Clinicopathologic Characteristics and Outcomes of Simultaneous Multiple Primary Lung Cancer. JOURNAL OF ONCOLOGY 2022; 2021:7722231. [PMID: 34976059 PMCID: PMC8718277 DOI: 10.1155/2021/7722231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/30/2021] [Indexed: 02/05/2023]
Abstract
Background Simultaneous multiple primary lung cancer has been detected increasingly nowadays with the development of image technology. However, the clinicopathologic characteristics and outcomes are not clear. Methods All consecutive patients diagnosed as simultaneous multiple primary lung cancer according to Martini–Melamed and American College of Chest Physicians criteria from June 2010 to June 2019 in our center were enrolled. The clinicopathologic characteristics and outcomes were compared between patients with the same histological type and different histological types. Results A total of 336 patients were enrolled, consisting of 297 (88.4%) patients with the same histological type and 39 (11.6%) patients with different histological types. Compared to patients with the same histological type, patients with different histological types were more commonly males (87.2% vs. 34.0%; p < 0.001) with an older age (65 [62–69] vs. 59 [52–65] yrs; p < 0.001) at diagnosis. Also, patients with different histological types showed worse respiratory function and more advanced stage according to TNM staging. The 1-, 2-, and 3-year overall survival of overall patients was 97.7%, 96.1%, and 92.2%, and the 1-, 2-, and 3-year recurrence-free survival of overall patients was 96.8%, 92.9% and 85.7%, respectively. Importantly, patients with different histological types showed worse overall survival (p < 0.001) and recurrence-free survival (p=0.002) than patients with same histological type. The multivariable Cox proportional hazard model revealed that presence of different histological types was significant predictor for worse overall survival (adjusted hazard ratio: 10.00; 95% confidence interval: 2.92–34.48; p < 0.001) and recurrence-free survival (adjusted hazard ratio: 2.59; 95% confidence interval: 1.14–5.88; p=0.023). Conclusions Although relatively less common in simultaneous multiple primary lung cancer, patients with different histological types showed worse clinical characteristics and outcomes.
Collapse
|
18
|
Hofman P. EGFR Status Assessment for Better Care of Early Stage Non-Small Cell Lung Carcinoma: What Is Changing in the Daily Practice of Pathologists? Cells 2021; 10:2157. [PMID: 34440926 PMCID: PMC8392580 DOI: 10.3390/cells10082157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
The recent emergence of novel neoadjuvant and/or adjuvant therapies for early stage (I-IIIA) non-small cell lung carcinoma (NSCLC), mainly tyrosine kinase inhibitors (TKIs) targeting EGFR mutations and immunotherapy or chemo-immunotherapy, has suddenly required the evaluation of biomarkers predictive of the efficacy of different treatments in these patients. Currently, the choice of one or another of these treatments mainly depends on the results of immunohistochemistry for PD-L1 and of the status of EGFR and ALK. This new development has led to the setup of different analyses for clinical and molecular pathology laboratories, which have had to rapidly integrate a number of new challenges into daily practice and to establish new organization for decision making. This review outlines the impact of the management of biological samples in laboratories and discusses perspectives for pathologists within the framework of EGFR TKIs in early stage NSCLC.
Collapse
Affiliation(s)
- Paul Hofman
- Laboratory of Clinical and Experimental Pathology, CHU Nice, FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06108 Nice, France; ; Tel.: +33-492-038-855; Fax: +33-492-8850
- CHU Nice, FHU OncoAge, Hospital-Integrated Biobank BB-0033-00025, Université Côte d’Azur, 06000 Nice, France
| |
Collapse
|