1
|
Panda SK, Sanchez-Pajares IR, Rehman A, Del Vecchio V, Mele L, Chipurupalli S, Robinson N, Desiderio V. ER stress and/or ER-phagy in drug resistance? Three coincidences are proof. Cell Commun Signal 2025; 23:223. [PMID: 40361118 PMCID: PMC12070796 DOI: 10.1186/s12964-025-02232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
Cancer is influenced by the tumor microenvironment (TME), which includes factors such as pH, hypoxia, immune cells, and blood vessels. These factors affect cancer cell growth and behavior. The tumor microenvironment triggers adaptive responses such as endoplasmic reticulum (ER) stress, unfolded protein response (UPR), and autophagy, posing a challenge to cancer treatment. The UPR aims to restore ER homeostasis by involving key regulators inositol-requiring enzyme-1(IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6 (ATF6). Additionally, ER-phagy, a selective form of autophagy, eliminates ER components under stress conditions. Understanding the interplay between hypoxia, ER stress, UPR, and autophagy in the tumor microenvironment is crucial for developing effective cancer therapies to overcome drug resistance. Targeting the components of the UPR and modulating ER-phagy could potentially improve the efficacy of existing cancer therapies. Future research should define the conditions under which ER stress responses and ER-phagy act as pro-survival versus pro-death mechanisms and develop precise methods to quantify ER-phagic flux in tumor cells.
Collapse
Affiliation(s)
- Sameer Kumar Panda
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
- Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5001, Australia
| | | | - Ayesha Rehman
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Vitale Del Vecchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Via del Casale Di San Pio V 4, Rome, 00165, Italia
| | - Luigi Mele
- University of Basilicata, Via Dell'Ateneo Lucano 10, Potenza, 85100, Italy
| | - Sandhya Chipurupalli
- Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5001, Australia
- Department of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Nirmal Robinson
- Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5001, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy.
| |
Collapse
|
2
|
Li X, Hu F, Lu T, Wu S, Ma G, Lin Y, Zhang H. Endoplasmic reticulum stress in non-small cell lung cancer. Am J Cancer Res 2025; 15:1829-1851. [PMID: 40371139 PMCID: PMC12070083 DOI: 10.62347/rgrq7608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
The Endoplasmic reticulum (ER), an organelle present in various eukaryotic cells, is responsible for protein synthesis, modification, folding, and transport, as well as for the regulation of lipid metabolism and Ca2+ homeostasis. ER stress plays a pivotal role in the pathogenesis and therapeutic response of non-small cell lung cancer (NSCLC), significantly influencing cellular fate decisions through its unique sensing and regulatory mechanisms. This review aims to elucidate the key role of ER stress sensors and to explore how they mediate cell autophagy, apoptosis, and non-apoptotic modes of cell death in the context of drug-treated NSCLC. This investigation lays a solid foundation for optimizing future treatment strategies for NSCLC.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Thoracic Surgery, Shandong Provincial Public Health Clinical CenterJinan, Shandong, China
| | - Fangning Hu
- Department of Thoracic Surgery, Shandong Provincial Public Health Clinical CenterJinan, Shandong, China
| | - Tong Lu
- Department of Thoracic Surgery, Shandong Provincial Public Health Clinical CenterJinan, Shandong, China
| | - Shuo Wu
- Department of Thoracic Surgery, Shandong Provincial Public Health Clinical CenterJinan, Shandong, China
| | - Guanqiang Ma
- Department of Thoracic Surgery, Shandong Provincial Public Health Clinical CenterJinan, Shandong, China
| | - Yani Lin
- Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, School of Laboratory Animal and Shandong Laboratory Animal Center, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical SciencesJinan, Shandong, China
| | - Hua Zhang
- Department of Thoracic Surgery, Shandong Provincial Public Health Clinical CenterJinan, Shandong, China
| |
Collapse
|
3
|
Zhou C, Zhong R, Zhang L, Yang R, Luo Y, Lei H, Li L, Cao J, Yuan Z, Tan X, Xie M, Qu H, He Z. Exploring the mechanism of rosmarinic acid in the treatment of lung adenocarcinoma based on bioinformatics methods and experimental validation. Discov Oncol 2025; 16:47. [PMID: 39812944 PMCID: PMC11735722 DOI: 10.1007/s12672-025-01784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE Rosmarinic acid (RosA) is a natural polyphenol compound that has been shown to be effective in the treatment of inflammatory disease and a variety of malignant tumors. However, its specific mechanism for the treatment of lung adenocarcinoma (LUAD) has not been fully elucidated. Therefore, this study aims to clarify the mechanism of RosA in the treatment of LUAD by integrating bioinformatics, network pharmacology and in vivo experiments, and to explore the potential of the active ingredients of traditional Chinese medicine in treating LUAD. METHODS Firstly, the network pharmacology was used to screen the RosA targets, and LUAD-related differential expressed genes (DEGs) were acquired from the GEO database. The intersection of LUAD regulated by RosA (RDEGs) was obtained through the Venn diagram. Secondly, GO and KEGG enrichment analysis of RDEGs were performed, and protein-protein interaction networks (PPIs) were constructed to identify and visualize hub RDEGs. Then, molecular docking between hub RDEGs and RosA was performed, and further evaluation was carried out by using bioinformatics for the predictive value of the hub RDEGs. Finally, the mechanism of RosA in the treatment of LUAD was verified by establishing a xenograft model of NSCLC in nude mouse. RESULTS Bioinformatics and other analysis showed that, compared with the control group, the expressions of MMP-1, MMP-9, IGFBP3 and PLAU in LUAD tissues were significantly up-regulated, and the expressions of PPARG and FABP4 were significantly down-regulated, and these hub RDEGs had potential predictive value for LUAD. In vivo experimental results showed that RosA could inhibit the growth of transplanted tumors in nude mice bearing tumors of lung cancer cells, reduce the positive expression of Ki67 in lung tumor tissue, and hinder the proliferation of lung tumor cells. Upregulated expression of PPARG and FABP4 by activating the PPAR signaling pathway increases the level of ROS in lung tumor tissues and promotes apoptosis of lung tumor cells. In addition, RosA can also reduce the expression of MMP-9 and IGFBP3, inhibit the migration and invasion of lung tumor tissue cells. CONCLUSIONS This study demonstrated that RosA could induce apoptosis by regulating the PPAR signaling pathway and the expression of MMP-9, inhibit the proliferation, migration and invasion of lung cancer cells, thereby exerting anti-LUAD effects. This study provides new insight into the potential mechanism of RosA in treating LUAD and provides a new therapeutic avenue for treatment of LUAD.
Collapse
Affiliation(s)
- Chaowang Zhou
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Ruqian Zhong
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
| | - Lei Zhang
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Renyi Yang
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
| | - Yuxin Luo
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China
| | - Huijun Lei
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China
| | - Liang Li
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Jianzhong Cao
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Zhiying Yuan
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China
| | - Xiaoning Tan
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, No. 58, Yuelu District, Changsha, 410006, Hunan, China
| | - Mengzhou Xie
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China.
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China.
| | - Haoyu Qu
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China.
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China.
| | - Zuomei He
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, No. 58, Yuelu District, Changsha, 410006, Hunan, China.
| |
Collapse
|
4
|
Liang H, Zhang C, Hu M, Hu F, Wang S, Wei W, Hu W. ALKBH5-Mediated m 6A Modification of XBP1 Facilitates NSCLC Progression Through the IL-6-JAK-STAT3 Pathway. Mol Carcinog 2025; 64:57-71. [PMID: 39387829 DOI: 10.1002/mc.23826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
The X-box-binding protein 1 (XBP1) is an important transcription factor during endoplasmic reticulum stress response, which was reported as an oncogene in non-small cell lung cancer (NSCLC) tumorigenesis and development. However, the regulatory mechanism of XBP1 expression in NSCLC progression was less reported. N6-methyladenosine (m6A) RNA modification is an emerging epigenetic regulatory mechanism for gene expression. This study aimed to investigate the regulatory role of the m6A modification in XBP1 expression in NSCLC. We identified XBP1 as a downstream target of ALKBH5-mediated m6A modification in A549 and PC9 cells. Knockdown of ALKBH5 increased the m6A modification and the stability of XBP1 mRNA, while overexpression of ALKBH5 had the opposite effect. Furthermore, IGF2BP3 was confirmed to be a reader of XBP1 m6A methylation and to enhance the stability of XBP1 mRNA. Additionally, IGF2BP3 knockdown significantly reversed the increase in XBP1 stability mediated by ALKBH5 depletion. In vivo and in vitro experiments demonstrated that ALKBH5/IGF2BP3 promotes the proliferation, migration, and invasion of NSCLC cells by upregulating XBP1 expression. In addition, we also showed that XBP1 promoted NSCLC cell proliferation, migration, and invasion by activating IL-6-JAK-STAT3 signaling. Our research suggested that ALKBH5-mediated m6A modification of XBP1 facilitates NSCLC progression through the IL-6-JAK-STAT3 pathway.
Collapse
Affiliation(s)
- Hengxing Liang
- Department of Thoracic Surgery, Guilin Hospital of the Second Xiangya Hospital CSU, Guilin, China
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chunmin Zhang
- Institute of Foreign Languages, Central South University, Changsha, China
| | - Minxin Hu
- Xiangya Medical College, Central South University, Changsha, China
| | - Fang Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Saihui Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Wei
- Hunan Science & Well Biotechnology Co., Ltd, Changsha, China
| | - Wen Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
5
|
CHEN X, CHEN P. [Progress in the Study of Mechanisms Clinically Relevant to Insulin Resistance
and Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:755-762. [PMID: 39631832 PMCID: PMC11629090 DOI: 10.3779/j.issn.1009-3419.2024.106.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Indexed: 12/07/2024]
Abstract
At present, the incidence and mortality rates of lung cancer rank top among malignant tumors. The early diagnosis, treatment and drug resistance of lung cancer still remain as problems in the management of lung cancer. Researchers are dedicated to identifying reliable biomarkers as predictive indicators or effective therapeutic targets for lung cancer. Insulin resistance (IR), a disorder characterized by reduced biological activity of insulin, leads to increased insulin secretion. In recent years, more and more studies have revealed the association between IR and the occurrence and development of cancer, with the insulin/insulin-like growth factor signaling pathway possibly playing a crucial role. In this article, we will focus on the relationship between IR and lung cancer, explore the impact and mechanism of IR on the development, progression and drug resistance of lung cancer. It may guide the development of new predictive tools and therapeutic strategies, and provide new ideas for research dedicated to reducing the incidence and mortality of lung cancer.
.
Collapse
|
6
|
Li S, Chen J, Zhou B. The clinical significance of endoplasmic reticulum stress related genes in non-small cell lung cancer and analysis of single nucleotide polymorphism for CAV1. Front Mol Biosci 2024; 11:1414164. [PMID: 39165641 PMCID: PMC11334084 DOI: 10.3389/fmolb.2024.1414164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, protein homeostasis imbalance caused by endoplasmic reticulum stress has become a major hallmark of cancer. Studies have shown that endoplasmic reticulum stress is closely related to the occurrence, development, and drug resistance of non-small cell lung cancer, however, the role of various endoplasmic reticulum stress-related genes in non-small cell lung cancer is still unclear. In this study, we established an endoplasmic reticulum stress scores based on the Cancer Genome Atlas for non-small cell lung cancer to reflect patient features and predict prognosis. Survival analysis showed significant differences in overall survival among non-small cell lung cancer patients with different endoplasmic reticulum stress scores. In addition, endoplasmic reticulum stress scores was significantly correlated with the clinical features of non-small cell lung cancer patients, and can be served as an independent prognostic indicator. A nomogram based on endoplasmic reticulum stress scores indicated a certain clinical net benefit, while ssGSEA analysis demonstrated that there was a certain immunosuppressive microenvironment in high endoplasmic reticulum stress scores. Gene Set Enrichment Analysis showed that scores was associated with cancer pathways and metabolism. Finally, weighted gene co-expression network analysis displayed that CAV1 was closely related to the occurrence of non-small cell lung cancer. Therefore, in order to further analyze the role of this gene, Chinese non-smoking females were selected as the research subjects to investigate the relationship between CAV1 rs3779514 and susceptibility and prognosis of non-small cell lung cancer. The results showed that the mutation of rs3779514 significantly reduced the risk of non-small cell lung cancer in Chinese non-smoking females, but no prognostic effect was found. In summary, we proposed an endoplasmic reticulum stress scores, which was an independent prognostic factor and indicated immune characteristics in the microenvironment of non-small cell lung cancer. We also validated the relationship between single nucleotide polymorphism locus of core genes and susceptibility to non-small cell lung cancer.
Collapse
Affiliation(s)
| | | | - Baosen Zhou
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Xiong Y, Zhang Y, Liu N, Li Y, Liu H, Yang Q, Chen Y, Xia Z, Chen X, Wanggou S, Li X. Integration of single-cell regulon atlas and multi-omics data for prognostic stratification and personalized treatment prediction in human lung adenocarcinoma. J Transl Med 2023; 21:499. [PMID: 37491302 PMCID: PMC10369768 DOI: 10.1186/s12967-023-04331-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Transcriptional programs are often dysregulated in cancers. A comprehensive investigation of potential regulons is critical to the understanding of tumorigeneses. We first constructed the regulatory networks from single-cell RNA sequencing data in human lung adenocarcinoma (LUAD). We next introduce LPRI (Lung Cancer Prognostic Regulon Index), a precision oncology framework to identify new biomarkers associated with prognosis by leveraging the single cell regulon atlas and bulk RNA sequencing or microarray datasets. We confirmed that LPRI could be a robust biomarker to guide prognosis stratification across lung adenocarcinoma cohorts. Finally, a multi-omics data analysis to characterize molecular alterations associated with LPRI was performed from The Cancer Genome Atlas (TCGA) dataset. Our study provides a comprehensive chart of regulons in LUAD. Additionally, LPRI will be used to help prognostic prediction and developing personalized treatment for future studies.
Collapse
Affiliation(s)
- Yi Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yihao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Na Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Postdoctoral Research Workstation, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Yueshuo Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Postdoctoral Research Workstation, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yu Chen
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Zhizhi Xia
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Xin Chen
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 201600, China.
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
8
|
Zhang X, Wang G, Gong Y, Zhao L, Song P, Zhang H, Zhang Y, Ju H, Wang X, Wang B, Ren H, Zhu X, Dong Y. IGFBP3 induced by the TGF-β/EGFRvIII transactivation contributes to the malignant phenotype of glioblastoma. iScience 2023; 26:106639. [PMID: 37192967 PMCID: PMC10182331 DOI: 10.1016/j.isci.2023.106639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 05/18/2023] Open
Abstract
Dual or multi-targets therapy targeting epidermal growth factor receptor variant III (EGFRvIII) and other molecular may relax the constraint for glioblastoma (GBM), putting forward the urgent requirement of finding candidate molecules. Here, the insulin-like growth factor binding protein-3 (IGFBP3) was considered a candidate, whereas the mechanisms of IGFBP3 production remain unclear. We treated GBM cells with exogenous transforming growth factor β (TGF-β) to simulate the microenvironment. We found that TGF-β and EGFRvIII transactivation induced the activation of transcription factor c-Jun, which specifically bound to the promoter region of IGFBP3 through Smad2/3 and ERK1/2 pathways and promoted the production and secretion of IGFBP3. IGFBP3 knockdown inhibited the activation of TGF-β and EGFRvIII signals and the malignant behaviors triggered by them in vitro and in vivo. Collectively, our results indicated a positive feedback loop of p-EGFRvIII/IGFBP3 under administration of TGF-β, blocking IGFBP3 may be an additional target in EGFRvIII-expressing GBM-selective therapeutic strategy.
Collapse
Affiliation(s)
- Xuehua Zhang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Guoyan Wang
- Clinical Laboratory of Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264199, China
| | - Yujiao Gong
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Leilei Zhao
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Ping Song
- Department of Ophthalmology, Jiarun Hospital of Harbin, Harbin, Heilongjiang 150000, China
| | - He Zhang
- Department of Immunology, Qiqihar Medical University, Qiqihar, Heilongjiang 161000, China
| | - Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Huanyu Ju
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiaoyu Wang
- Department of Neurology, Hongda Hospital, Jinxiang, Shandong 272200, China
| | - Bin Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Huan Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China
- Corresponding author
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, Shandong 264005, China
- Corresponding author
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, China
- Corresponding author
| |
Collapse
|
9
|
Dowdell A, Marsland M, Faulkner S, Gedye C, Lynam J, Griffin CP, Marsland J, Jiang CC, Hondermarck H. Targeting XBP1 mRNA splicing sensitizes glioblastoma to chemotherapy. FASEB Bioadv 2023; 5:211-220. [PMID: 37151848 PMCID: PMC10158625 DOI: 10.1096/fba.2022-00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Glioblastoma (GBM) is the most frequent and deadly primary brain tumor in adults. Temozolomide (TMZ) is the standard systemic therapy in GBM but has limited and restricted efficacy. Better treatments are urgently needed. The role of endoplasmic reticulum stress (ER stress) is increasingly described in GBM pathophysiology. A key molecular mediator of ER stress, the spliced form of the transcription factor x-box binding protein 1 (XBP1s) may constitute a novel therapeutic target; here we report XBP1s expression and biological activity in GBM. Tumor samples from patients with GBM (n = 85) and low-grade glioma (n = 20) were analyzed by immunohistochemistry for XBP1s with digital quantification. XBP1s expression was significantly increased in GBM compared to low-grade gliomas. XBP1s mRNA showed upregulation by qPCR analysis in a panel of patient-derived GBM cell lines. Inhibition of XBP1 splicing using the small molecular inhibitor MKC-3946 significantly reduced GBM cell viability and potentiated the effect of TMZ in GBM cells, particularly in those with methylated O6-methylguanine-DNA methyl transferase gene promoter. GBM cells resistant to TMZ were also responsive to MKC-3946 and the long-term inhibitory effect of MKC-3946 was confirmed by colony formation assay. In conclusion, this data reveals that XBP1s is overexpressed in GBM and contributes to cancer cell growth. XBP1s warrants further investigation as a clinical biomarker and therapeutic target in GBM.
Collapse
Affiliation(s)
- Amiee Dowdell
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNew South WalesAustralia
| | - Mark Marsland
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNew South WalesAustralia
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNew South WalesAustralia
| | - Craig Gedye
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNew South WalesAustralia
- School of Medicine and Public Health, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Department of Medical OncologyCalvary Mater hospitalNewcastleNew South WalesAustralia
| | - James Lynam
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNew South WalesAustralia
- School of Medicine and Public Health, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Department of Medical OncologyCalvary Mater hospitalNewcastleNew South WalesAustralia
| | - Cassandra P. Griffin
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNew South WalesAustralia
- School of Medicine and Public Health, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Cancer Biobank: NSW Regional Biospecimen and Research ServicesUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Joanne Marsland
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNew South WalesAustralia
| | - Chen Chen Jiang
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNew South WalesAustralia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
10
|
Lung microRNAs Expression in Lung Cancer and COPD: A Preliminary Study. Biomedicines 2023; 11:biomedicines11030736. [PMID: 36979715 PMCID: PMC10045129 DOI: 10.3390/biomedicines11030736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the deadliest diseases worldwide and represents an impending burden on the healthcare system. Despite increasing attention, the mechanisms underlying tumorigenesis in cancer-related diseases such as COPD remain unclear, making novel biomarkers necessary to improve lung cancer early diagnosis. MicroRNAs (miRNAs) are short non-coding RNA that interfere with several pathways and can act as oncogenes or tumor suppressors. This study aimed to compare miRNA lung expression between subjects with NSCLC and COPD and healthy controls to obtain the miRNA expression profile by analyzing shared pathways. Lung specimens were collected from a prospective cohort of 21 sex-matched subjects to determine the tissue miRNA expression of hsa-miR-34a-5p, 33a-5p, 149-3p, 197-3p, 199-5p, and 320a-3p by RT-PCR. In addition, an in silico prediction of miRNA target genes linked to cancer was performed. We found a specific trend for has-miR-149-3p, 197-3p, and 34a-5p in NSCLC, suggesting their possible role as an index of the tumor microenvironment. Moreover, we identified novel miRNA targets, such as the Cyclin-Dependent Kinase (CDK) family, linked to carcinogenesis by in silico analysis. In conclusion. this study identified lung miRNA signatures related to the tumorigenic microenvironment, suggesting their possible role in improving the evaluation of lung cancer onset.
Collapse
|
11
|
Crowley MJP, Bhinder B, Markowitz GJ, Martin M, Verma A, Sandoval TA, Chae CS, Yomtoubian S, Hu Y, Chopra S, Tavarez DA, Giovanelli P, Gao D, McGraw TE, Altorki NK, Elemento O, Cubillos-Ruiz JR, Mittal V. Tumor-intrinsic IRE1α signaling controls protective immunity in lung cancer. Nat Commun 2023; 14:120. [PMID: 36624093 PMCID: PMC9829901 DOI: 10.1038/s41467-022-35584-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
IRE1α-XBP1 signaling is emerging as a central orchestrator of malignant progression and immunosuppression in various cancer types. Employing a computational XBP1s detection method applied to TCGA datasets, we demonstrate that expression of the XBP1s mRNA isoform predicts poor survival in non-small cell lung cancer (NSCLC) patients. Ablation of IRE1α in malignant cells delays tumor progression and extends survival in mouse models of NSCLC. This protective effect is accompanied by alterations in intratumoral immune cell subsets eliciting durable adaptive anti-cancer immunity. Mechanistically, cancer cell-intrinsic IRE1α activation sustains mPGES-1 expression, enabling production of the immunosuppressive lipid mediator prostaglandin E2. Accordingly, restoring mPGES-1 expression in IRE1αKO cancer cells rescues normal tumor progression. We have developed an IRE1α gene signature that predicts immune cell infiltration and overall survival in human NSCLC. Our study unveils an immunoregulatory role for cancer cell-intrinsic IRE1α activation and suggests that targeting this pathway may help enhance anti-tumor immunity in NSCLC.
Collapse
Affiliation(s)
- Michael J P Crowley
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
| | - Bhavneet Bhinder
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
| | - Geoffrey J Markowitz
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 525 East 68th street, New York, NYk, 10065, USA
| | - Mitchell Martin
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
| | - Akanksha Verma
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Volastra Therapeutics, New York, NY, 10027, USA
| | - Tito A Sandoval
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
| | - Chang-Suk Chae
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
| | - Shira Yomtoubian
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Salk Institute for Biological Studies, San Diego, CA, USA
| | - Yang Hu
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
| | - Sahil Chopra
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Vertex Ventures HC, 345 California Avenue, Palo Alto, CA, 94306, USA
| | - Diamile A Tavarez
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY, 10591, USA
| | - Paolo Giovanelli
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 525 East 68th street, New York, NYk, 10065, USA
| | - Timothy E McGraw
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA
| | - Juan R Cubillos-Ruiz
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA.
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA.
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA.
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA.
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th street, New York, NY, 10065, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 525 East 68th street, New York, NYk, 10065, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th street, New York, NY, 10065, USA.
| |
Collapse
|
12
|
Xia F, Sun S, Xia L, Xu X, Hu G, Wang H, Chen X. Traditional Chinese medicine suppressed cancer progression by targeting endoplasmic reticulum stress responses: A review. Medicine (Baltimore) 2022; 101:e32394. [PMID: 36595834 PMCID: PMC9794298 DOI: 10.1097/md.0000000000032394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cancer has a high morbidity and mortality; therefore, it poses a major global health concern. Imbalance in endoplasmic reticulum homeostasis can induce endoplasmic reticulum stress (ERS). ERS has been shown to play both tumor-promoting and tumor-suppressive roles in various cancer types by activating a series of adaptive responses to promote tumor cell survival and inducing ERS-related apoptotic pathways to promote tumor cell death, inhibit tumor growth and suppress tumor invasion. Because multiple roles of ERS in tumors continue to be reported, many studies have attempted to target ERS in cancer therapy. The therapeutic effects of traditional Chinese medicine (TCM) treatments on tumors have been widely recognized. TCM treatments can enhance the sensitivity of tumor radiotherapy, delay tumor recurrence and improve patients' quality of life. However, there are relatively few reports exploring the antitumor effects of TCM from the perspective of ERS. This review addresses the progress of TCM intervention in tumors via ERS with a view to providing a new direction for tumor treatment.
Collapse
Affiliation(s)
- Fan Xia
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Suling Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Li Xia
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Xiuli Xu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Ge Hu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Hongzhi Wang
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Xueran Chen
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- * Correspondence: Xueran Chen, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China (e-mail: )
| |
Collapse
|
13
|
Molecular Mechanism Underlying Role of the XBP1s in Cardiovascular Diseases. J Cardiovasc Dev Dis 2022; 9:jcdd9120459. [PMID: 36547457 PMCID: PMC9782920 DOI: 10.3390/jcdd9120459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Spliced X-box binding protein-1 (XBP1s) is a protein that belongs to the cAMP-response element-binding (CREB)/activating transcription factor (ATF) b-ZIP family with a basic-region leucine zipper (bZIP). There is mounting evidence to suggest that XBP1s performs a critical function in a range of different cardiovascular diseases (CVDs), indicating that it is necessary to gain a comprehensive knowledge of the processes involved in XBP1s in various disorders to make progress in research and clinical therapy. In this research, we provide a summary of the functions that XBP1s performs in the onset and advancement of CVDs such as atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. Furthermore, we discuss XBP1s as a novel therapeutic target for CVDs.
Collapse
|
14
|
IGFBP3 inhibits tumor growth and invasion of lung cancer cells and is associated with improved survival in lung cancer patients. Transl Oncol 2022; 27:101566. [PMID: 36257207 PMCID: PMC9583099 DOI: 10.1016/j.tranon.2022.101566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022] Open
Abstract
The insulin-like growth factor (IGF)-pathway is involved in tumor cell proliferation, metastasis, and survival. We aimed to find out what effects IGF binding protein 3 (IGFBP3) exerted on H1299 lung cancer (LC) cells in terms of tumor growth and invasion and whether IGFBP3 was associated with clinical and pathological parameters in a prospective cohort of LC patients. H1299 cells were transfected with an IGFBP3-expressing vector. Its influence on apoptosis induction via flow cytometry annexin V FITC assay, cell proliferation in 2D and 3D cell culture, and invasion were examined. Expression of several matrix metalloproteinases (MMPs) and inhibitors (TIMP-1) were also investigated in IGFBP3-transfected LC cells. Further, data on LC patients (n = 131), tumor characteristics, and survival were prospectively collected and correlated with IGFBP3 plasma levels. IGFBP3 did not influence apoptosis induction and 2D cell proliferation. However, both spheroid growth (3D proliferation) and invasion of IGFBP3-transfected cells planted in an extracellular matrix-based gel were significantly inhibited. IGFBP3 inhibited MMP-1 release, and the total MMP activity. In LC patients, higher IGFBP3 plasma levels correlated with both lower clinical tumor stage, grading, Ki-67 staining, and the absence of necrosis (P < 0.05, respectively). Increased IGFBP3 plasma levels were associated with improved overall survival (hazard ratio 0.37, P = 0.01). In conclusion, overexpressed IGFBP3 in a LC cell line inhibited tumor growth and invasion. Translating from bench to bedside, investigation of clinicopathological parameters confirmed these experimental results showing that higher IGFBP3 plasma levels were associated with less aggressive tumor growth, reduced tumor spread, and improved survival of LC patients.
Collapse
|
15
|
Spliced or Unspliced, That Is the Question: The Biological Roles of XBP1 Isoforms in Pathophysiology. Int J Mol Sci 2022; 23:ijms23052746. [PMID: 35269888 PMCID: PMC8910952 DOI: 10.3390/ijms23052746] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023] Open
Abstract
X-box binding protein 1 (XBP1) is a member of the CREB/ATF basic region leucine zipper family transcribed as the unspliced isoform (XBP1-u), which, upon exposure to endoplasmic reticulum stress, is spliced into its spliced isoform (XBP1-s). XBP1-s interacts with the cAMP response element of major histocompatibility complex class II gene and plays critical role in unfolded protein response (UPR) by regulating the transcriptional activity of genes involved in UPR. XBP1-s is also involved in other physiological pathways, including lipid metabolism, insulin metabolism, and differentiation of immune cells. Its aberrant expression is closely related to inflammation, neurodegenerative disease, viral infection, and is crucial for promoting tumor progression and drug resistance. Meanwhile, recent studies reported that the function of XBP1-u has been underestimated, as it is not merely a precursor of XBP1-s. Instead, XBP-1u is a critical factor involved in various biological pathways including autophagy and tumorigenesis through post-translational regulation. Herein, we summarize recent research on the biological functions of both XBP1-u and XBP1-s, as well as their relation to diseases.
Collapse
|
16
|
Ubiquitination-Proteasome System (UPS) and Autophagy Two Main Protein Degradation Machineries in Response to Cell Stress. Cells 2022; 11:cells11050851. [PMID: 35269473 PMCID: PMC8909305 DOI: 10.3390/cells11050851] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
In response to environmental stimuli, cells make a series of adaptive changes to combat the injury, repair the damage, and increase the tolerance to the stress. However, once the damage is too serious to repair, the cells will undergo apoptosis to protect the overall cells through suicidal behavior. Upon external stimulation, some intracellular proteins turn into unfolded or misfolded protein, exposing their hydrophobic regions to form protein aggregation, which may ultimately produce serious damage to the cells. Ubiquitin plays an important role in the degradation of these unnatural proteins by tagging with ubiquitin chains in the ubiquitin-proteasome or autophagy system. If the two processes fail to eliminate the abnormal protein aggregates, the cells will move to apoptosis and death. Dysregulation of ubiquitin-proteasome system (UPS) and autophagy may result in the development of numerous diseases. This review focuses on the molecular mechanisms of UPS and autophagy in clearance of intracellular protein aggregates, and the relationship between dysregulation of ubiquitin network and diseases.
Collapse
|
17
|
Jiang H, Jiang Q, He Y, Li X, Xu Y, Liu X. XBP1s promotes the development of lung adenocarcinoma via the p‑JNK MAPK pathway. Int J Mol Med 2022; 49:34. [PMID: 35059734 PMCID: PMC8815418 DOI: 10.3892/ijmm.2022.5089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022] Open
Abstract
Spliced X-box binding protein 1 (XBP1s) has been reported to participate in the pathogenesis of numerous types of cancer; however, whether XBP1s plays a role in lung cancer remains to be elucidated. In the present study, bioinformatics analysis was performed to determine the mRNA expression level of XBP1 in lung cancer and adjacent normal tissues. Gene Ontology terms, pathway enrichment and Pearson's correlation analysis were performed to investigate the possible mechanism involved. Western blot and reverse transcription-quantitative PCR were performed to quantify the protein and mRNA expression level of target proteins, respectively. Small interfering RNA or overexpression plasmid were used to knockdown or overexpress the expression level of XBP1s. EdU staining, colony formation, Cell Counting Kit-8, Transwell and wound healing assays, and flow cytometry were performed to detect the proliferation, colony forming ability, cell viability, migration and invasion ability, and the apoptosis rate. The results showed that the mRNA and protein expression level of XBP1 was higher in tumor tissues compared with that in adjacent normal tissues using data from the TIMER2.0, ONCOMINE and UALCAN online databases. In addition, the mRNA expression level of XBP1 was also associated with clinical features, including age, smoking habit, individual cancer stage and nodal metastasis status. In the in vitro experiments, the mRNA and protein expression level of XBP1s was increased in the A549 cell line compared with that in the human bronchial epithelial (HBE), H1299, PC9 and H460 cell lines. Hypoxia further increased the protein expression level of XBP1s in the A549 cell line. Knockdown of XBP1s expression in the A549 cell line resulted in decreased proliferation, colony formation, cell viability, migration and invasion, and increased apoptosis. By contrast, overexpressing XBP1s in the HBE cell line led to the opposite results. To investigate the mechanism involved, proteins associated with XBP1 were analyzed using the LinkedOmics database. Pathway enrichment revealed the MAPK pathway to be the possible XBP1 downstream target. Furthermore, Pearson's correlation and western blot analyses verified that phosphorylated (p)-JNK rather than p-ERK or p-p38 was the downstream effector of XBP1s. Phosphorylation of JNK was decreased when XBP1s expression was knocked down in the A549 cell line under normoxic and hypoxic conditions. Inhibiting p-JNK with SP600125 reversed the increased prosurvival effects caused by XBP1s overexpression. The results from the present study suggest that XBP1s/p-JNK function as a prosurvival factors in the A549 cell line and could be a potential target for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Hongxia Jiang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qianqian Jiang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuanzhou He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
18
|
MiR-22-3p Inhibits Proliferation and Promotes Differentiation of Skeletal Muscle Cells by Targeting IGFBP3 in Hu Sheep. Animals (Basel) 2022; 12:ani12010114. [PMID: 35011220 PMCID: PMC8749897 DOI: 10.3390/ani12010114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/20/2022] Open
Abstract
The growth and development of skeletal muscle require a series of regulatory factors. MiRNA is a non-coding RNA with a length of about 22 nt, which can inhibit the expression of mRNA and plays an important role in the growth and development of muscle cells. The role of miR-22-3p in C2C12 cells and porcine skeletal muscle has been reported, but it has not been verified in Hu sheep skeletal muscle. Through qPCR, CCK-8, EdU and cell cycle studies, we found that overexpression of miR-22-3p inhibited proliferation of skeletal muscle cells (p < 0.01). The results of qPCR and immunofluorescence showed that overexpression of miR-22-3p promoted differentiation of skeletal muscle cells (p < 0.01), while the results of inhibiting the expression of miR-22-3p were the opposite. These results suggested that miR-22-3p functions in growth and development of sheep skeletal muscle cells. Bioinformatic analysis with mirDIP, miRTargets, and RNAhybrid software suggested IGFBP3 was the target of miR-22-3p, which was confirmed by dual-luciferase reporter system assay. IGFBP3 is highly expressed in sheep skeletal muscle cells. Overexpression of IGFBP3 was found to promote proliferation of skeletal muscle cells indicated by qPCR, CCK-8, EdU, and cell cycle studies (p < 0.01). The results of qPCR and immunofluorescence experiments proved that overexpression of IGFBP3 inhibited differentiation of skeletal muscle cells (p < 0.01), while the results of interfering IGFBP3 with siRNA were the opposite. These results indicate that miR-22-3p is involved in proliferation and differentiation of skeletal muscle cells by targeting IGFBP3.
Collapse
|