1
|
Yang Y, Lu S, Gu G. Identification of costimulatory molecule signatures for evaluating prognostic risk in non-small cell lung cancer. Heliyon 2024; 10:e36816. [PMID: 39286099 PMCID: PMC11403524 DOI: 10.1016/j.heliyon.2024.e36816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related mortality worldwide. Despite advances in treatment, prognosis remains poor, necessitating the identification of reliable prognostic biomarkers. Costimulatory molecules (CMs) have shown to enhance antitumor immune responses. We aimed to explore their prognostic signals in NSCLC. Methods This study is a combination of bioinformatics analysis and laboratory validation. Gene expression profiles from The Cancer Genome Atlas (TCGA), GSE120622, and GSE131907 datasets were collected. NSCLC samples in TCGA were clustered based on CMs using consensus clustering. We used LASSO regression to identify CMs-related signatures and constructed nomogram and risk models. Differences in immune cells and checkpoint expressions between risk models were evaluated. Enrichment analysis was performed for differentially expressed CMs between NSCLC and controls. Key results were validated using qRT-PCR and flow cytometry. Results NSCLC samples in TCGA were divided into two clusters based on CMs, with cluster 1 showing poor overall survival. Ten CMs-related signatures were identified using LASSO regression. NSCLC samples in TCGA were stratified into high- and low-risk groups based on the median risk score of these signatures, revealing differences in survival probability, drug sensitivity, immune cell infiltration and checkpoints expression. The area under the ROC curve values (AUC) for EDA, ICOS, PDCD1LG2, and VTCN1 exceeded 0.7 in both datasets and considered as hub genes. Expression of these hub genes was significance in GSE131907 and validated by qRT-PCR. Macrophage M1 and T cell follicular helper showed high correlation with hub genes and were lower in NSCLC than controls detected by flow cytometry. Conclusion The identified hub genes can serve as prognostic biomarkers for NSCLC, aiding in treatment decisions and highlighting potential targets for immunotherapy. This study provides new insights into the role of CMs in NSCLC prognosis and suggests future directions for clinical research and therapeutic strategies.
Collapse
Affiliation(s)
- Yan Yang
- Department of Pulmonary Medicine, Cancer Hospital of Xinjiang Medical University, 789 Suzhou Street, Urumqi, 830011, Xinjiang, China
| | - Suqiong Lu
- Department of Pulmonary Medicine, Cancer Hospital of Xinjiang Medical University, 789 Suzhou Street, Urumqi, 830011, Xinjiang, China
| | - Guomin Gu
- Department of Pulmonary Medicine, Cancer Hospital of Xinjiang Medical University, 789 Suzhou Street, Urumqi, 830011, Xinjiang, China
| |
Collapse
|
2
|
Zhao M, Wang L, Wang X, He J, Yu K, Li D. Non-neoplastic cells as prognostic biomarkers in diffuse large B-cell lymphoma: A system review and meta-analysis. TUMORI JOURNAL 2024; 110:227-240. [PMID: 38183180 DOI: 10.1177/03008916231221636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
The microenvironment of diffuse large B-cell lymphoma (DLBCL) is composed of various components, including immune cells and immune checkpoints, some of which have been correlated with the prognosis of DLBCL, but their results remain controversial. Therefore, we conducted a systematic review and meta-analysis to investigate the association between the microenvironment and prognosis in DLBCL. We searched PubMed, Web of Science, and EMBASE for relevant articles between 2001 and 2022. Twenty-five studies involving 4495 patients with DLBCL were included in the analysis. This meta-analysis confirmed that high densities of Foxp3+Tregs and PD-1+T cells are good indicators for overall survival (OS) in DLBCL, while high densities of programmed cell death protein ligand1(PD-L1)-positive expression cells and T-cell immunoglobulin-and mucin domain-3-containing molecule 3 (TIM-3)-positive expression tumor-infiltrating cells (TILs) play a contrary role in OS. Additionally, higher numbers of T-cell intracytoplasmic antigen-1(TIA-1)-positive expression T cells imply better OS and progression-free survival (PFS), while high numbers of lymphocyte activation gene(LAG)-positive expression TILs predict bad OS and PFS. Various non-tumoral cells in the microenvironment play important roles in the prognosis of DLBCL.
Collapse
MESH Headings
- Humans
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Prognosis
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Min Zhao
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathology, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center of Chongqing Medical University, Chongqing, China
| | - Lixing Wang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Xingyu Wang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Juan He
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Kuai Yu
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center of Chongqing Medical University, Chongqing, China
- Department of Pathology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Li
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathology, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Nitta H, Takizawa H, Mitsumori T, Iizuka-Honma H, Ochiai T, Furuya C, Araki Y, Fujishiro M, Tomita S, Hashizume A, Sawada T, Miyake K, Okubo M, Sekiguchi Y, Ando M, Noguchi M. A New Histology-Based Prognostic Index for Aggressive T-Cell lymphoma: Preliminary Results of the "TCL Urayasu Classification". J Clin Med 2024; 13:3870. [PMID: 38999437 PMCID: PMC11242040 DOI: 10.3390/jcm13133870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Aggressive mature T-cell lymphoma (TCL) is a disease that carries a poor prognosis. Methods: We analyzed the expression of 22 tumor cell functional proteins in 16 randomly selected patients with TCL. Immunohistochemistry was performed in paraffin-embedded tumor tissue sections to determine the protein expression statuses in tumor cells. Results: Glucose-regulated protein 94 (GRP94), a protein that serves as a pro-survival component under endoplasmic reticulum (ER) stress in the tumor microenvironment, was significantly associated with a shortened survival. Furthermore, significant differences were observed when GRP94 was combined with six other factors. The six factors were (1) programmed cell death-ligand 1 (PD-L1); (2) programmed cell death 1 (PD-1); (3) aldo-keto reductase family 1 member C3 (AKR1C3); (4) P53, a tumor suppressor; (5) glucose-regulated protein 78 (GRP78), an ER stress protein; and (6) thymidine phosphorylase (TP). Based on the combination of GRP94 and the six other factors expressed in the tumors, we propose a new prognostic classification system for TCL (TCL Urayasu classification). Group 1 (relatively good prognosis): GRP94-negative (n = 6; median OS, 88 months; p < 0.01); Group 2 (poor prognosis): GRP94-positive, plus expression of two of the six factors mentioned above (n = 5; median OS, 25 months; p > 0.05); and Group 3 (very poor prognosis): GRP94-positive, plus expression of at least three of the six factors mentioned above (n = 5; median OS, 10 months; p < 0.01). Conclusions: Thus, the TCL Urayasu prognostic classification may be a simple, useful, and innovative classification that also explains the mechanism of resistance to treatment for each functional protein. If validated in a larger number of patients, the TCL Urayasu classification will enable a targeted treatment using selected inhibitors acting on the abnormal protein found in each patient.
Collapse
Affiliation(s)
- Hideaki Nitta
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi 279-0021, Japan; (H.N.); (H.T.); (T.M.); (H.I.-H.); (T.O.); (C.F.)
| | - Haruko Takizawa
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi 279-0021, Japan; (H.N.); (H.T.); (T.M.); (H.I.-H.); (T.O.); (C.F.)
| | - Toru Mitsumori
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi 279-0021, Japan; (H.N.); (H.T.); (T.M.); (H.I.-H.); (T.O.); (C.F.)
| | - Hiroko Iizuka-Honma
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi 279-0021, Japan; (H.N.); (H.T.); (T.M.); (H.I.-H.); (T.O.); (C.F.)
| | - Tomonori Ochiai
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi 279-0021, Japan; (H.N.); (H.T.); (T.M.); (H.I.-H.); (T.O.); (C.F.)
- Division of Hematology, Juntendo University Juntendo Hospital, Tokyo 113-0033, Japan;
| | - Chiho Furuya
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi 279-0021, Japan; (H.N.); (H.T.); (T.M.); (H.I.-H.); (T.O.); (C.F.)
- Division of Hematology, Juntendo University Juntendo Hospital, Tokyo 113-0033, Japan;
| | - Yoshihiko Araki
- Department of Pathology and Microbiology, Division of Microbiology, Nippon University School of Medicine, Tokyo 113-8602, Japan;
| | - Maki Fujishiro
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan;
| | - Shigeki Tomita
- Department of Diagnostic Pathology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan; (S.T.); (A.H.)
| | - Akane Hashizume
- Department of Diagnostic Pathology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan; (S.T.); (A.H.)
| | - Tomohiro Sawada
- Department of Clinical Laboratory, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan;
| | - Kazunori Miyake
- Department of Clinical Laboratory, Faculty of Medical Sciences, Juntendo University, Tokyo 113-8421, Japan;
| | - Mitsuo Okubo
- Laboratory of Blood Transfusion, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan;
| | | | - Miki Ando
- Division of Hematology, Juntendo University Juntendo Hospital, Tokyo 113-0033, Japan;
| | - Masaaki Noguchi
- Department of Hematology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi 279-0021, Japan; (H.N.); (H.T.); (T.M.); (H.I.-H.); (T.O.); (C.F.)
| |
Collapse
|
4
|
Zhao H, Cai S, Xiao Y, Xia M, Chen H, Xie Z, Tang X, He H, Peng J, Chen J. Expression and prognostic significance of the PD-1/PD-L1 pathway in AIDS-related non-Hodgkin lymphoma. Cancer Med 2024; 13:e7195. [PMID: 38613207 PMCID: PMC11015146 DOI: 10.1002/cam4.7195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE Immune tolerance and evasion play a critical role in virus-driven malignancies. However, the phenotype and clinical significance of programmed cell death 1 (PD-1) and its ligands, PD-L1 and PD-L2, in aggressive acquired immunodeficiency syndrome (AIDS)-related non-Hodgkin lymphoma (AR-NHL) remain poorly understood, particularly in the Epstein-Barr virus (EBV)-positive subset. METHODS We used in situ hybridization with EBV-encoded RNA (EBER) to assess the EBV status. We performed immunohistochemistry and flow cytometry analysis to evaluate components of the PD-1/PD-L1/L2 pathway in a multi-institutional cohort of 58 patients with AR-NHL and compared EBV-positive and EBV-negative cases. RESULTS The prevalence of EBV+ in AR-NHL was 56.9% and was associated with a marked increase in the expression of PD-1/PD-L1/PD-L2 in malignant cells. Patients with AR-NHLs who tested positive for both EBER and PD-1 exhibited lower survival rates compared to those negative for these markers (47.4% vs. 93.8%, p = 0.004). Similarly, patients positive for both EBER and PD-L1 also demonstrated poorer survival (56.5% vs. 93.8%, p = 0.043). Importantly, PD-1 tissue-expression demonstrated independent prognostic significance for overall survival in multivariate analysis and was correlated to elevated levels of LDH (r = 0.313, p = 0.031), increased PD-1+ Tregs (p = 0.006), and robust expression of EBER (r = 0.541, p < 0.001) and PD-L1 (r = 0.354, p = 0.014) expression. CONCLUSIONS These data emphasize the importance of PD-1-mediated immune evasion in the complex landscape of immune oncology in AR-NHL co-infected with EBV, and contribute to the diagnostic classification and possible definition of immunotherapeutic strategies for this unique subgroup.
Collapse
Affiliation(s)
- Han Zhao
- Department of Infectious Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Infectious Diseases Center, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Shaohang Cai
- Department of Infectious Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yanhua Xiao
- Pathology department, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Muye Xia
- Department of Infectious Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hongjie Chen
- Department of Infectious Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhiman Xie
- Guangxi AIDS Clinical Treatment Center, the Fourth People's Hospital of NanningNanningChina
| | - Xiaoping Tang
- Infectious Diseases Center, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Haolan He
- Infectious Diseases Center, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Jie Peng
- Department of Infectious Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Juanjuan Chen
- Department of Infectious Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
5
|
Seňavová J, Rajmonová A, Heřman V, Jura F, Veľasová A, Hamová I, Tkachenko A, Kupcová K, Havránek O. Immune Checkpoints and Their Inhibition in T-Cell Lymphomas. Folia Biol (Praha) 2024; 70:123-151. [PMID: 39644109 DOI: 10.14712/fb2024070030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
T-cell lymphomas (TCLs) are a rare and heterogeneous subgroup of non-Hodgkin lymphomas (NHLs), forming only 10 % of all NHL cases in Western countries. Resulting from their low incidence and heterogeneity, the current treatment outcome is generally unfavorable, with limited availability of novel therapeutic approaches. Therefore, the recent success of immune checkpoint inhibitors (ICIs) in cancer treatment motivated their clinical investigation in TCLs as well. Multiple studies showed promising results; however, cases of TCL hyperprogression following ICI treatment and secondary T-cell-derived malignancies associated with ICI treatment of other cancer types were also reported. In our review, we first briefly summarize classification of T-cell-derived malignancies, general anti-tumor immune response, immune evasion, and immune checkpoint signaling. Next, we provide an overview of immune checkpoint molecule deregulation in TCLs, summarize available studies of ICIs in TCLs, and review the above-mentioned safety concerns associa-ted with ICI treatment and T-cell-derived malignancies. Despite initial promising results, further studies are necessary to define the most suitable clinical applications and ICI therapeutic combinations with other novel treatment approaches within TCL treatment. ICIs, and their combinations, might hopefully bring the long awaited improvement for the treatment of T-cell-derived malignancies.
Collapse
Affiliation(s)
- Jana Seňavová
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anežka Rajmonová
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Václav Heřman
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filip Jura
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adriana Veľasová
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Iva Hamová
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristýna Kupcová
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondřej Havránek
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
6
|
Camus V, Viailly PJ, Drieux F, Veresezan EL, Sesques P, Haioun C, Durot E, Patey M, Rossi C, Martin L, Rainville V, Bohers E, Ruminy P, Penther D, Kaltenbach S, Bruneau J, Paillassa J, Tournilhac O, Willaume A, Antier C, Lazarovici J, Lévêque E, Decazes P, Becker S, Tonnelet D, Berriolo-Riedinger A, Gaulard P, Tilly H, Molina TJ, Traverse-Glehen A, Jardin F. High PDL1/PDL2 gene expression correlates with worse outcome in primary mediastinal large B-cell lymphoma. Blood Adv 2023; 7:7331-7345. [PMID: 37862676 PMCID: PMC10701594 DOI: 10.1182/bloodadvances.2023011169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Primary mediastinal B-cell lymphoma (PMBL) is an uncommon entity of aggressive B-cell lymphoma with an unusually good prognosis, except for 10-15% of chemotherapy-refractory cases. To identify earlier these higher risk patients, we performed molecular characterization of a retrospective multicenter cohort of patients treated with firstline immunochemotherapy. The traits of the patients with gene-expression profiling data (n = 120) were as follows: median age of 34 years (range, 18-67 years); female sex, 58.3%; elevated lactate dehydrogenase, 82.5%; Eastern Cooperative Oncology Group performance status score of 0 to 1, 85.7%; Ann Arbor stage I/II, 55%; International Prognostic Index score of 1 to 2, 64.4%; and median metabolic tumor volume, 290.4 cm3 (range, 15.7-1147.5 cm3). Among all 137 markers tested for correlation with survival data, only programmed death-ligand (PDL) 1 and PDL2 expression showed a prognostic impact. Overall, both PDL1 and PDL2 genes were highly expressed in 37 patients (30.8%; PDL1high/PDL2high). The baseline clinical characteristics of patients with PDL1high/PDL2high were similar to those of other patients. In univariate analysis, PDL1high/PDL2high status was associated with poor progression-free survival (PFS) (hazard ratio [HR], 4.292) and overall survival (OS; HR, 8.24). In multivariate analysis, PDL1high/PDL2high status was an independent prognostic factor of adverse outcomes (PFS: HR, 5.22; OS: HR, 10.368). We validated these results in an independent cohort of 40 patients and confirmed the significant association between PDL1high/PDL2high status and inferior PFS (HR, 6.11). High PDL1/PDL2 gene expression defines a population with strong immune privilege and poorer outcomes from standard chemotherapy who might benefit from firstline checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Vincent Camus
- Department of Hematology, Centre Henri Becquerel, Rouen, France
- INSERM U1245, Centre Henri Becquerel, University of Rouen, Rouen, France
| | | | - Fanny Drieux
- Department of Pathology, Centre Henri Becquerel, Rouen, France
| | | | - Pierre Sesques
- Department of Hematology, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Corinne Haioun
- Lymphoid malignancies Unit, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Eric Durot
- Department of Hematology, Centre Hospitalier Universitaire (CHU) de Reims, Reims, France
| | - Martine Patey
- Department of Pathology, CHU de Reims, Reims, France
| | - Cédric Rossi
- Department of Hematology, Dijon University Hospital, Dijon, France
| | - Laurent Martin
- Department of Pathology, Dijon University Hospital, Dijon, France
| | - Vinciane Rainville
- INSERM U1245, Centre Henri Becquerel, University of Rouen, Rouen, France
| | - Elodie Bohers
- INSERM U1245, Centre Henri Becquerel, University of Rouen, Rouen, France
| | - Philippe Ruminy
- INSERM U1245, Centre Henri Becquerel, University of Rouen, Rouen, France
| | - Dominique Penther
- INSERM U1245, Centre Henri Becquerel, University of Rouen, Rouen, France
- Department of Genetic Oncology, Centre Henri Becquerel, Rouen France
| | - Sophie Kaltenbach
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Julie Bruneau
- Université de Paris, Institut Imagine, Laboratory of Hematological Disorders, INSERM UMR1163, Paris, France
- Department of Pathology, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Necker and Robert Debré, Paris, France
| | - Jérome Paillassa
- Department of Hematology, Angers University Hospital, Angers, France
| | - Olivier Tournilhac
- Department of Hematology, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Alexandre Willaume
- Department of Hematology, Lille University Hospital – Hôpital Claude Hurriez, Lille, France
| | - Chloé Antier
- Department of Hematology, University Hospital, Nantes, France
| | - Julien Lazarovici
- Department of Hematology, Institut Gustave Roussy, Villejuif, France
| | - Emilie Lévêque
- Clinical Research Unit, Centre Henri Becquerel, Rouen, France
| | - Pierre Decazes
- Department of Nuclear Medicine and QuantIF-LITIS-EA4108, University of Rouen, Centre Henri Becquerel, Rouen, France
| | - Stéphanie Becker
- Department of Nuclear Medicine and QuantIF-LITIS-EA4108, University of Rouen, Centre Henri Becquerel, Rouen, France
| | - David Tonnelet
- Department of Nuclear Medicine and QuantIF-LITIS-EA4108, University of Rouen, Centre Henri Becquerel, Rouen, France
| | | | - Philippe Gaulard
- Department of Pathology, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Hervé Tilly
- Department of Hematology, Centre Henri Becquerel, Rouen, France
- INSERM U1245, Centre Henri Becquerel, University of Rouen, Rouen, France
| | - Thierry Jo Molina
- Department of Pathology, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Necker and Robert Debré, Paris, France
| | | | - Fabrice Jardin
- Department of Hematology, Centre Henri Becquerel, Rouen, France
- INSERM U1245, Centre Henri Becquerel, University of Rouen, Rouen, France
| |
Collapse
|
7
|
Lv J, Jiang Z, Yuan J, Zhuang M, Guan X, Liu H, Yin Y, Ma Y, Liu Z, Wang H, Wang X. Pan-cancer analysis identifies PD-L2 as a tumor promotor in the tumor microenvironment. Front Immunol 2023; 14:1093716. [PMID: 37006239 PMCID: PMC10060638 DOI: 10.3389/fimmu.2023.1093716] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/19/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Programmed cell death protein 1 (PD-1) receptor has two ligands,programmed death-ligand 1 (PD-L1) and PD-L2. When compared with PD-L1, PD-L2 has not received much attention, and its role remains unclear. METHODS The expression profiles of pdcd1lg2 (PD-L2-encoding gene) mRNA and PD-L2 protein were analyzed using TCGA, ICGC, and HPA databases. Kaplan-Meier and Cox regression analyses were used to assess the prognostic significance of PD-L2. We used GSEA, Spearman's correlation analysis and PPI network to explore the biological functions of PD-L2. PD-L2-associated immune cell infiltration was evaluated using the ESTIMATE algorithm and TIMER 2.0. The expressions of PD-L2 in tumor-associated macrophages (TAMs) in human colon cancer samples, and in mice in an immunocompetent syngeneic setting were verified using scRNA-seq datasets, multiplex immunofluorescence staining, and flow cytometry. After fluorescence-activated cell sorting, flow cytometry and qRT-PCR and transwell and colony formation assays were used to evaluate the phenotype and functions of PD-L2+TAMs. Immune checkpoint inhibitors (ICIs) therapy prediction analysis was performed using TIDE and TISMO. Last, a series of targeted small-molecule drugs with promising therapeutic effects were predicted using the GSCA platform. RESULTS PD-L2 was expressed in all the common human cancer types and deteriorated outcomes in multiple cancers. PPI network and Spearman's correlation analysis revealed that PD-L2 was closely associated with many immune molecules. Moreover, both GSEA results of KEGG pathways and GSEA results for Reactome analysis indicated that PD-L2 expression played an important role in cancer immune response. Further analysis showed that PD-L2 expression was strongly associated with the infiltration of immune cells in tumor tissue in almost all cancer types, among which macrophages were the most positively associated with PD-L2 in colon cancer. According to the results mentioned above, we verified the expression of PD-L2 in TAMs in colon cancer and found that PD-L2+TAMs population was not static. Additionally, PD-L2+TAMs exhibited protumor M2 phenotype and increased the migration, invasion, and proliferative capacity of colon cancer cells. Furthermore, PD-L2 had a substantial predictive value for ICIs therapy cohorts. CONCLUSION PD-L2 in the TME, especially expressed on TAMs, could be applied as a potential therapeutic target.
Collapse
Affiliation(s)
- Jingfang Lv
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junhu Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Zhuang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Guan
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hengchang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yefeng Yin
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xishan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Cui K, Yao S, Liu B, Sun S, Gong L, Li Q, Fei B, Huang Z. A novel high-risk subpopulation identified by CTSL and ZBTB7B in gastric cancer. Br J Cancer 2022; 127:1450-1460. [PMID: 35941174 PMCID: PMC9553888 DOI: 10.1038/s41416-022-01936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is characterised by a heterogeneous tumour microenvironment (TME) that is closely associated with the response to treatment, especially immunotherapies. However, most previous GC molecular subtyping systems need complex gene signatures and examination methods, restricting their clinical applications. Thus, we developed a new TME-based molecular subtype using only two genes. METHODS Nine independent GC cohorts at the tissue- or single-cell level with more than 2000 patients were used in this study, including data we examined by single-cell sequencing, quantitative RT-PCR and immunochemistry/immunofluorescence staining. Nine different methods, five existing molecular subtypes and a series of signatures were used to evaluate the TME and molecular characteristics of GC. RESULTS We established a CTSL/ZBTB7B subtyping system and uncovered the novel CTSLHighZBTB7BLow high-risk subgroup, but characterised by relative higher immune cell infiltration and lower tumour purity. This subgroup demonstrate higher levels of immune checkpoints and more enrichment of cancer-related pathways compared with other cases. CONCLUSIONS We identified a high-risk subpopulation with unique TME features based on expressions of CTSL and ZBTB7B, suggesting a counterbalancing phenotype between immunostimulatory and immunosuppressive mechanisms. This subtyping system could be used to select treatment and management strategies for GC.
Collapse
Affiliation(s)
- Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062, Wuxi, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062, Wuxi, Jiangsu, China
| | - Bingxin Liu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062, Wuxi, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Shengbai Sun
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062, Wuxi, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Liang Gong
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, Jiangsu, China
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Qilin Li
- Computer Vision Lab, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Bojian Fei
- Department of Surgical Oncology, Affiliated Hospital of Jiangnan University, 214122, Wuxi, Jiangsu, China.
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062, Wuxi, Jiangsu, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, Jiangsu, China.
| |
Collapse
|
9
|
Shao J, Gao L, Leung ML, Gallinger B, Inglese C, Meyn MS, Del Gaudio D, Das S, Li Z. Exome sequencing identifies PD-L2 as a potential predisposition gene for lymphoma. Hematol Oncol 2022; 40:475-478. [PMID: 35613340 PMCID: PMC9546357 DOI: 10.1002/hon.3033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate germline predisposition in lymphoma, we performed whole‐exome sequencing and discovered a novel variant (c.817‐1G>T) in programmed cell death 1 ligand 2 (PD‐L2) in a family with early‐onset lymphomas and other cancers. The variant was present in the proband with follicular lymphoma and his son with Hodgkin's lymphoma. It was in the terminal splice acceptor site of PD‐L2 and embedded in a putative enhancer of Janus kinase 2 (JAK2) and programmed cell death 1 ligand (PD‐L1). We also found that gene expression of PD‐L2, PD‐L1, and JAK2 was significantly increased. Using 3′ rapid amplification of cDNA ends (3′ RACE), we detected an abnormal PD‐L2 transcript in the son. Thus, the c.817‐1G>T variant may result in the elevated PD‐L2 expression due to the abnormal PD‐L2 transcript and the elevated PD‐L1 and JAK2 expression due to increased enhancer activity of PD‐L1 and JAK2. The PD‐L2 novel variant likely underlies the genetic etiology of the lymphomas in the family. As PD‐L2 plays critical roles in tumor immunity, identification of PD‐L2 as a germline predisposition gene may inform personalized immunotherapy in lymphoma patients.
Collapse
Affiliation(s)
- Jianming Shao
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Lei Gao
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Marco L Leung
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA.,The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43215, USA.,Departments of Pathology and Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Bailey Gallinger
- Cancer Genetics Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cara Inglese
- Cancer Genetics Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - M Stephen Meyn
- Cancer Genetics Program, The Hospital for Sick Children, Toronto, ON, Canada.,Center for Human Genomics and Precision Medicine, University of Wisconsin, Madison, WI, 53705, USA
| | - Daniela Del Gaudio
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA
| | - Soma Das
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA
| | - Zejuan Li
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA.,Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
10
|
Expression of PD-1, PD-L1 and PD-L2 in Lymphomas in Patients with Pre-Existing Rheumatic Diseases-A Possible Association with High Rheumatoid Arthritis Disease Activity. Cancers (Basel) 2022; 14:cancers14061509. [PMID: 35326658 PMCID: PMC8946311 DOI: 10.3390/cancers14061509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Current research seeks to identify subgroups of non-Hodgkin lymphoma (NHL) patients responsive to PD-1 blocking agents. Whether patients with pre-existing rheumatic diseases might constitute such a subgroup is unknown. We determined intratumoral expression of PD-1 and its ligands in lymphoma patients with pre-existing rheumatic diseases. We included 215 patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) or Sjögren's syndrome with subsequent lymphoma and 74 diffuse large B-cell lymphoma (DLBCL) controls without rheumatic disease. PD-1 and PD-ligand immunohistochemical markers were applied on tumor tissue microarrays. The number of PD-1+ tumor infiltrating leukocytes (TILs) and proportions of PD-L1+ and PD-L2+ tumor cells and TILs were calculated and correlated with clinical data. Expression of PD-L1 in tumor cells and TILs was highest in classical Hodgkin lymphoma and DLBCL. In DLBCLs, expression of PD-1 in TILs and PD-L1 in tumor cells was similar in RA, SLE and controls. In RA-DLBCL, high expression of PD-L1 in tumor cells was significantly more common in patients with the most severe RA disease and was associated with inferior overall survival in multivariable analysis.
Collapse
|