1
|
Zhang R, Wang Z, Wang H, Li L, Dong L, Ding L, Li Q, Zhu L, Zhang T, Zhu Y, Ding K. CTHRC1 is associated with BRAF(V600E) mutation and correlates with prognosis, immune cell infiltration, and drug resistance in colon cancer, thyroid cancer, and melanoma. BIOMOLECULES & BIOMEDICINE 2024; 25:42-61. [PMID: 39052013 PMCID: PMC11647256 DOI: 10.17305/bb.2024.10397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Colon cancer, thyroid cancer, and melanoma are common malignant tumors that seriously threaten human health globally. The B-Raf proto-oncogene, serine/threonine kinase (BRAF)(V600E) mutation is an important driver gene mutation in these cancer types. In this study, we identified that collagen triple helix repeat containing 1 (CTHRC1) expression was associated with the BRAF(V600E) mutation in colon cancer, thyroid cancer, and melanoma. Based on database analysis and clinical tissue studies, CTHRC1 was verified to correlate with poor prognosis and worse clinicopathological features in colon cancer and thyroid cancer patients, but not in patients with melanoma. Several signaling pathways, immune cell infiltration, and immunotherapy markers were associated with CTHRC1 expression. Additionally, a high level of CTHRC1 was correlated with decreased sensitivity to antitumor drugs (vemurafenib, PLX-4720, dabrafenib, and SB-590885) targeting the BRAF(V600E) mutation. This study provides evidence of a significant correlation between CTHRC1 and the BRAF(V600E) mutation, suggesting its potential utility as a diagnostic and prognostic biomarker in human colon cancer, thyroid cancer, and melanoma.
Collapse
Affiliation(s)
- Rumeng Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zhihao Wang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Huan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lin Li
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lin Dong
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lin Ding
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Qiushuang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Linyan Zhu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Tiantian Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Yang X, Wang C. SGPP2 is activated by SP1 and promotes lung adenocarcinoma progression. Anticancer Drugs 2024; 35:943-951. [PMID: 39514710 DOI: 10.1097/cad.0000000000001648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The late diagnosis and easy metastasis of lung adenocarcinoma (LADC) remains a challenge. SGPP2 is reported to modulate cell processes in many cancers. However, the roles and molecular mechanisms of SGPP2 in LADC are unclear. Online bioinformatics tools GEPIA, CPTAC, and K-M plotter were used to analyze the expression of SGPP2 and the prognosis in LADC. JASPAR and PROMO were used to predict the transcription factors of SGPP2. Real-time quantitative reverse transcription PCR and western blot were used to detect the levels of SGPP2 in LADC cell lines and tissues. Cell counting kit-8, colony formation, flow cytometry, and transwell assay were used to detect cell proliferation, apoptosis, and invasion. The anti-cancer effect of SGPP2 silence was evaluated in the LADC xenograft model. It was found that SGPP2 was highly expressed and related to the poor prognosis of LADC patients. Elevated SGPP2 expression was detected in LADC cell lines and tissues. The chi-square test indicated that the expression of SGPP2 was positively related to tumor, node, metastasis grades and lymph node metastasis. Knocking down SGPP2 significantly inhibited LADC cell viability, and invasion, but induced apoptosis. The anti-tumor effects of SGPP2 were verified in vivo. The upstream transcription factor of SGPP2 was predicted to be SP1, which was highly expressed in LADC tissues and cell lines. Overexpression of SP1 partly rescued the inhibition of SGPP2-shRNA in cell growth, colony formation, and invasion capabilities, and decreased apoptotic cell number in LADC cells. This study demonstrated that SGPP2, activated by SP1, promotes LADC cell proliferation and invasion, and suppresses apoptosis in LADC.
Collapse
Affiliation(s)
- Xi Yang
- Department of Pulmonary and Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Chen Wang
- Department of Respiratory Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
3
|
Liu W, Pang Y, Yu X, Lu D, Yang Y, Meng F, Xu C, Yuan L, Nan Y. Pan-cancer analysis of NUDT21 and its effect on the proliferation of human head and neck squamous cell carcinoma. Aging (Albany NY) 2024; 16:3363-3385. [PMID: 38349866 PMCID: PMC10929839 DOI: 10.18632/aging.205539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Based on bioinformatics research of NUDT21 in pan-cancer, we aimed to clarify the mechanism of NUDT21 in HHNC by experiment. METHODS The correlation between differential expression of NUDT21 in pan-cancer and survival prognosis, genomic instability, tumor stemness, DNA repair, RNA methylation and with immune microenvironment were analyzed by the application of different pan-cancer analysis web databases. In addition, immunohistochemistry staining and genetic detection of NUDT21 in HHNCC tumor tissues by immunohistochemistry and qRT-PCR. Then, through in vitro cell experiments, NUDT21 was knocked down by lentivirus to detect the proliferation, cycle, apoptosis of FaDu and CNE-2Z cells, and finally by PathScan intracellular signaling array reagent to detect the apoptotic protein content. RESULTS Based on the pan-cancer analysis, we found that elevated expression of NUDT21 in most cancers was significantly correlated with TMB, MSI, neoantigens and chromosomal ploidy, and in epigenetics, elevated NUDT21 expression was strongly associated with genomic stability, mismatch repair genes, tumor stemness, and RNA methylation. Based on immunosuppressive score, we found that NUDT21 plays an essential role in the immunosuppressive environment by suppressing immune checkpointing effect in most cancers. In addition, using HHNSCC as a study target, PCR and pathological detection of NUDT21 in tumor tissues was significantly increased than that in paracancerous normal tissues. In vitro cellular assays, silencing NUDT21 inhibited proliferation and promoted apoptosis in FaDu and CNE-2Z cells, and blocked the cell cycle in the G2/M phase. Therefore, the experiments confirmed that NUDT21 promotes the proliferation of FaDu by suppressing the expression of apoptotic.
Collapse
Affiliation(s)
- Wenjing Liu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yingna Pang
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Xiaolu Yu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Doudou Lu
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Fandi Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Chengbi Xu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
4
|
Huang XD, Chen YW, Tian L, Du L, Cheng XC, Lu YX, Lin DD, Xiao FJ. NUDT21 interacts with NDUFS2 to activate the PI3K/AKT pathway and promotes pancreatic cancer pathogenesis. J Cancer Res Clin Oncol 2024; 150:8. [PMID: 38195952 PMCID: PMC10776698 DOI: 10.1007/s00432-023-05540-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND NUDT21 (Nudix Hydrolase 21) has been shown to play an essential role in multiple biological processes. Pancreatic adenocarcinoma (PAAD) is one of the most fatal cancers in the world. However, the biological function of NUDT21 in PAAD remains rarely understood. The aim of this research was to identify the prediction value of NUDT21 in diagnosis, prognosis, immune infiltration, and signal pathway in PAAD. METHODS Combined with the data in online databases, we analyzed the expression, immune infiltration, function enrichment, signal pathway, diagnosis, and prognosis of NUDT21 in PAAD. Then, the biological function of NUDT21 and its interacted protein in PAAD was identified through plasmid transduction system and protein mass spectrometry. Expression of NUDT21 was further verified in clinical specimens by immunofluorescence. RESULTS We found that NUDT21 was upregulated in PAAD tissues and was significantly associated with the diagnosis and prognosis of pancreatic cancer through bioinformatic data analysis. We also found that overexpression of NUDT21 enhanced PAAD cells proliferation and migration, whereas knockdown NUDT21 restored the effects through in vitro experiment. Moreover, NDUFS2 was recognized as a potential target of NUDT21.We further verified that the expression of NDUFS2 was positively correlated with NUDT21 in PAAD clinical specimens. Mechanically, we found that NUDT21 stabilizes NDUFS2 and activates the PI3K-AKT signaling pathway. CONCLUSION Our investigation reveals that NUDT21 is a previously unrecognized oncogenic factor in the diagnosis, prognosis, and treatment target of PAAD, and we suggest that NUDT21 might be a novel therapeutic target in PAAD.
Collapse
Affiliation(s)
- Xiao-Dong Huang
- Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, People's Republic of China
| | - Yong-Wei Chen
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Lv Tian
- School of Nursing, Jilin University, Changchun, 130015, People's Republic of China
| | - Li Du
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Xiao-Chen Cheng
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Yu-Xin Lu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Dong-Dong Lin
- Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, People's Republic of China.
| | - Feng-Jun Xiao
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
5
|
Li Z, Zhang X, Weng W, Zhang G, Ren Q, Tian Y. Cross-talk of RNA modification "writers" describes tumor stemness and microenvironment and guides personalized immunotherapy for gastric cancer. Aging (Albany NY) 2023; 15:5445-5481. [PMID: 37319315 PMCID: PMC10333070 DOI: 10.18632/aging.204802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND RNA modifications, TME, and cancer stemness play significant roles in tumor development and immunotherapy. The study investigated cross-talk and RNA modification roles in the TME, cancer stemness, and immunotherapy of gastric cancer (GC). METHODS We applied an unsupervised clustering method to distinguish RNA modification patterns in GC. GSVA and ssGSEA algorithms were applied. The WM_Score model was constructed for evaluating the RNA modification-related subtypes. Also, we conducted an association analysis between the WM_Score and biological and clinical features in GC and explored the WM_Score model's predictive value in immunotherapy. RESULTS We identified four RNA modification patterns with diverse survival and TME features. One pattern consistent with the immune-inflamed tumor phenotype showed a better prognosis. Patients in WM_Score high group were related to adverse clinical outcomes, immune suppression, stromal activation, and enhanced cancer stemness, while WM_Score low group showed opposite results. The WM_Score was correlated with genetic, epigenetic alterations, and post-transcriptional modifications in GC. Low WM_Score was related to enhanced efficacy of anti-PD-1/L1 immunotherapy. CONCLUSIONS We revealed the cross-talk of four RNA modification types and their functions in GC, providing a scoring system for GC prognosis and personalized immunotherapy predictions.
Collapse
Affiliation(s)
- Zhuoqi Li
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Xuehong Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Wenjie Weng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Ge Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Qianwen Ren
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Yuan Tian
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| |
Collapse
|
6
|
Masamha CP. The emerging roles of CFIm25 (NUDT21/CPSF5) in human biology and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1757. [PMID: 35965101 PMCID: PMC9925614 DOI: 10.1002/wrna.1757] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022]
Abstract
The mammalian cleavage factor I subunit CFIm25 (NUDT21) binds to the UGUA sequences of precursor RNAs. Traditionally, CFIm25 is known to facilitate 3' end formation of pre-mRNAs resulting in the formation of polyadenylated transcripts. Recent studies suggest that CFIm25 may be involved in the cyclization and hence generation of circular RNAs (circRNAs) that contain UGUA motifs. These circRNAs act as competing endogenous RNAs (ceRNAs) that disrupt the ceRNA-miRNA-mRNA axis. Other emerging roles of CFIm25 include regulating both alternative splicing and alternative polyadenylation (APA). APA generates different sized transcripts that may code for different proteins, or more commonly transcripts that code for the same protein but differ in the length and sequence content of their 3' UTRs (3' UTR-APA). CFIm25 mediated global changes in 3' UTR-APA affect human physiology including spermatogenesis and the determination of cell fate. Deregulation of CFIm25 and changes in 3' UTR-APA have been implicated in several human diseases including cancer. In many cancers, CFIm25 acts as a tumor suppressor. However, there are some cancers where CFIm25 has the opposite effect. Alterations in CFIm25-driven 3' UTR-APA may also play a role in neural dysfunction and fibrosis. CFIm25 mediated 3' UTR-APA changes can be used to generate specific signatures that can be used as potential biomarkers in development and disease. Due to the emerging role of CFIm25 as a regulator of the aforementioned RNA processing events, modulation of CFIm25 levels may be a novel viable therapeutic approach. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Chioniso Patience Masamha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Xiao S, Gu H, Deng L, Yang X, Qiao D, Zhang X, Zhang T, Yu T. Relationship between NUDT21 mediated alternative polyadenylation process and tumor. Front Oncol 2023; 13:1052012. [PMID: 36816917 PMCID: PMC9933127 DOI: 10.3389/fonc.2023.1052012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Alternative polyadenylation (APA) is a molecular process that generates diversity at the 3' end of RNA polymerase II transcripts from over 60% of human genes. APA and microRNA regulation are both mechanisms of post-transcriptional regulation of gene expression. As a key molecular mechanism, Alternative polyadenylation often results in mRNA isoforms with the same coding sequence but different lengths of 3' UTRs, while microRNAs regulate gene expression by binding to specific mRNA 3' UTRs. Nudix Hydrolase 21 (NUDT21) is a crucial mediator involved in alternative polyadenylation (APA). Different studies have reported a dual role of NUDT21 in cancer (both oncogenic and tumor suppressor). The present review focuses on the functions of APA, miRNA and their interaction and roles in development of different types of tumors.NUDT21 mediated 3' UTR-APA changes can be used to generate specific signatures that can be used as potential biomarkers in development and disease. Due to the emerging role of NUDT21 as a regulator of the aforementioned RNA processing events, modulation of NUDT21 levels may be a novel viable therapeutic approach.
Collapse
Affiliation(s)
- Shan Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University of China, Luzhou, China
| | - Huan Gu
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Deng
- Department of Oncology, Affiliated Hospital of Southwest Medical University of China, Luzhou, China
| | - Xiongtao Yang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Qiao
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xudong Zhang
- Department of Anesthesia, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tian Zhang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Tao Yu, ; Tian Zhang,
| | - Tao Yu
- Department of Oncology, Affiliated Hospital of Southwest Medical University of China, Luzhou, China,Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Tao Yu, ; Tian Zhang,
| |
Collapse
|
8
|
Qian X, Zheng H, Xue K, Chen Z, Hu Z, Zhang L, Wan J. Recurrence Risk of Liver Cancer Post-hepatectomy Using Machine Learning and Study of Correlation With Immune Infiltration. Front Genet 2021; 12:733654. [PMID: 34956309 PMCID: PMC8692778 DOI: 10.3389/fgene.2021.733654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Postoperative recurrence of liver cancer is the main obstacle to improving the survival rate of patients with liver cancer. We established an mRNA-based model to predict the risk of recurrence after hepatectomy for liver cancer and explored the relationship between immune infiltration and the risk of recurrence after hepatectomy for liver cancer. We performed a series of bioinformatics analyses on the gene expression profiles of patients with liver cancer, and selected 18 mRNAs as biomarkers for predicting the risk of recurrence of liver cancer using a machine learning method. At the same time, we evaluated the immune infiltration of the samples and conducted a joint analysis of the recurrence risk of liver cancer and found that B cell, B cell naive, T cell CD4+ memory resting, and T cell CD4+ were significantly correlated with the risk of postoperative recurrence of liver cancer. These results are helpful for early detection, intervention, and the individualized treatment of patients with liver cancer after surgical resection, and help to reveal the potential mechanism of liver cancer recurrence.
Collapse
Affiliation(s)
- Xiaowen Qian
- Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Huilin Zheng
- Department of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ke Xue
- Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Zheng Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Zhenhua Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China.,Key Laboratory of Combined Multi-Organ Transplantation, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Ministry of Public Health Key Laboratory of Organ Transplantation, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Yiwu Central Hospital, Yiwu, China
| | - Lei Zhang
- Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China.,Department of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jian Wan
- Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|