1
|
Zhang R, Guo S, Qu J. Exploring the prognostic value of T follicular helper cell levels in chronic lymphocytic leukemia. Sci Rep 2024; 14:22443. [PMID: 39341925 PMCID: PMC11438893 DOI: 10.1038/s41598-024-73325-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) presents with heterogeneous clinical outcomes, suggesting varied underlying pathogenic mechanisms. This study aims to elucidate the impact of T follicular helper (Tfh) cells on CLL progression and prognosis. Gene expression profile data for CLL were collected from GSE22762 and GSE39671 datasets. Patients were divided into high and low groups using Tfh levels using the optimal cutoff value based on overall survival (OS) and time-to-first treatment (TTFT). Differential expression analysis was performed between these groups, followed by co-expression network analysis and single-sample Gene Set Enrichment Analysis (ssGSEA). Marker genes of Tfh cells were used to construct prognostic models. Additionally, 40 CLL patients were recruited and categorized based on median Tfh levels. Marker gene expression was assessed using RT-qPCR and Western Blot, and immune cell levels were determined through flow cytometry. The high group showed better prognosis compared to the low group. Among the 1121 differentially expressed genes identified, five co-expression networks were constructed, with the turquoise module showing the highest correlation with Tfh cells. Genes within this module significantly participate in cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, and natural killer cell mediated cytotoxicity. Tfh cells were significantly negatively correlated with activated B cells and positively correlated with Tregs. The Random Survival Forest (RSF) model identified 10 marker genes, and further analysis using Lasso regression and nomogram selected CLEC4A, RAE1, CD84, and PRDX1 as prognostic markers. In the high group, levels of CLEC4A and RAE1 were higher than in the low group, whereas CD84 and PRDX1 were lower. Flow cytometry revealed that the level of activated B cells in the high Tfh group was significantly lower than in the low Tfh group, while the level of Tregs is significantly higher in the high Tfh group. This study seeks to contribute to a more detailed understanding of the pathogenesis of CLL, delving into the prognostic significance of Tfh.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- T Follicular Helper Cells/immunology
- T Follicular Helper Cells/metabolism
- Prognosis
- Male
- Female
- Middle Aged
- Aged
- Biomarkers, Tumor/genetics
- Gene Expression Profiling
Collapse
Affiliation(s)
- Rui Zhang
- Hematology Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, Xinjiang, China
| | - Sha Guo
- Hematology Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, Xinjiang, China
| | - Jianhua Qu
- Hematology Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
2
|
Stéphan P, Bouherrou K, Guillermin Y, Michallet AS, Grinberg-Bleyer Y. Immunophenotyping of Peripheral Blood Cells in Patients with Chronic Lymphocytic Leukemia Treated with Ibrutinib. Cells 2024; 13:1458. [PMID: 39273028 PMCID: PMC11393851 DOI: 10.3390/cells13171458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell-derived hematologic malignancy whose progression depends on active B-cell receptor (BCR) signaling. Despite the spectacular efficacy of Ibrutinib, an irreversible inhibitor of Bruton tyrosine kinase (BTK), resistance can develop in CLL patients, and alternative therapeutic strategies are therefore required. Cancer immunotherapy has revolutionized cancer care and may be an attractive approach in this context. We speculated that characterizing the immune responses of CLL patients may highlight putative immunotherapeutic targets. Here, we used high-dimensional spectral flow cytometry to compare the distribution and phenotype of non-B-cell immune populations in the circulating blood of CLL patients treated with Ibrutinib displaying a complete response or secondary progression. Although no drastic changes were observed in the composition of their immune subsets, the Ibrutinib-resistant group showed increased cycling of CD8+ T cells, leading to their overabundance at the expense of dendritic cells. In addition, the expression of 11 different surface checkpoints was similar regardless of response status. Together, this suggests that CLL relapse upon Ibrutinib treatment may not lead to major alterations in the peripheral immune response.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Adenine/analogs & derivatives
- Adenine/therapeutic use
- Adenine/pharmacology
- Piperidines/therapeutic use
- Piperidines/pharmacology
- Immunophenotyping
- Male
- Female
- Aged
- Middle Aged
- Aged, 80 and over
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- Blood Cells/drug effects
- Blood Cells/metabolism
- Pyrimidines/therapeutic use
- Pyrimidines/pharmacology
- Drug Resistance, Neoplasm/drug effects
Collapse
Affiliation(s)
- Pierre Stéphan
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Labex DEV2CAN, Centre Léon Bérard, 69008 Lyon, France; (P.S.); (K.B.)
| | - Khaled Bouherrou
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Labex DEV2CAN, Centre Léon Bérard, 69008 Lyon, France; (P.S.); (K.B.)
| | - Yann Guillermin
- Hematology Department-Centre Léon Bérard, 69008 Lyon, France; (Y.G.); (A.-S.M.)
| | | | - Yenkel Grinberg-Bleyer
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Labex DEV2CAN, Centre Léon Bérard, 69008 Lyon, France; (P.S.); (K.B.)
| |
Collapse
|
3
|
Hoferkova E, Seda V, Kadakova S, Verner J, Loja T, Matulova K, Skuhrova Francova H, Ondrouskova E, Filip D, Blavet N, Boudny M, Mladonicka Pavlasova G, Vecera J, Ondrisova L, Pavelkova P, Hlavac K, Kostalova L, Michaelou A, Pospisilova S, Dorazilova J, Chochola V, Jaros J, Doubek M, Jarosova M, Hampl A, Vojtova L, Kren L, Mayer J, Mraz M. Stromal cells engineered to express T cell factors induce robust CLL cell proliferation in vitro and in PDX co-transplantations allowing the identification of RAF inhibitors as anti-proliferative drugs. Leukemia 2024; 38:1699-1711. [PMID: 38877102 PMCID: PMC11286525 DOI: 10.1038/s41375-024-02284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 06/16/2024]
Abstract
Several in vitro models have been developed to mimic chronic lymphocytic leukemia (CLL) proliferation in immune niches; however, they typically do not induce robust proliferation. We prepared a novel model based on mimicking T-cell signals in vitro and in patient-derived xenografts (PDXs). Six supportive cell lines were prepared by engineering HS5 stromal cells with stable expression of human CD40L, IL4, IL21, and their combinations. Co-culture with HS5 expressing CD40L and IL4 in combination led to mild CLL cell proliferation (median 7% at day 7), while the HS5 expressing CD40L, IL4, and IL21 led to unprecedented proliferation rate (median 44%). The co-cultures mimicked the gene expression fingerprint of lymph node CLL cells (MYC, NFκB, and E2F signatures) and revealed novel vulnerabilities in CLL-T-cell-induced proliferation. Drug testing in co-cultures revealed for the first time that pan-RAF inhibitors fully block CLL proliferation. The co-culture model can be downscaled to five microliter volume for large drug screening purposes or upscaled to CLL PDXs by HS5-CD40L-IL4 ± IL21 co-transplantation. Co-transplanting NSG mice with purified CLL cells and HS5-CD40L-IL4 or HS5-CD40L-IL4-IL21 cells on collagen-based scaffold led to 47% or 82% engraftment efficacy, respectively, with ~20% of PDXs being clonally related to CLL, potentially overcoming the need to co-transplant autologous T-cells in PDXs.
Collapse
Affiliation(s)
- Eva Hoferkova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vaclav Seda
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sona Kadakova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Verner
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Loja
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Kvetoslava Matulova
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Skuhrova Francova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Eva Ondrouskova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Daniel Filip
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Nicolas Blavet
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Miroslav Boudny
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - Josef Vecera
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Laura Ondrisova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petra Pavelkova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Krystof Hlavac
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Kostalova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Androniki Michaelou
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Dorazilova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Vaclav Chochola
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Josef Jaros
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marie Jarosova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ales Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lucy Vojtova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Leos Kren
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
4
|
Hernandez-Lopez P, Vijaykumar T, Anand P, Auclair D, Frede J, Knoechel B, Lohr JG. Dual role of signaling pathways in myeloma requires cell type-specific targeting of ligand-receptor interactions. Blood Adv 2024; 8:3173-3185. [PMID: 38603572 PMCID: PMC11225681 DOI: 10.1182/bloodadvances.2023011463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/18/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
ABSTRACT Although most patients with multiple myeloma respond to treatment initially, therapy resistance develops almost invariably, and only a subset of patients show durable responses to immunomodulatory therapies. Although the immune microenvironment has been extensively studied in patients with myeloma, its composition is currently not used as prognostic markers in clinical routine. We hypothesized that the outcome of immune signaling pathway engagement can be highly variable, depending on which 2 cellular populations participate in this interaction. This would have important prognostic and therapeutic implications, suggesting that it is crucial for immune pathways to be targeted in a specific cellular context. To test this hypothesis, we investigated a cohort of 25 patients with newly diagnosed multiple myeloma. We examined the complex regulatory networks within the immune compartment and their impact on disease progression. Analysis of immune cell composition and expression profiles revealed significant differences in the B-cell compartment associated with treatment response. Transcriptional states in patients with short time to progression demonstrated an enrichment of pathways promoting B-cell differentiation and inflammatory responses, which may indicate immune dysfunction. Importantly, the analysis of molecular interactions within the immune microenvironment highlights the dual role of signaling pathways, which can either be associated with good or poor prognosis depending on the cell types involved. Our findings therefore argue that therapeutic strategies targeting ligand-receptor interactions should take into consideration the composition of the microenvironment and the specific cell types involved in molecular interactions.
Collapse
Affiliation(s)
- Pablo Hernandez-Lopez
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
| | - Tushara Vijaykumar
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
| | - Praveen Anand
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Julia Frede
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Birgit Knoechel
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jens G. Lohr
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
5
|
Rodrigues C, Laranjeira P, Pinho A, Silva I, Silva S, Coucelo M, Oliveira AC, Simões AT, Damásio I, Silva HM, Urbano M, Sarmento-Ribeiro AB, Geraldes C, Domingues MR, Almeida J, Criado I, Orfao A, Paiva A. CD20+ T cells in monoclonal B cell lymphocytosis and chronic lymphocytic leukemia: frequency, phenotype and association with disease progression. Front Oncol 2024; 14:1380648. [PMID: 38606091 PMCID: PMC11007165 DOI: 10.3389/fonc.2024.1380648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction In monoclonal B cell lymphocytosis (MBL) and chronic lymphocytic leukemia (CLL), the expansion of malignant B cells disrupts the normal homeostasis and interactions between B cells and T cells, leading to immune dysregulation. CD20+ T cells are a subpopulation of T cells that appear to be involved in autoimmune diseases and cancer. Methods Here, we quantified and phenotypically characterized CD20+ T cells from MBL subjects and CLL patients using flow cytometry and correlated our findings with the B-cell receptor mutational status and other features of the disease. Results and discussion CD20+ T cells were more represented within the CD8+ T cell compartment and they showed a predominant memory Tc1 phenotype. CD20+ T cells were less represented in MBL and CLL patients vs healthy controls, particularly among those with unmutated IGVH gene. The expansion of malignant B cells was accompanied by phenotypic and functional changes in CD20+ T cells, including an increase in follicular helper CD4+ CD20+ T cells and CD20+ Tc1 cells, in addition to the expansion of the TCR Vβ 5.1 in CD4+ CD20+ T cells in CLL.
Collapse
Affiliation(s)
- Cristiana Rodrigues
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Paula Laranjeira
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Aryane Pinho
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Isabel Silva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sandra Silva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Margarida Coucelo
- Unidade Funcional de Hematologia Molecular, Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Catarina Oliveira
- Unidade Funcional de Hematologia Molecular, Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Teresa Simões
- Unidade Funcional de Hematologia Molecular, Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Inês Damásio
- Hematology Department, Centro Hospitalar Tondela-Viseu, Viseu, Portugal
| | | | - Mafalda Urbano
- Hematology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Hematology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- University Clinics of Hematology and Oncology and Laboratory of Oncobiology and Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Catarina Geraldes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Hematology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- University Clinics of Hematology and Oncology and Laboratory of Oncobiology and Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - M. Rosário Domingues
- Mass Spectrometry Centre, Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Julia Almeida
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Salamanca, Spain
- Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Criado
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Salamanca, Spain
- Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Salamanca, Spain
- Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Ciências Biomédicas Laboratoriais, Instituto Politécnico de Coimbra, Escola Superior de Tecnologia da Saúde de Coimbra (ESTESC)-Coimbra Health School, Coimbra, Portugal
| |
Collapse
|
6
|
Nikitin E, Kislova M, Morozov D, Belyakova V, Suvorova A, Sveshnikova J, Vyscub G, Matveeva I, Shirokova M, Shipaeva A, Klitochenko T, Makarovskaya P, Dmitrieva E, Biderman B, Sudarikov A, Obukhova T, Samoilova O, Kaplanov K, Konstantinova T, Mayorova O, Poddubnaya I, Ptushkin V. Ibrutinib in combination with rituximab is highly effective in treatment of chronic lymphocytic leukemia patients with steroid refractory and relapsed autoimmune cytopenias. Leukemia 2023; 37:1464-1473. [PMID: 37202442 PMCID: PMC10195665 DOI: 10.1038/s41375-023-01891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/08/2023] [Accepted: 03/30/2023] [Indexed: 05/20/2023]
Abstract
Autoimmune hemolytic anemia (AIHA) and pure red cell aplasia (PRCA) are common complications of CLL. The optimal treatment of steroid refractory AIHA/PRCA is not well established. We conducted a multicenter study of ibrutinib and rituximab in patients with relapsed/refractory to steroids AIHA/PRCA and underlying CLL. Protocol included induction (ibrutinib 420 mg/day and rituximab, 8 weekly and 4 monthly infusions) and maintenance phase with ibrutinib alone until progression or unacceptable toxicity. Fifty patients were recruited (44-warm AIHA, 2-cold AIHA, 4-PRCA). After the induction 34 patients (74%) have achieved complete response, 10 (21.7%) partial response. Median time to hemoglobin normalization was 85 days. With regards to CLL response 9 (19%) patients have achieved CR, 2 (4%) patients-stabilization and 39 (78%)-PR. The median follow-up was 37.56 months. In AIHA group 2 patients had a relapse. Among 4 patients with PRCA 1 patient did not respond, and 1 patient had a relapse after CR, 2 remained in CR. The most common adverse events were neutropenia (62%), infections (72%), gastrointestinal complications (54%). In conclusion ibrutinib in combination with rituximab is an active second-line treatment option for patients with relapsed or refractory AIHA/PRCA and underlying CLL.
Collapse
MESH Headings
- Humans
- Rituximab
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/complications
- Anemia, Hemolytic, Autoimmune/drug therapy
- Anemia, Hemolytic, Autoimmune/complications
- Thrombocytopenia
- Red-Cell Aplasia, Pure
- Steroids
- Recurrence
Collapse
Affiliation(s)
- Eugene Nikitin
- State Budgetary Healthcare Institution of the city of Moscow City Clinical Hospital named after S.P. Botkin of Moscow City Healthcare Department, Moscow, Russian Federation.
- Federal State Budgetary Educational Institution of Further Professional Education "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation.
| | - Maria Kislova
- State Budgetary Healthcare Institution of the city of Moscow City Clinical Hospital named after S.P. Botkin of Moscow City Healthcare Department, Moscow, Russian Federation
| | - Dmitry Morozov
- State Budgetary Health Institution of the Nizhny Novgorod Region "Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko", Nizhny, Novgorod, Russian Federation
| | - Vera Belyakova
- State Budgetary Healthcare Institution of the city of Moscow Blood Center named after O.K. Gavrilov of the Moscow City Healthcare Department, Moscow, Russian Federation
| | - Anna Suvorova
- State Budgetary Health Institution of the Nizhny Novgorod Region "Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko", Nizhny, Novgorod, Russian Federation
| | - Julia Sveshnikova
- State Autonomous Healthcare Institution of the Sverdlovsk Region "Sverdlovsk Regional Clinical Hospital N 1", Ekaterinburg, Russian Federation
| | - Galina Vyscub
- State Budgetary Health Institution "Volgograd Regional Clinical Oncology Center", Volgograd, Russian Federation
| | - Irina Matveeva
- State Budgetary Health Institution "Volgograd Regional Clinical Oncology Center", Volgograd, Russian Federation
| | - Maria Shirokova
- State Budgetary Healthcare Institution of the city of Moscow City Clinical Hospital named after S.P. Botkin of Moscow City Healthcare Department, Moscow, Russian Federation
| | - Anna Shipaeva
- State Budgetary Health Institution "Volgograd Regional Clinical Oncology Center", Volgograd, Russian Federation
| | - Tatyana Klitochenko
- State Budgetary Health Institution "Volgograd Regional Clinical Oncology Center", Volgograd, Russian Federation
| | - Polina Makarovskaya
- State Budgetary Health Institution of the Nizhny Novgorod Region "Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko", Nizhny, Novgorod, Russian Federation
| | - Elena Dmitrieva
- State Budgetary Healthcare Institution of the city of Moscow City Clinical Hospital named after S.P. Botkin of Moscow City Healthcare Department, Moscow, Russian Federation
| | - Bella Biderman
- National Medical Research Center for Hematology, Moscow, Russian Federation
| | - Andrei Sudarikov
- National Medical Research Center for Hematology, Moscow, Russian Federation
| | - Tatyana Obukhova
- National Medical Research Center for Hematology, Moscow, Russian Federation
| | - Olga Samoilova
- State Budgetary Health Institution of the Nizhny Novgorod Region "Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko", Nizhny, Novgorod, Russian Federation
| | - Kamil Kaplanov
- State Budgetary Healthcare Institution of the city of Moscow City Clinical Hospital named after S.P. Botkin of Moscow City Healthcare Department, Moscow, Russian Federation
| | - Tatyana Konstantinova
- State Autonomous Healthcare Institution of the Sverdlovsk Region "Sverdlovsk Regional Clinical Hospital N 1", Ekaterinburg, Russian Federation
| | - Olga Mayorova
- State Budgetary Healthcare Institution of the city of Moscow Blood Center named after O.K. Gavrilov of the Moscow City Healthcare Department, Moscow, Russian Federation
| | - Irina Poddubnaya
- Federal State Budgetary Educational Institution of Further Professional Education "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | - Vadim Ptushkin
- State Budgetary Healthcare Institution of the city of Moscow City Clinical Hospital named after S.P. Botkin of Moscow City Healthcare Department, Moscow, Russian Federation
- Federal State Budgetary Educational Institution of Further Professional Education "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| |
Collapse
|
7
|
Le Saos-Patrinos C, Loizon S, Zouine A, Turpin D, Dilhuydy MS, Blanco P, Sisirak V, Forcade E, Duluc D. Elevated levels of circulatory follicular T helper cells in chronic lymphocytic leukemia contribute to B cell expansion. J Leukoc Biol 2023; 113:305-314. [PMID: 36807447 DOI: 10.1093/jleuko/qiad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 01/28/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by an expansion of mature B cells in the bone marrow, peripheral lymphoid organs, and blood. CD4 T helper (Th) lymphocytes significantly contribute to the physiopathology of CLL, but the subset(s) of Th cell involved in CLL pathogenesis is (are) still under debate. In this study, we performed flow cytometry analysis of the circulatory T cells of untreated CLL patients and observed an increase in follicular helper T cells (Tfh), which is a subset of T cells specialized in B cell help. Elevated numbers of Tfh cells correlated with disease severity as measured by the Binet staging system. Tfh from CLL patients were activated and skewed toward a Th1 profile as evidenced by their PD-1+IL-21+IFNγ+ phenotype and their CXCR3+CCR6- chemokine receptor profile. Tfh efficiently enhanced B-CLL survival and proliferation through IL-21 but independently of IFNγ. Finally, we observed an inverse correlation between the Tfh1 and IgA and IgG serum levels in patients, suggesting a role for this Tfh subset in the immune dysfunction associated with CLL. Altogether, our data highlight an impairment in circulatory Tfh subsets in CLL patients and their critical role in CLL physiopathology.
Collapse
Affiliation(s)
| | - Séverine Loizon
- Immunoconcept, CNRS UMR 5164, Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Atika Zouine
- TBM Core, UB Facsility, CNRS UMS 3427, Inserm US 005, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Delphine Turpin
- Immunoconcept, CNRS UMR 5164, Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Marie-Sarah Dilhuydy
- Service d'Hématologie Clinique et Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut Lévêque, Av de Magellan, 33600 Pessac, Bordeaux, France
| | - Patrick Blanco
- Immunoconcept, CNRS UMR 5164, Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France.,Service d'immunologie et immunogénétique, Centre Hospitalier Universitaire de Bordeaux, Place Amélie Raba-Léon, 33000 Bordeaux, France
| | - Vanja Sisirak
- Immunoconcept, CNRS UMR 5164, Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Edouard Forcade
- Immunoconcept, CNRS UMR 5164, Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France.,Service d'Hématologie Clinique et Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut Lévêque, Av de Magellan, 33600 Pessac, Bordeaux, France
| | - Dorothée Duluc
- Immunoconcept, CNRS UMR 5164, Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| |
Collapse
|
8
|
Pfannes R, Pierzchalski A, Maddalon A, Simion A, Zouboulis CC, Behre G, Zenclussen AC, Westphal S, Fest S, Herberth G. Characterization of post-vaccination SARS-CoV-2 T cell subtypes in patients with different hematologic malignancies and treatments. Front Immunol 2023; 14:1087996. [PMID: 37187728 PMCID: PMC10177659 DOI: 10.3389/fimmu.2023.1087996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Background To evaluate the benefits of SARS-CoV-2 vaccination in cancer patients it is relevant to understand the adaptive immune response elicited after vaccination. Patients affected by hematologic malignancies are frequently immune-compromised and show a decreased seroconversion rate compared to other cancer patients or controls. Therefore, vaccine-induced cellular immune responses in these patients might have an important protective role and need a detailed evaluation. Methods Certain T cell subtypes (CD4, CD8, Tfh, γδT), including cell functionality as indicated by cytokine secretion (IFN, TNF) and expression of activation markers (CD69, CD154) were assessed via multi-parameter flow cytometry in hematologic malignancy patients (N=12) and healthy controls (N=12) after a second SARS-CoV-2 vaccine dose. The PBMC of post-vaccination samples were stimulated with a spike-peptide pool (S-Peptides) of SARS-CoV-2, with CD3/CD28, with a pool of peptides from the cytomegalovirus, Epstein-Barr virus and influenza A virus (CEF-Peptides) or left unstimulated. Furthermore, the concentration of spike-specific antibodies has been analyzed in patients. Results Our results indicate that hematologic malignancy patients developed a robust cellular immune response to SARS-CoV-2 vaccination comparable to that of healthy controls, and for certain T cell subtypes even higher. The most reactive T cells to SARS-CoV-2 spike peptides belonged to the CD4 and Tfh cell compartment, being median (IQR), 3.39 (1.41-5.92) and 2.12 (0.55-4.14) as a percentage of IFN- and TNF-producing Tfh cells in patients. In this regard, the immunomodulatory treatment of patients before the vaccination period seems important as it was strongly associated with a higher percentage of activated CD4 and Tfh cells. SARS-CoV-2- and CEF-specific T cell responses significantly correlated with each other. Compared to lymphoma patients, myeloma patients had an increased percentage of SARS-CoV-2-specific Tfh cells. T-SNE analysis revealed higher frequencies of γδT cells in patients compared to controls, especially in myeloma patients. In general, after vaccination, SARS-CoV-2-specific T cells were also detectable in patients without seroconversion. Conclusion Hematologic malignancy patients are capable of developing a SARS-CoV-2-specific CD4 and Tfh cellular immune response after vaccination, and certain immunomodulatory therapies in the period before vaccination might increase the antigen-specific immune response. A proper response to recall antigens (e.g., CEF-Peptides) reflects immune cellular functionality and might be predictive for generating a newly induced antigen-specific immune response as is expected after SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Roald Pfannes
- Dessau Medical Center, Center for Oncology, Dessau, Germany
- Department for Gastroenterology and Oncology, Diakonissenkrankenhaus Leipzig, Agaplession Mitteldeutschland GmbH, Leipzig, Germany
| | - Arkadiusz Pierzchalski
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Alexandra Simion
- Institute of Clinical Chemistry, Dessau City Hospital, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Christos C. Zouboulis
- Department of Dermatology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
- Department of Venereology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
- Department of Allergology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
- Department of Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Gerhard Behre
- Department for Internal Medicine I, Dessau Medical Center and Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Perinatal Immunology Research Group, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Sabine Westphal
- Institute of Clinical Chemistry, Dessau City Hospital, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Stefan Fest
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Clinic of Pediatrics and Adolescent Medicine, Dessau City Hospital, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- *Correspondence: Gunda Herberth,
| |
Collapse
|
9
|
Ye C, Xu Y, Wang Z, Chen Y, Liu J. Role of Tfh17 cells in patients with multiple myeloma. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:820-825. [PMID: 35904276 DOI: 10.1080/16078454.2022.2106400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objective Follicular helper T cells (Tfh) drive proliferation and differentiation of B cells into plasma cells, leading to antibody production; however, their role in multiple myeloma (MM) is unknown. We aimed to determine the alteration of Tfh subsets and their clinical significance in patients with MM.Method Forty-nine patients with MM were recruited in this study, including 12 newly diagnosed patients, 10 relapsed patients, and 8 patients who received autologous hematopoietic stem cell transplantation (ASCT) from Zhejiang Provincial People's Hospital. Total CD4 + CXCR5 + CD25lowCD127intermediate-high Tfh cells, CXCR3 + CCR6-Tfh1 cells, CXCR3-CCR6-Tfh2 cells, and CXCR3-CCR6 + Tfh17 cells from the peripheral blood of these patients were analyzed by flow cytometry.Result Although total Tfh cells were not significantly changed in patients with MM compared to that in healthy controls (HCs), the Tfh17/Tfh ratio was significantly elevated in patients with MM compared to that in HCs (P = 0.0001). Importantly, relapsed patients had higher Tfh17/Tfh ratio than the newly diagnosed patients (P = 0.0077). Moreover, the Tfh17/Tfh ratio was significantly decreased in patients with MM who received ASCT (post-ASCT) when compared to that in HCs and non-ASCT patients (P < 0.0001), but no change was observed between post-ASCT patients and HCs (P = 0.7498).Conclusion The Tfh17/Tfh ratio was significantly elevated in patients with MM, especially in relapsed patients, indicating that Tfh17 cells may play a critical role in the clinical progression of MM.
Collapse
Affiliation(s)
- Chunmei Ye
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, People's Republic of China.,Department of Clinical Laboratory, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, Jinhua, People's Republic of China
| | - Yuni Xu
- Department of laboratory medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Zhenni Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, People's Republic of China
| | - Yanxia Chen
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, People's Republic of China
| | - Jinlin Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, People's Republic of China
| |
Collapse
|
10
|
Targeting metabolic reprogramming in chronic lymphocytic leukemia. Exp Hematol Oncol 2022; 11:39. [PMID: 35761419 PMCID: PMC9235173 DOI: 10.1186/s40164-022-00292-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022] Open
Abstract
Metabolic reprogramming, fundamentally pivotal in carcinogenesis and progression of cancer, is considered as a promising therapeutic target against tumors. In chronic lymphocytic leukemia (CLL) cells, metabolic abnormalities mediate alternations in proliferation and survival compared with normal B cells. However, the role of metabolic reprogramming is still under investigation in CLL. In this review, the critical metabolic processes of CLL were summarized, particularly glycolysis, lipid metabolism and oxidative phosphorylation. The effects of T cells and stromal cells in the microenvironment on metabolism of CLL were also elucidated. Besides, the metabolic alternation is regulated by some oncogenes and tumor suppressor regulators, especially TP53, MYC and ATM. Thus, the agents targeting metabolic enzymes or signal pathways may impede the progression of CLL. Both the inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) statins and the lipoprotein lipase inhibitor orlistat induce the apoptosis of CLL cells. In addition, a series of oxidative phosphorylation inhibitors play important roles in decreasing the proliferation of CLL cells. We epitomized recent advancements in metabolic reprogramming in CLL and discussed their clinical potentiality for innovative therapy options. Metabolic reprogramming plays a vital role in the initiation and progression of CLL. Therapeutic approaches targeting metabolism have their advantages in improving the survival of CLL patients. This review may shed novel light on the metabolism of CLL, leading to the development of targeted agents based on the reshaping metabolism of CLL cells.
Collapse
|
11
|
In Vitro and In Vivo Models of CLL–T Cell Interactions: Implications for Drug Testing. Cancers (Basel) 2022; 14:cancers14133087. [PMID: 35804862 PMCID: PMC9264798 DOI: 10.3390/cancers14133087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Chronic lymphocytic leukemia (CLL) cells in the peripheral blood and lymphoid microenvironment display substantially different gene expression profiles and proliferative capaci-ty. It has been suggested that CLL–T-cell interactions are key pro-proliferative stimuli in immune niches. We review in vitro and in vivo model systems that mimic CLL-T-cell interactions to trigger CLL proliferation and study therapy resistance. We focus on studies describing the co-culture of leukemic cells with T cells, or supportive cell lines expressing T-cell factors, and simplified models of CLL cells’ stimulation with recombinant factors. In the second part, we summarize mouse models revealing the role of T cells in CLL biology and implications for generating patient-derived xenografts by co-transplanting leukemic cells with T cells. Abstract T cells are key components in environments that support chronic lymphocytic leukemia (CLL), activating CLL-cell proliferation and survival. Here, we review in vitro and in vivo model systems that mimic CLL–T-cell interactions, since these are critical for CLL-cell division and resistance to some types of therapy (such as DNA-damaging drugs or BH3-mimetic venetoclax). We discuss approaches for direct CLL-cell co-culture with autologous T cells, models utilizing supportive cell lines engineered to express T-cell factors (such as CD40L) or stimulating CLL cells with combinations of recombinant factors (CD40L, interleukins IL4 or IL21, INFγ) and additional B-cell receptor (BCR) activation with anti-IgM antibody. We also summarize strategies for CLL co-transplantation with autologous T cells into immunodeficient mice (NOD/SCID, NSG, NOG) to generate patient-derived xenografts (PDX) and the role of T cells in transgenic CLL mouse models based on TCL1 overexpression (Eµ-TCL1). We further discuss how these in vitro and in vivo models could be used to test drugs to uncover the effects of targeted therapies (such as inhibitors of BTK, PI3K, SYK, AKT, MEK, CDKs, BCL2, and proteasome) or chemotherapy (fludarabine and bendamustine) on CLL–T-cell interactions and CLL proliferation.
Collapse
|
12
|
Gelmez MY, Betul Oktelik F, Cinar S, Ozbalak M, Ozluk O, Aktan M, Deniz G. High expression of OX-40, ICOS, and low expression PD-L1 of follicular helper and follicular cytotoxic T cells in chronic lymphocytic leukemia. J Hematop 2022. [DOI: 10.1007/s12308-022-00497-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|