1
|
Khalifa A, Sheweita SA, Namatalla A, Khalifa MA, Nencioni A, Sultan AS. Ruthenium(II) Complex with 8-Hydroxyquinoline Exhibits Antitumor Activity in Breast Cancer Cell Lines. Cancers (Basel) 2025; 17:195. [PMID: 39857977 PMCID: PMC11763687 DOI: 10.3390/cancers17020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Breast cancer (BC) remains one of the most prevalent and deadly cancers worldwide, with limited access to advanced treatments in developing regions. There is a critical need for novel therapies with unique mechanisms of action, especially to overcome resistance to conventional platinum-based drugs. This study investigates the anticancer potential of the ruthenium complex Bis(quinolin-8-olato)bis(triphenylphosphine)ruthenium(II) (Ru(quin)2) in ER-positive (T47D) and triple-negative (MDA-MB-231) BC cell lines. RESULTS Ru(quin)2 demonstrated dose-dependent cytotoxicity, with IC50 values of 48.3 μM in T47D cells and 45.5 μM in MDA-MB-231 cells. Its cytotoxic effects are primarily driven by apoptosis, as shown by increased BAX expression, enhanced caspase-3 activity, reduced Aurora B kinase levels, and elevated histone release. Ru(quin)2 also induced autophagy, evidenced by LC3-I to LC3-II conversion and reduced SQSTM1, partially mediated through MAPK signaling. Furthermore, Ru(quin)2 induced G0/G1 cell cycle arrest by downregulating cyclin D1, CDK4, and CDK6, alongside upregulation of the CDK inhibitor p21. CONCLUSIONS Ru(quin)2 emerges as a potent candidate for BC treatment, with multiple mechanisms of action involving apoptosis, autophagy, and cell cycle arrest. Further studies are warranted to elucidate its detailed molecular mechanisms and evaluate its therapeutic potential in vivo, moving toward clinical applications for both ER-positive and triple-negative BC management.
Collapse
Affiliation(s)
- Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (A.N.); (A.N.)
| | - Salah A. Sheweita
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria P.O. Box 21526, Egypt
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha 62521, Saudi Arabia
| | - Asmaa Namatalla
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (A.N.); (A.N.)
| | - Mohamed A. Khalifa
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria P.O. Box 21511, Egypt;
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (A.N.); (A.N.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Ahmed S. Sultan
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria P.O. Box 21511, Egypt;
- Oncology Department, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
2
|
Li J, Peng C, Huang C, Wan L, Wang K, Wu P, Chen T, Sun G, Guo R, Lin H, Ji Z. Metal Ruthenium Complexes Treat Spinal Cord Injury By Alleviating Oxidative Stress Through Interaction With Antioxidant 1 Copper Chaperone Protein. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407225. [PMID: 39412068 PMCID: PMC11615763 DOI: 10.1002/advs.202407225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Indexed: 12/06/2024]
Abstract
Oxidative stress is a major factor affecting spinal cord injury (SCI) prognosis. A ruthenium metal complex can aid in treating SCI by scavenging reactive oxygen species via a protein-regulated mechanism to alleviate oxidative stress. This study aimed to introduce a pioneering strategy for SCI treatment by designing two novel half-sandwich ruthenium (II) complexes containing diverse N^N-chelating ligands. The general formula is [(η6-Arene)Ru(N^N)Cl]PF6, where arene is either 2-phenylethanol-1-ol (bz-EA) or 3-phenylpropanol-1-ol (bz-PA), and the N^N-chelating ligands are fluorine-based imino-pyridyl ligands. This study shows that these ruthenium metal complexes protect neurons by scavenging reactive oxygen species. Notably, η6-Arene substitution from bz-PA to bz-EA significantly enhances reactive oxygen species scavenging ability and neuroprotective effect. Additionally, molecular dynamics simulations indicate that the ruthenium metal complex increases Antioxidant 1 Copper Chaperone protein expression, reduces oxidative stress, and protects neurons during SCI treatment. Furthermore, ruthenium metal complex protected spinal cord neurons and stimulated their regeneration, which improves electrical signals and motor functions in mice with SCI. Thus, this treatment strategy using ruthenium metal complexes can be a new therapeutic approach for the efficient treatment of SCI.
Collapse
Affiliation(s)
- Juanjuan Li
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhouGuangdong510632China
- Department of UrologyGuangzhou Institute of UrologyGuangdong Key Laboratory of Urologythe State Key Laboratory of Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouGuangdong510230China
| | - Cheng Peng
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhouGuangdong510632China
| | - Caiqiang Huang
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhouGuangdong510632China
| | - Li Wan
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhouGuangdong510632China
| | - Ke Wang
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhouGuangdong510632China
| | - Ping Wu
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhouGuangdong510632China
| | - Tianjun Chen
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhouGuangdong510632China
| | - Guodong Sun
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhouGuangdong510632China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionThe Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital)Jinan UniversityHeyuan517000China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education InstitutesGuangdong Provincial Engineering and Technological Research Center for Drug Carrier DevelopmentDepartment of Biomedical EngineeringJinan UniversityGuangzhou510632China
| | - Hongsheng Lin
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhouGuangdong510632China
| | - Zhisheng Ji
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhouGuangdong510632China
| |
Collapse
|
3
|
Zhao X, Wang R, Zhang F, Luo F, Zhong T, Linghu A, Xiong L, Yang H, Fan Y. Synthesis and antitumor activities of novel 3-(6-aminopyridin-3-yl)benzamide derivatives: Inducing cell cycle arrest and apoptosis via AURKB transcription inhibition. Bioorg Chem 2024; 148:107450. [PMID: 38761704 DOI: 10.1016/j.bioorg.2024.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Here, a series of 3-(6-aminopyridin-3-yl) benzamide derivatives were designed and synthesized. Cell viability assay indicated that most compounds exhibited potent antiproliferative activity against all the tested cancer cells. Among them, compound 7l displayed the best antiproliferative activity particularly in A549 cells, with an IC50 value of 0.04 ± 0.01 μM. RNA-seq analysis was employed to explore the potential pathways related to the antiproliferative activity of compound 7l. The data revealed that 7l exerted antiproliferative activity mainly by regulating cell cycle, DNA replication and p53 signaling pathway. Indeed, compound 7l induced G2/M phase arrest by AURKB transcription inhibition and resulted in cell apoptosis via p53 signaling pathway. Most importantly, compound 7l demonstrated potent antitumor activity in A549 xenograft tumor model. Collectively, 7l might be a promising lead compound for the development of new therapeutic agents for AURKB overexpressed or mutated cancers.
Collapse
Affiliation(s)
- Xinran Zhao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Rongtao Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Feng Zhang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Fang Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Ting Zhong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Ailing Linghu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Liang Xiong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Huiyin Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yanhua Fan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| |
Collapse
|
4
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
5
|
Althobaiti F, Sahyon HA, Shanab MMAH, Aldhahrani A, Helal MA, Khireldin A, Shoair AGF, Almalki ASA, Fathy AM. A comparative study of novel ruthenium(III) and iron(III) complexes containing uracil; docking and biological studies. J Inorg Biochem 2023; 247:112308. [PMID: 37441923 DOI: 10.1016/j.jinorgbio.2023.112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Structural and biological studies were conducted on the novel complexes [Fe(U)2(H2O)2]Cl3 (FeU) and [Ru(U)2(H2O)2]Cl3 (RuU) (U = 5,6-Diamino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione) to develop an anticancer drug candidate. The two complexes have been synthesized and characterized. Based on our findings, these complexes have octahedral geometry. The DNA-binding study proved that both complexes coordinated with CT-DNA. The docking study confirmed the potency of both complexes in downregulating the topoisomerase I protein through their high binding affinity. Biological studies have established that both complexes can act as potent anticancer agents against three cancer cell lines. RuU or FeU complexes induce apoptosis in breast cancer cells by increasing caspase9 protein and inhibiting proliferating cell nuclear antigen (PCNA) activity. In addition, both complexes down-regulate topoisomerase I expression in breast cancer cells. Therefore, the RuU and FeU complexes' anticancer activities were mediated via both apoptosis induction and topoisomerase I down-regulation. In conclusion, both complexes have dual anticancer activity pathways that may be responsible for the selective cytotoxicity of the complexes. This makes them more suitable for the development of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Heba A Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| | - Mai M A H Shanab
- Department of Chemistry, College of Sciences and Humanities Studies (Girls section), Hawtat Bani Tamim 11149, Prince Sattam Bin Abdulaziz University, P.O. Box:13, Saudi Arabia.
| | - Adil Aldhahrani
- Clinical Laboratory Science Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia.
| | - Marihan A Helal
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Awad Khireldin
- Air transport management, Singapore Institute of Technology (SIT), Singapore.
| | - Abdel Ghany F Shoair
- Department of Science and Technology, University College-Ranyah, postcode 21975, Taif University, Saudi Arabia; High Altitude Research Center, Taif University, 21944, Saudi Arabia.
| | | | - Ahmed M Fathy
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Abd El-Sadek I, Shen LTW, Mori T, Makita S, Mukherjee P, Lichtenegger A, Matsusaka S, Yasuno Y. Label-free drug response evaluation of human derived tumor spheroids using three-dimensional dynamic optical coherence tomography. Sci Rep 2023; 13:15377. [PMID: 37717067 PMCID: PMC10505213 DOI: 10.1038/s41598-023-41846-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023] Open
Abstract
This study aims at demonstrating label-free drug-response-patterns assessment of different tumor spheroids and drug types by dynamic optical coherence tomography (D-OCT). The study involved human breast cancer (MCF-7) and colon cancer (HT-29) spheroids. The MCF-7 and HT-29 spheroids were treated with paclitaxel (Taxol; PTX) and the active metabolite of irinotecan SN-38, respectively. The drugs were applied with 0 (control), 0.1, 1, and 10 μM concentrations and the treatment durations were 1, 3, and 6 days. A swept-source OCT microscope equipped with a repeated raster scanning protocol was used to scan the spheroids. Logarithmic intensity variance (LIV) and late OCT correlation decay speed (OCDS[Formula: see text]) algorithms were used to visualize the tumor spheroid dynamics. LIV and OCDS[Formula: see text] images visualized different response patterns of the two types of spheroids. In addition, spheroid morphology, LIV, and OCDS[Formula: see text] quantification showed different time-courses among the spheroid and drug types. These results may indicate different action mechanisms of the drugs. The results showed the feasibility of D-OCT for the evaluation of drug response patterns of different cell spheroids and drug types and suggest that D-OCT can perform anti-cancer drug testing.
Collapse
Affiliation(s)
- Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
- Department of Physics, Faculty of Science, Damietta University, New Damietta City, Damietta, 34517, Egypt
| | - Larina Tzu-Wei Shen
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Tomoko Mori
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Antonia Lichtenegger
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 4L, 1090, Vienna, Austria
| | - Satoshi Matsusaka
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
7
|
Gonçalves YG, Becceneri AB, Graminha AE, Miranda VM, Rios RR, Rinaldi-Neto F, Costa MS, Gonçalves ACR, Deflon VM, Yoneyama KAG, Maia PIS, Franca EF, Cominetti MR, Silva RS, Von Poelhsitz G. New ruthenium(II) complexes with cyclic thio- and semicarbazone: evaluation of cytotoxicity and effects on cell migration and apoptosis of lung cancer cells. Dalton Trans 2023. [PMID: 37377063 DOI: 10.1039/d3dt00750b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
We describe the synthesis, physicochemical characterization, and in vitro antitumor assays of four novel analogous ruthenium(II) complexes with general formula cis-[RuII(N-L)(P-P)2]PF6, where P-P = bis(diphenylphosphine)methane (dppm, in complexes 1 and 2) or bis(diphenylphosphine)ethane (dppe, in complexes 3 and 4) and N-L = 5,6-diphenyl-4,5-dihydro-2H-[1,2,4]triazine-3-thione (Btsc, in complexes 1 and 3) or 5,6-diphenyltriazine-3-one (Bsc, in complexes 2 and 4). The data were consistent with cis arrangement of the biphosphine ligands. For the Btsc and Bsc ligands, the data pointed to monoanionic bidentate coordination to ruthenium(II) through N,S and N,O, respectively. Single-crystal X-ray diffraction showed that complex 1 crystallized in the monoclinic system, space group P21/c. Determination of the cytotoxicity profiles of complexes 1-4 gave SI values ranging from 1.19 to 3.50 against the human lung adenocarcinoma cell line A549 and the non-tumor lung cell line MRC-5. Although the molecular docking studies suggested that the interaction between DNA and complex 4 was energetically favorable, the experimental results showed that they interacted weakly. Overall, our results demonstrated that these novel ruthenium(II) complexes have interesting in vitro antitumor potential and this study may contribute to further studies in medicinal inorganic chemistry.
Collapse
Affiliation(s)
- Yasmim G Gonçalves
- Chemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil.
- Laboratório de Fotoquímica e Química Bioinorgânica, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Amanda B Becceneri
- Laboratório de Fotoquímica e Química Bioinorgânica, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Angelica E Graminha
- Laboratório de Fotoquímica e Química Bioinorgânica, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil
- Gerontology Department, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Victor M Miranda
- Grupo de Química Inorgânica Estrutural e Biológica, Chemistry Institute of São Carlos, Universidade de São Paulo, USP - São Carlos, São Carlos, SP, Brazil
| | - Rafaella R Rios
- Laboratório de Fotoquímica e Química Bioinorgânica, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Francisco Rinaldi-Neto
- Laboratório de Fotoquímica e Química Bioinorgânica, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mônica S Costa
- Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Ana C R Gonçalves
- Exacts, Natural Sciences, and Education Institute, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Victor M Deflon
- Laboratório de Fotoquímica e Química Bioinorgânica, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Kelly A G Yoneyama
- Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Pedro I S Maia
- Exacts, Natural Sciences, and Education Institute, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Eduardo F Franca
- Laboratório de Cristalografia e Química Computacional, Chemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Márcia R Cominetti
- Gerontology Department, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Roberto S Silva
- Laboratório de Fotoquímica e Química Bioinorgânica, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
8
|
Juszczak M, Das S, Kosińska A, Rybarczyk-Pirek AJ, Wzgarda-Raj K, Tokarz P, Vasudevan S, Chworos A, Woźniak K, Rudolf B. Piano-stool ruthenium(II) complexes with maleimide and phosphine or phosphite ligands: synthesis and activity against normal and cancer cells. Dalton Trans 2023; 52:4237-4250. [PMID: 36897334 DOI: 10.1039/d2dt04083b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
In these studies, we designed and investigated cyto- and genotoxic potential of five ruthenium cyclopentadienyl complexes bearing different phosphine and phosphite ligands. All of the complexes were characterized with spectroscopic analysis (NMR, FT-IR, ESI-MS, UV-vis, fluorescence and XRD (for two compounds)). For biological studies, we used three types of cells - normal peripheral blood mononuclear (PBM) cells, leukemic HL-60 cells and doxorubicin-resistance HL-60 cells (HL-60/DR). We compared the results obtained with those obtained for the complex with maleimide ligand CpRu(CO)2(η1-N-maleimidato) 1, which we had previously reported. We observed that the complexes CpRu(CO)(PPh3)(η1-N-maleimidato) 2a and CpRu(CO)(P(OEt)3)(η1-N-maleimidato) 3a were the most cytotoxic for HL-60 cells and non-cytotoxic for normal PBM cells. However, complex 1 was more cytotoxic for HL-60 cells than complexes 2a and 3a (IC50 = 6.39 μM vs. IC50 = 21.48 μM and IC50 = 12.25 μM, respectively). The complex CpRu(CO)(P(OPh)3)(η1-N-maleimidato) 3b is the most cytotoxic for HL-60/DR cells (IC50 = 104.35 μM). We found the genotoxic potential of complexes 2a and 3a only in HL-60 cells. These complexes also induced apoptosis in HL-60 cells. Docking studies showed that complexes 2a and CpRu(CO)(P(Fu)3)(η1-N-maleimidato) 2b have a small ability to degrade DNA, but they may cause a defect in DNA damage repair mechanisms leading to cell death. This hypothesis is corroborated with the results obtained in the plasmid relaxation assay in which ruthenium complexes bearing phosphine and phosphite ligands induce DNA breaks.
Collapse
Affiliation(s)
- Michał Juszczak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Genetics, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Sujoy Das
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, 91-403 Lodz, Poland.
| | - Aneta Kosińska
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, 91-403 Lodz, Poland.
| | - Agnieszka J Rybarczyk-Pirek
- University of Lodz, Faculty of Chemistry, Department of Physical Chemistry, Pomorska 163/165, 90-236 Lodz, Poland
| | - Kinga Wzgarda-Raj
- University of Lodz, Faculty of Chemistry, Department of Physical Chemistry, Pomorska 163/165, 90-236 Lodz, Poland
| | - Paulina Tokarz
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Genetics, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Saranya Vasudevan
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Katarzyna Woźniak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Genetics, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Bogna Rudolf
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, 91-403 Lodz, Poland.
| |
Collapse
|
9
|
Silva HVR, da Silva GÁF, Zavan B, Machado RP, de Araujo-Neto JH, Ellena JA, Ionta M, Barbosa MIF, Doriguetto AC. The nicotinamide ruthenium(II) complex induces the production of reactive oxygen species (ROS), cell cycle arrest, and apoptosis in melanoma cells. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Chitosan and HPMCAS double-coating as protective systems for alginate microparticles loaded with Ctx(Ile 21)-Ha antimicrobial peptide to prevent intestinal infections. Biomaterials 2023; 293:121978. [PMID: 36580719 DOI: 10.1016/j.biomaterials.2022.121978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/03/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The incorrect use of conventional drugs for both prevention and control of intestinal infections has contributed to a significant spread of bacterial resistance. In this way, studies that promote their replacement are a priority. In the last decade, the use of antimicrobial peptides (AMP), especially Ctx(Ile21)-Ha AMP, has gained strength, demonstrating efficient antimicrobial activity (AA) against pathogens, including multidrug-resistant bacteria. However, gastrointestinal degradation does not allow its direct oral application. In this research, double-coating systems using alginate microparticles loaded with Ctx(Ile21)-Ha peptide were designed, and in vitro release assays simulating the gastrointestinal tract were evaluated. Also, the AA against Salmonella spp. and Escherichia coli was examined. The results showed the physicochemical stability of Ctx(Ile21)-Ha peptide in the system and its potent antimicrobial activity. In addition, the combination of HPMCAS and chitosan as a gastric protection system can be promising for peptide carriers or other low pH-sensitive molecules, adequately released in the intestine. In conclusion, the coated systems employed in this study can improve the formulation of new foods or biopharmaceutical products for specific application against intestinal pathogens in animal production or, possibly, in the near future, in human health.
Collapse
|
11
|
De Grandis RA, Costa AR, Moraes CAF, Sampaio NZ, Cerqueira IH, Marques WG, Guedes APM, de Araujo-Neto JH, Pavan FR, Demidoff FC, Netto CD, Batista AA, Resende FA. Novel Ru(II)-bipyridine/phenanthroline-lapachol complexes as potential anti-cancer agents. J Inorg Biochem 2022; 237:112005. [PMID: 36155170 DOI: 10.1016/j.jinorgbio.2022.112005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023]
Abstract
For the first time, we herein report on the syntheses of two new Ru(II)/bipyridine/phenanthroline complexes containing lapachol as ligand: complex (1), [Ru (bipy)2(Lap)]PF6 and complex (2), [Ru(Lap)(phen)2]PF6, where bipy = 2,2'-bipyridine and ph en = 1,10-phenanthroline; Lap = lapachol (2-hydroxy-3-(3-methylbut-2-en-1- yl)naphthalene-1,4-dione). The complexes were synthesized and characterized by elemental analyses, molar conductivity, mass spectrometry, ultraviolet-visible and infrared spectroscopies, nuclear magnetic resonance (1H, 13C), and single crystal X-ray diffraction, for complex (2). In addition, in vitro cytotoxicity was tested against six cancer cells: A549 (lung carcinoma); DU-145 (human prostate carcinoma); HepG2 (human hepatocellular carcinoma), PC-3 (human prostate adenocarcinoma); MDA-MB-231 (human breast adenocarcinoma); Caco-2 (human colorectal adenocarcinoma), and against two non-cancer cells, FGH (human gingival normal fibroblasts) and PNT-2 (prostate epithelial cells). Complex (1) was slightly more toxic and selective than complex (2) for all cell lines, except against the A549 cells, where (2) was more potent than complex (1). The complexes induced an increase in the reactive oxygen species, and the co-treatment with N-acetyl-L-cysteine remarkably suppressed the ROS generation and prevented the reduction of cell viability, suggesting that the cytotoxicity of the complexes is related to the ROS-mediated pathway. Further studies indicated that the complexes may bind to DNA via minor groove interaction. Our studies also revealed that free Lap induces gene mutations in Salmonella Typhimurium, nevertheless, the complexes demonstrated the absence of genotoxicity by the Ames test. The present study provides a relevant contribution to understanding the anti-cancer potential and genetic toxicological events of new ruthenium complexes containing the lapachol molecule as a ligand.
Collapse
Affiliation(s)
- Rone Aparecido De Grandis
- UNIARA - University of Araraquara, Department of Biological Sciences and Health, Araraquara, São Paulo, Brazil; UFSCar - Federal University of São Carlos, Department of Chemistry, São Carlos, São Paulo, Brazil.
| | - Analu Rocha Costa
- UFSCar - Federal University of São Carlos, Department of Chemistry, São Carlos, São Paulo, Brazil
| | | | - Natália Zaneti Sampaio
- UNIARA - University of Araraquara, Department of Biological Sciences and Health, Araraquara, São Paulo, Brazil
| | - Igor Henrique Cerqueira
- UNIARA - University of Araraquara, Department of Biological Sciences and Health, Araraquara, São Paulo, Brazil
| | - Wellington Garcia Marques
- UNIARA - University of Araraquara, Department of Biological Sciences and Health, Araraquara, São Paulo, Brazil
| | | | | | - Fernando Rogério Pavan
- UNESP - São Paulo State University, Department of Biological Sciences, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | | | - Chaquip Daher Netto
- UFRJ - Federal University of Rio de Janeiro, Institute of Chemistry, Macaé, Rio de Janeiro, Brazil
| | - Alzir Azevedo Batista
- UFSCar - Federal University of São Carlos, Department of Chemistry, São Carlos, São Paulo, Brazil.
| | - Flávia Aparecida Resende
- UNIARA - University of Araraquara, Department of Biological Sciences and Health, Araraquara, São Paulo, Brazil.
| |
Collapse
|
12
|
de Oliveira LCB, Ribeiro DL, do Nascimento JR, da Rocha CQ, de Syllos Cólus IM, Serpeloni JM. Anticancer activities of Brachydin C in human prostate tumor cells (DU145) grown in 2D and 3D models: stimulation of cell death and downregulation of metalloproteinases in spheroids. Chem Biol Drug Des 2022; 100:747-762. [PMID: 35775856 DOI: 10.1111/cbdd.14112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/24/2022] [Accepted: 06/26/2022] [Indexed: 11/27/2022]
Abstract
Brachydin C (BrC) has demonstrated in vitro cytotoxic and antiproliferative effects in prostate cancer cells. In the present study, we compare the anticancer effects of BrC in DU145 cells grown in common bidimensional cultures (2D) and multicellular tumor spheroids (MCTS), often denominated 3D in vitro models, that can better mimic the microenvironment of tissues. BrC IC50 values obtained in the resazurin assay after 24 h of treatment were 47.31 μM (2D) and 229.8 μM (3D) and these cytotoxic effects were time dependent only in 3D. BrC (5 to 60 μM) interfered with the growth of MCTS and reduced cell viability after 11 days of treatment, a result that is not attributable to oxidative stress evaluated using the CM-H2 DCFDA probe. BrC (6.0 μM) impaired horizontal (wound healing) and vertical cell migration and invasion (transwell assay) in 2D and BrC (5.0 to 60 μM) in 3D (ECM Gel®). BrC modulated the expression of genes BIRC5, TNF-α, CASP3, NKX3.1, MMP9, MMP11, CDH1, and ITGAM and downregulated proteins CASP7, BAX, and TNF-α in western blotting analysis. In conclusion, BrC stimulated cell death and decreased epithelial-mesenchymal transition. Furthermore, DU145 MCTS displayed higher resistance to BrC- induced cell death than 2D cultures, a difference that should be considered in future approaches in prostatic cancer studies.
Collapse
Affiliation(s)
| | - Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | | | - Claudia Quintino da Rocha
- Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís, Brazil
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Brazil
| | - Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Brazil
| |
Collapse
|
13
|
Roque-Borda CA, Souza Saraiva MDM, Monte DFM, Rodrigues Alves LB, de Almeida AM, Ferreira TS, de Lima TS, Benevides VP, Cabrera JM, Claire S, Meneguin AB, Chorilli M, Pavan FR, Junior AB, Vicente EF. HPMCAS-Coated Alginate Microparticles Loaded with Ctx(Ile 21)-Ha as a Promising Antimicrobial Agent against Salmonella Enteritidis in a Chicken Infection Model. ACS Infect Dis 2022; 8:472-481. [PMID: 35230825 DOI: 10.1021/acsinfecdis.1c00264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) in poultry is most often transmitted by the fecal-oral route, which can be attributed to high population density. Upon encountering the innate immune response in a host, the pathogen triggers a stress response and virulence factors to help it survive in the host. The aim of this study was to evaluate the effect of hypromellose acetate/succinate (HPMCAS)-coated alginate microparticles containing the Ctx(Ile21)-Ha antimicrobial peptide (AMP) on both intestinal colonization and systemic infection of laying hens challenged with S. Enteritidis. The applied AMP microsystem reduced the bacterial load of S. Enteritidis in the liver, with a statistical significance between groups A (control, no Ctx(Ile21)-Ha peptide) and B (2.5 mg of Ctx(Ile21)-Ha/kg) at 2 days postinfection (dpi), potentially indicating the effectiveness of Ctx(Ile21)-Ha in the first stage of infection by S. Enteritidis. In addition, the results showed a significant decrease in the S. Enteritidis counts in the spleen and cecal content at 5 dpi; remarkably, no S. Enteritidis counts were observed in livers at 5, 7, and 14 dpi, regardless of the Ctx(Ile21)-Ha dosage (p-value <0.0001). Using the Chi-square test, the effect of AMP microparticles on S. Enteritidis fecal excretion was also evaluated, and a significantly lower bacterial excretion was observed over 21 days in groups B and C, in comparison with the untreated control (p-value <0.05). In summary, the use of HPMCAS-Ctx(Ile21)-Ha peptide microcapsules in laying hens drastically reduced the systemic infection of S. Enteritidis, mainly in the liver, indicating a potential for application as a feed additive against this pathogen.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
- Universidad Católica de Santa María, Vicerrectorado de Investigación, Arequipa, Peru 04013
| | - Mauro de Mesquita Souza Saraiva
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Daniel F. M. Monte
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Lucas Bocchini Rodrigues Alves
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Adriana Maria de Almeida
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Taísa Santiago Ferreira
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Túlio Spina de Lima
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Valdinete Pereira Benevides
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Julia Memrava Cabrera
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Sunil Claire
- School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, United Kingdom B15 2TT
| | - Andréia Bagliotti Meneguin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil 14801-902
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil 14801-902
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil 14801-902
| | - Angelo Berchieri Junior
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Eduardo Festozo Vicente
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo, Brazil 17602-496
| |
Collapse
|
14
|
Iessi E, Vona R, Cittadini C, Matarrese P. Targeting the Interplay between Cancer Metabolic Reprogramming and Cell Death Pathways as a Viable Therapeutic Path. Biomedicines 2021; 9:biomedicines9121942. [PMID: 34944758 PMCID: PMC8698563 DOI: 10.3390/biomedicines9121942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
In cancer cells, metabolic adaptations are often observed in terms of nutrient absorption, biosynthesis of macromolecules, and production of energy necessary to meet the needs of the tumor cell such as uncontrolled proliferation, dissemination, and acquisition of resistance to death processes induced by both unfavorable environmental conditions and therapeutic drugs. Many oncogenes and tumor suppressor genes have a significant effect on cellular metabolism, as there is a close relationship between the pathways activated by these genes and the various metabolic options. The metabolic adaptations observed in cancer cells not only promote their proliferation and invasion, but also their survival by inducing intrinsic and acquired resistance to various anticancer agents and to various forms of cell death, such as apoptosis, necroptosis, autophagy, and ferroptosis. In this review we analyze the main metabolic differences between cancer and non-cancer cells and how these can affect the various cell death pathways, effectively determining the susceptibility of cancer cells to therapy-induced death. Targeting the metabolic peculiarities of cancer could represent in the near future an innovative therapeutic strategy for the treatment of those tumors whose metabolic characteristics are known.
Collapse
|