1
|
Fracchiolla F, Engwall E, Mikhalev V, Cianchetti M, Giacomelli I, Siniscalchi B, Sundström J, Marthin O, Wase V, Bertolini M, Righetto R, Trianni A, Lohr F, Lorentini S. Static proton arc therapy: Comprehensive plan quality evaluation and first clinical treatments in patients with complex head and neck targets. Med Phys 2025; 52:3191-3203. [PMID: 39939287 DOI: 10.1002/mp.17669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/11/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Proton Arc Treatment (PAT) has shown potential over Multi-Field Optimization (MFO) for out-of-target dose reduction in particular for head and neck (H&N) patients. A feasibility test, including delivery in a clinical environment is still missing in the literature and a necessary requirement before clinical application of PAT. PURPOSE To perform a comprehensive comparison between clinically delivered MFO plans and static PAT plans for H&N treatments, followed by end-to-end commissioning of the system to prepare for clinical treatments. METHODS Anonymized datasets of 10 patients treated for H&N cancer (median prescription dose 70 GyRBE) were selected for this study. Both MFO and PAT plans were created in RayStation and robustly optimized for setup and range uncertainties as in our clinical routine. PAT plans were created with 30 angle directions. 1. Comparisons were performed regarding: 2. nominal dose distributions in terms of target coverage, dose to primary and secondary OARs 3. robustness evaluation (D95 of the target and D1 of primary OARs) 4. Normal tissue complication probability (NTCP) values for xerostomia, swallowing dysfunction, tube feeding, and sticky saliva 5. D·LETd distributions 6. the probability of replanning at least once due to anatomical changes 7. delivery time: MFO and PAT plans, for one patient, were delivered in a clinical gantry room. For PAT, two plans with 30 and with 20 discrete beam directions were optimized and delivered. RESULTS In PAT plans, a significant reduction was observed in the near maximum dose to the brainstem, while no statistically significant differences were found for other primary OARs or target coverage metrics (D95 and D98) in both nominal plans and robustness evaluation scenarios. For secondary OARs, PAT plans achieved an impressive reduction in mean dose. Max D·LETd distributions in brainstem, brain, and temporal lobes showed no statistical differences between MFO and PAT plans while mean D·LETd values were lower with PAT. Median NTCP was significantly reduced for xerostomia as endpoint (ΔNTCP = 8.5%), while reductions in other endpoints were not statistically significant. The number of patients that would need at least one replanning during the treatment for PAT was similar to MFO, showing that the established clinical workflow for monitoring of anatomy changes will remain the same for both delivery methods. Comparison in terms of delivery time from the start of the first beam until the end of the last (comprising all the technically motivated delays due to operation of OIS/Therapy Control System operation, gantry rotations, couch rotations, beam line preparation etc.) resulted in delivery times that were similar for both techniques. CONCLUSION Static PAT plans demonstrate the capability to increase plan quality with respect to state-of-the-art MFO planning, since dose reduction outside of the target is significant with no reduction of the quality of the target dose distribution. NTCP evaluations, as well as linear energy transfer (LET) distributions, do not indicate risks for unexpected toxicity. Delivery time tests with different beam direction configurations have shown that PAT plans can already be delivered within similar time slots as highly conformal MFO plans. The successful end-to-end commissioning led to the world's first patient treatments using PAT, with eight patients treated to date.
Collapse
Affiliation(s)
| | | | | | - Marco Cianchetti
- Proton Therapy Department, Trento Hospital APSS, U.O. Protonterapia, Trento, Italy
| | - Irene Giacomelli
- Proton Therapy Department, Trento Hospital APSS, U.O. Protonterapia, Trento, Italy
| | | | | | | | - Viktor Wase
- RaySearch Laboratories AB, Stockholm, Sweden
| | - Mattia Bertolini
- Proton Therapy Department, Trento Hospital APSS, U.O. Protonterapia, Trento, Italy
| | - Roberto Righetto
- UO Fisica Sanitaria, Trento Hospital APSS, Proton Therapy Center, Trento, Italy
| | - Annalisa Trianni
- UO Fisica Sanitaria, Trento Hospital APSS, Proton Therapy Center, Trento, Italy
| | - Frank Lohr
- Proton Therapy Department, Trento Hospital APSS, U.O. Protonterapia, Trento, Italy
- CISMed - Centro Interdipartimentale di Scienze Mediche, University of Trento, Trento, Italy
| | - Stefano Lorentini
- UO Fisica Sanitaria, Trento Hospital APSS, Proton Therapy Center, Trento, Italy
| |
Collapse
|
2
|
Qi H, Hu L, Huang S, Lee YP, Yu F, Chen Q, Yang Y, Kang M, Zhai H, Vermeulen M, Shim A, Park P, Ding X, Zhou J, Abramson DH, Francis JH, Simone CB, Barker CA, Lin H. Gantry-based pencil beam scanning proton therapy for uveal melanoma: IMPT versus proton arc therapy. Radiat Oncol 2025; 20:48. [PMID: 40176046 PMCID: PMC11963511 DOI: 10.1186/s13014-025-02621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/10/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND This study reports the single-institution clinical experience of multifield pencil beam scanning (PBS) intensity-modulated proton therapy (IMPT) and dosimetric comparison to proton arc for uveal melanoma (UM) in a regular PBS gantry room. METHODS Eleven consecutive UM patients were treated with IMPT to 50 Gy in 5 fractions. A customized gaze-fixation device attached to the thermoplastic mask was used to reproduce the globe position for each patient. IMPT plans were robustly optimized with perturbations of 3 mm setup and 3.5% range uncertainties using 3-4 fields without apertures. Each plan was robustly reoptimized (using the same perturbation parameters) using two non-coplanar arc fields in the RayStation treatment planning system. Treatment quality for both plans was evaluated daily using CBCT-generated synthetic CT. Target coverage, conformity, and mean/maximum doses to adjacent organs were assessed. RESULTS Proton arc plans provided comparable plan quality compared to IMPT plans. Similar target coverage was achieved, with an average GTV D95% equal to 101.1% [Formula: see text] 1.0% and 101.4% [Formula: see text] 0.4% for IMPT and proton arc plans, respectively. Proton arc improves the conformity index (RTOG) compared to IMPT plans (average 0.96 [Formula: see text] 0.23 vs. 0.88 [Formula: see text] 0.18, p = 0.11). Both modalities met all the clinical goals for organs-at-risk (OARs), while proton arc significantly reduced the maximum dose for the retina from, on average, 54.5 [Formula: see text] 0.7 to 53.2 [Formula: see text] 0.3 Gy (p < 0.01). Treatment evaluation on synthetic CT showed that the doses received by patients were highly consistent with the planned doses, with a relative target coverage (D95%) difference within 3.5% for IMPT and 3.1% for proton arc, and the D95% of actual delivery exceeding 98.7% and 98.2%, respectively. The doses delivered to OARs did not exceed clinical constraints. CONCLUSIONS This is a novel report on proton arc for ocular tumors and gantry-based multifield PBS proton treatment for these tumors. This study demonstrated that both modalities can meet the clinical goals. The IMPT is currently clinically implanted, and 2-field non-coplanar proton arc plans can achieve comparable dosimetric metrics to those of IMPT plans when the deliver technique is matured.
Collapse
Affiliation(s)
- Hang Qi
- New York Proton Center, New York, NY, USA
| | - Lei Hu
- Inova Schar Cancer Institute, Fairfax, VA, USA
| | - Sheng Huang
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yen-Po Lee
- University of Iowa Health Care, Iowa City, IA, USA
| | - Francis Yu
- New York Proton Center, New York, NY, USA
| | - Qing Chen
- New York Proton Center, New York, NY, USA
| | - Yunjie Yang
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Andy Shim
- New York Proton Center, New York, NY, USA
| | - Peter Park
- New York Proton Center, New York, NY, USA
| | - Xuanfeng Ding
- William Beaumont University Hospital, Corewell Health, Royal Oak, MI, USA
| | - Jun Zhou
- Emory University, Atlanta, GA, USA
| | | | | | - Charles B Simone
- New York Proton Center, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher A Barker
- New York Proton Center, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Haibo Lin
- New York Proton Center, New York, NY, USA.
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
3
|
Chen J, Yang Y, Feng H, Liu C, Zhang L, Holmes JM, Liu Z, Lin H, Liu T, Simone CB, Lee NY, Frank SJ, Ma DJ, Patel SH, Liu W. Enabling clinical use of linear energy transfer in proton therapy for head and neck cancer - A review of implications for treatment planning and adverse events study. VISUALIZED CANCER MEDICINE 2025; 6:3. [PMID: 40151417 PMCID: PMC11945436 DOI: 10.1051/vcm/2025001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Proton therapy offers significant advantages due to its unique physical and biological properties, particularly the Bragg peak, enabling precise dose delivery to tumors while sparing healthy tissues. However, the clinical implementation is challenged by the oversimplification of the relative biological effectiveness (RBE) as a fixed value of 1.1, which does not account for the complex interplay between dose, linear energy transfer (LET), and biological endpoints. Lack of heterogeneity control or the understanding of the complex interplay may result in unexpected adverse events and suboptimal patient outcomes. On the other hand, expanding our knowledge of variable tumor RBE and LET optimization may provide a better management strategy for radioresistant tumors. This review examines recent advancements in LET calculation methods, including analytical models and Monte Carlo simulations. The integration of LET into plan evaluation is assessed to enhance plan quality control. LET-guided robust optimization demonstrates promise in minimizing high-LET exposure to organs at risk, thereby reducing the risk of adverse events. Dosimetric seed spot analysis is discussed to show its importance in revealing the true LET-related effect upon the adverse event initialization by finding the lesion origins and eliminating the confounding factors from the biological processes. Dose-LET volume histograms (DLVH) are discussed as effective tools for correlating physical dose and LET with clinical outcomes, enabling the derivation of clinically relevant dose-LET volume constraints without reliance on uncertain RBE models. Based on DLVH, the dose-LET volume constraints (DLVC)-guided robust optimization is introduced to upgrade conventional dose-volume constraints-based robust optimization, which optimizes the joint distribution of dose and LET simultaneously. In conclusion, translating the advances in LET-related research into clinical practice necessitates a better understanding of the LET-related biological mechanisms and the development of clinically relevant LET-related volume constraints directly derived from the clinical outcomes. Future research is needed to refine these models and conduct prospective trials to assess the clinical benefits of LET-guided optimization on patient outcomes.
Collapse
Affiliation(s)
- Jingyuan Chen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Yunze Yang
- Department of Radiation Oncology, The University of Miami, Miami, FL 33136, USA
| | - Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
- College of Mechanical and Power Engineering, China Three Gorges University, Yichang, Hubei 443002, PR China
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, Guangdong 510555, PR China
| | - Chenbin Liu
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518172, PR China
| | - Lian Zhang
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050023, PR China
| | - Jason M. Holmes
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Zhengliang Liu
- School of Computing, The University of Georgia, Athens, GA 30602, USA
| | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA
| | - Tianming Liu
- School of Computing, The University of Georgia, Athens, GA 30602, USA
| | | | - Nancy Y. Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Steven J. Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel J. Ma
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Samir H. Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
4
|
Volz L, Korte J, Martire MC, Zhang Y, Hardcastle N, Durante M, Kron T, Graeff C. Opportunities and challenges of upright patient positioning in radiotherapy. Phys Med Biol 2024; 69:18TR02. [PMID: 39159668 DOI: 10.1088/1361-6560/ad70ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Objective.Upright positioning has seen a surge in interest as a means to reduce radiotherapy (RT) cost, improve patient comfort, and, in selected cases, benefit treatment quality. In particle therapy (PT) in particular, eliminating the need for a gantry can present massive cost and facility footprint reduction. This review discusses the opportunities of upright RT in perspective of the open challenges.Approach.The clinical, technical, and workflow challenges that come with the upright posture have been extracted from an extensive literature review, and the current state of the art was collected in a synergistic perspective from photon and particle therapy. Considerations on future developments and opportunities are provided.Main results.Modern image guidance is paramount to upright RT, but it is not clear which modalities are essential to acquire in upright posture. Using upright MRI or upright CT, anatomical differences between upright/recumbent postures have been observed for nearly all body sites. Patient alignment similar to recumbent positioning was achieved in small patient/volunteer cohorts with prototype upright positioning systems. Possible clinical advantages, such as reduced breathing motion in upright position, have been reported, but limited cohort sizes prevent resilient conclusions on the treatment impact. Redesign of RT equipment for upright positioning, such as immobilization accessories for various body regions, is necessary, where several innovations were recently presented. Few clinical studies in upright PT have already reported promising outcomes for head&neck patients.Significance.With more evidence for benefits of upright RT emerging, several centers worldwide, particularly in PT, are installing upright positioning devices or have commenced upright treatment. Still, many challenges and open questions remain to be addressed to embed upright positioning firmly in the modern RT landscape. Guidelines, professionals trained in upright patient positioning, and large-scale clinical studies are required to bring upright RT to fruition.
Collapse
Affiliation(s)
- Lennart Volz
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
| | - James Korte
- Department of Physical Science, Peter MacCallum Cancer Centere, Melbourne, Australia
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - Maria Chiara Martire
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institut, Villigen-PSI, Switzerland
| | - Nicholas Hardcastle
- Department of Physical Science, Peter MacCallum Cancer Centere, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Marco Durante
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
- Institute for Condensed Matter Physics, Technical University Darmstadt, Darmstadt, Germany
| | - Tomas Kron
- Department of Physical Science, Peter MacCallum Cancer Centere, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Christian Graeff
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
- Department for Electronic Engineering and Computer Science, Technical University Darmstadt, Darmstadt, Germany
| |
Collapse
|
5
|
Liu G, Fan Q, Zhao L, Liu P, Cong X, Yan D, Li X, Ding X. First direct machine-specific parameters incorporated in Spot-scanning Proton Arc (SPArc) optimization algorithm. Med Phys 2024; 51:5682-5692. [PMID: 38340368 DOI: 10.1002/mp.16985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Spot-scanning Proton Arc (SPArc) has been of significant interest in recent years because of its superior plan quality. Currently, the primary focus of research and development is on deliverability and treatment efficiency. PURPOSE To address the challenges in generating a deliverable and efficient SPArc plan for a proton therapy system with a massive gantry, we developed a novel SPArc optimization algorithm (SPArcDMPO) by directly incorporating the machine-specific parameters such as gantry mechanical constraints and proton delivery sequence. METHODS SPArc delivery sequence model (DSMarc) was built based on the machine-specific parameters of the prototype arc delivery system, IBA ProteusONE®, including mechanical constraint (maximum gantry speed, acceleration, and deceleration) and proton delivery sequence (energy and spot delivery sequence, and irradiation time). SPArcDMPO resamples and adjusts each control point's delivery speed based on the DSMarc calculation through the iterative approach. In SPArcDMPO, users could set a reasonable arc delivery time during the plan optimization, which aims to minimize the gantry momentum changes and improve the delivery efficiency. Ten cases were selected to test SPArcDMPO. Two kinds of SPArc plans were generated using the same planning objective functions: (1) original SPArc plan (SPArcoriginal); (2) SPArcDMPO plan with a user-pre-defined delivery time. Additionally, arc delivery sequence was simulated based on the DSMarc and was compared. Treatment delivery time was compared between SPArcoriginal and SPArcDMPO. Dynamic arc delivery time, the static irradiation time, and its corresponding time differential (time differential = dynamic arc delivery time-static irradiation time) were analyzed, respectively. The total gantry velocity change was accumulated throughout the treatment delivery. RESULTS With a similar plan quality, objective value, number of energy layers, and spots, both SPArcoriginal and SPArcDMPO plans could be delivered continuously within the ± 1 degree tolerance window. However, compared to the SPArcoriginal, the strategy of SPArcDMPO is able to reduce the time differential from 30.55 ± 11.42%(90 ± 32 s) to 14.67 ± 6.97%(42 ± 20 s), p < 0.01. Furthermore, the corresponding total variations of gantry velocity during dynamic arc delivery are mitigated (SPArcoriginal vs. SPArcDMPO) from 14.73 ± 9.14 degree/s to 4.28 ± 2.42 degree/s, p < 0.01. Consequently, the SPArcDMPO plans could minimize the gantry momentum change based on the clinical user's input compared to the SPArcoriginal plans, which could help relieve the mechanical challenge of accelerating or decelerating the massive proton gantry. CONCLUSIONS For the first time, clinical users not only could generate a SPArc plan meeting the mechanical constraint of their proton system but also directly control the arc treatment speed and momentum changes of the gantry during the plan optimization process. This work paved the way for the routine clinical implementation of proton arc therapy in the treatment planning system.
Collapse
Affiliation(s)
- Gang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingkun Fan
- School of Mathematics and Statistics, Wuhan University, Wuhan, China
| | - Lewei Zhao
- Department of Radiation Oncology, Stanford University, California, USA
| | - Peilin Liu
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
| | - Xiaoda Cong
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
| | - Di Yan
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
| | - Xiaoqiang Li
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
| | - Xuanfeng Ding
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
| |
Collapse
|
6
|
Li W, Lin Y, Li HH, Shen X, Chen RC, Gao H. Biological optimization for hybrid proton-photon radiotherapy. Phys Med Biol 2024; 69:10.1088/1361-6560/ad4d51. [PMID: 38759678 PMCID: PMC11260294 DOI: 10.1088/1361-6560/ad4d51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
Objective.Hybrid proton-photon radiotherapy (RT) is a cancer treatment option to broaden access to proton RT. Additionally, with a refined treatment planning method, hybrid RT has the potential to offer superior plan quality compared to proton-only or photon-only RT, particularly in terms of target coverage and sparing organs-at-risk (OARs), when considering robustness to setup and range uncertainties. However, there is a concern regarding the underestimation of the biological effect of protons on OARs, especially those in close proximity to targets. This study seeks to develop a hybrid treatment planning method with biological dose optimization, suitable for clinical implementation on existing proton and photon machines, with each photon or proton treatment fraction delivering a uniform target dose.Approach.The proposed hybrid biological dose optimization method optimized proton and photon plan variables, along with the number of fractions for each modality, minimizing biological dose to the OARs and surrounding normal tissues. To mitigate underestimation of hot biological dose spots, proton biological dose was minimized within a ring structure surrounding the target. Hybrid plans were designed to be deliverable separately and robustly on existing proton and photon machines, with enforced uniform target dose constraints for the proton and photon fraction doses. A probabilistic formulation was utilized for robust optimization of setup and range uncertainties for protons and photons. The nonconvex optimization problem, arising from minimum monitor unit constraint and dose-volume histogram constraints, was solved using an iterative convex relaxation method.Main results.Hybrid planning with biological dose optimization effectively eliminated hot spots of biological dose, particularly in normal tissues surrounding the target, outperforming proton-only planning. It also provided superior overall plan quality and OAR sparing compared to proton-only or photon-only planning strategies.Significance.This study presents a novel hybrid biological treatment planning method capable of generating plans with reduced biological hot spots, superior plan quality to proton-only or photon-only plans, and clinical deliverability on existing proton and photon machines, separately and robustly.
Collapse
Affiliation(s)
- Wangyao Li
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Yuting Lin
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Harold H Li
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Xinglei Shen
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Ronald C Chen
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Hao Gao
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| |
Collapse
|
7
|
Holtzman AL, Mohammadi H, Furutani KM, Koffler DM, McGee LA, Lester SC, Gamez ME, Routman DM, Beltran CJ, Liang X. Impact of Relative Biologic Effectiveness for Proton Therapy for Head and Neck and Skull-Base Tumors: A Technical and Clinical Review. Cancers (Basel) 2024; 16:1947. [PMID: 38893068 PMCID: PMC11171304 DOI: 10.3390/cancers16111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Proton therapy has emerged as a crucial tool in the treatment of head and neck and skull-base cancers, offering advantages over photon therapy in terms of decreasing integral dose and reducing acute and late toxicities, such as dysgeusia, feeding tube dependence, xerostomia, secondary malignancies, and neurocognitive dysfunction. Despite its benefits in dose distribution and biological effectiveness, the application of proton therapy is challenged by uncertainties in its relative biological effectiveness (RBE). Overcoming the challenges related to RBE is key to fully realizing proton therapy's potential, which extends beyond its physical dosimetric properties when compared with photon-based therapies. In this paper, we discuss the clinical significance of RBE within treatment volumes and adjacent serial organs at risk in the management of head and neck and skull-base tumors. We review proton RBE uncertainties and its modeling and explore clinical outcomes. Additionally, we highlight technological advancements and innovations in plan optimization and treatment delivery, including linear energy transfer/RBE optimizations and the development of spot-scanning proton arc therapy. These advancements show promise in harnessing the full capabilities of proton therapy from an academic standpoint, further technological innovations and clinical outcome studies, however, are needed for their integration into routine clinical practice.
Collapse
Affiliation(s)
- Adam L. Holtzman
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Homan Mohammadi
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Keith M. Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Daniel M. Koffler
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lisa A. McGee
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Scott C. Lester
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mauricio E. Gamez
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - David M. Routman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chris J. Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
8
|
Tattenberg S, Liu P, Mulhem A, Cong X, Thome C, Ding X. Impact of and interplay between proton arc therapy and range uncertainties in proton therapy for head-and-neck cancer. Phys Med Biol 2024; 69:055015. [PMID: 38324904 DOI: 10.1088/1361-6560/ad2718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Objective. Proton therapy reduces the integral dose to the patient compared to conventional photon treatments. However,in vivoproton range uncertainties remain a considerable hurdle. Range uncertainty reduction benefits depend on clinical practices. During intensity-modulated proton therapy (IMPT), the target is irradiated from only a few directions, but proton arc therapy (PAT), for which the target is irradiated from dozens of angles, may see clinical implementation by the time considerable range uncertainty reductions are achieved. It is therefore crucial to determine the impact of PAT on range uncertainty reduction benefits.Approach. For twenty head-and-neck cancer patients, four different treatment plans were created: an IMPT and a PAT treatment plan assuming current clinical range uncertainties of 3.5% (IMPT3.5%and PAT3.5%), and an IMPT and a PAT treatment plan assuming that range uncertainties can be reduced to 1% (IMPT1%and PAT1%). Plans were evaluated with respect to target coverage and organ-at-risk doses as well as normal tissue complication probabilities (NTCPs) for parotid glands (endpoint: parotid gland flow <25%) and larynx (endpoint: larynx edema).Main results. Implementation of PAT (IMPT3.5%-PAT3.5%) reduced mean NTCPs in the nominal and worst-case scenario by 3.2 percentage points (pp) and 4.2 pp, respectively. Reducing range uncertainties from 3.5% to 1% during use of IMPT (IMPT3.5%-IMPT1%) reduced evaluated NTCPs by 0.9 pp and 2.0 pp. Benefits of range uncertainty reductions subsequently to PAT implementation (PAT3.5%-PAT1%) were 0.2 pp and 1.0 pp, with considerably higher benefits in bilateral compared to unilateral cases.Significance. The mean clinical benefit of implementing PAT was more than twice as high as the benefit of a 3.5%-1% range uncertainty reduction. Range uncertainty reductions are expected to remain beneficial even after PAT implementation, especially in cases with target positions allowing for full leveraging of the higher number of gantry angles during PAT.
Collapse
Affiliation(s)
- Sebastian Tattenberg
- Laurentian University, Sudbury P3E 2C6, Ontario, Canada
- Northern Ontario School of Medicine University, Sudbury P3E 2C6, Ontario, Canada
- TRIUMF, 4004 Wesbrook Mall, Vancouver V6T 2A3, British Columbia, Canada
| | - Peilin Liu
- Department of Radiation Oncology, William Beaumont University Hospital, Corewell Health, 3601 W 13 Mile Road, MI, United States of America
| | - Anthony Mulhem
- Department of Radiation Oncology, William Beaumont University Hospital, Corewell Health, 3601 W 13 Mile Road, MI, United States of America
- Department of Human Biology, Michigan State University, Natural Science Building, 288 Farm Ln, East Lansing, MI 48824, United States of America
| | - Xiaoda Cong
- Department of Radiation Oncology, William Beaumont University Hospital, Corewell Health, 3601 W 13 Mile Road, MI, United States of America
| | - Christopher Thome
- Laurentian University, Sudbury P3E 2C6, Ontario, Canada
- Northern Ontario School of Medicine University, Sudbury P3E 2C6, Ontario, Canada
| | - Xuanfeng Ding
- Department of Radiation Oncology, William Beaumont University Hospital, Corewell Health, 3601 W 13 Mile Road, MI, United States of America
| |
Collapse
|
9
|
Liu G, Zhao L, Li X, Zhang S, Dai S, Lu X, Ding X. A Novel Ultrahigh-Dose-Rate Proton Therapy Technology: Spot-Scanning Proton Arc Therapy + FLASH (SPLASH). Int J Radiat Oncol Biol Phys 2023; 117:730-737. [PMID: 37196836 DOI: 10.1016/j.ijrobp.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE To take full advantage of FLASH dose rate (40 Gy/s) and high-dose conformity, we introduce a novel optimization and delivery technique, the spot-scanning proton arc therapy (SPArc) + FLASH (SPLASH). METHODS AND MATERIALS SPLASH framework was implemented in an open-source proton planning platform (MatRad, Department of Medical Physics in Radiation Oncology, German Cancer Research Center). It optimizes with the clinical dose-volume constraint based on dose distribution and the dose-average dose rate by minimizing the monitor unit constraint on spot weight and accelerator beam current sequentially, enabling the first dynamic arc therapy with voxel-based FLASH dose rate. This new optimization framework minimizes the overall cost function value combined with plan quality and voxel-based dose-rate constraints. Three representative cases (brain, liver, and prostate cancer) were used for testing purposes. Dose-volume histogram, dose-rate-volume histogram, and dose-rate map were compared among intensity modulated proton radiation therapy (IMPT), SPArc, and SPLASH. RESULTS SPLASH/SPArc could offer superior plan quality over IMPT in terms of dose conformity. The dose-rate-volume histogram results indicated SPLASH could significantly improve V40 Gy/s in the target and region of interest for all tested cases compared with SPArc and IMPT. The optimal beam current per spot is simultaneously generated, which is within the existing proton machine specifications in the research version (<200 nA). CONCLUSIONS SPLASH offers the first voxel-based ultradose-rate and high-dose conformity treatment using proton beam therapy. Such a technique has the potential to fit the needs of a broad range of disease sites and simplify clinical workflow without applying a patient-specific ridge filter, which has never before been demonstrated.
Collapse
Affiliation(s)
- Gang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023 China.
| | - Lewei Zhao
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Xiaoqiang Li
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023 China.
| | - Shuyang Dai
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072 China
| | - Xiliang Lu
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072 China
| | - Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan.
| |
Collapse
|
10
|
Sokol O, Durante M. Carbon Ions for Hypoxic Tumors: Are We Making the Most of Them? Cancers (Basel) 2023; 15:4494. [PMID: 37760464 PMCID: PMC10526811 DOI: 10.3390/cancers15184494] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Hypoxia, which is associated with abnormal vessel growth, is a characteristic feature of many solid tumors that increases their metastatic potential and resistance to radiotherapy. Carbon-ion radiation therapy, either alone or in combination with other treatments, is one of the most promising treatments for hypoxic tumors because the oxygen enhancement ratio decreases with increasing particle LET. Nevertheless, current clinical practice does not yet fully benefit from the use of carbon ions to tackle hypoxia. Here, we provide an overview of the existing experimental and clinical evidence supporting the efficacy of C-ion radiotherapy in overcoming hypoxia-induced radioresistance, followed by a discussion of the strategies proposed to enhance it, including different approaches to maximize LET in the tumors.
Collapse
Affiliation(s)
- Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
11
|
Henjum H, Tjelta J, Fjæra LF, Pilskog S, Stokkevåg CH, Lyngholm E, Handeland AH, Ytre-Hauge KS. Influence of beam pruning techniques on LET and RBE in proton arc therapy. Front Oncol 2023; 13:1155310. [PMID: 37731633 PMCID: PMC10508957 DOI: 10.3389/fonc.2023.1155310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Proton arc therapy (PAT) is an emerging treatment modality that holds promise to improve target volume coverage and reduce linear energy transfer (LET) in organs at risk. We aimed to investigate if pruning the highest energy layers in each beam direction could increase the LET in the target and reduce LET in tissue and organs at risk (OAR) surrounding the target volume, thus reducing the relative biological effectiveness (RBE)-weighted dose and sparing healthy tissue. Methods PAT plans for a germinoma, an ependymoma and a rhabdomyosarcoma patient were created in the Eclipse treatment planning system with a prescribed dose of 54 Gy(RBE) using a constant RBE of 1.1 (RBE1.1). The PAT plans was pruned for high energy spots, creating several PAT plans with different amounts of pruning while maintaining tumor coverage, denoted PX-PAT plans, where X represents the amount of pruning. All plans were recalculated in the FLUKA Monte Carlo software, and the LET, physical dose, and variable RBE-weighted dose from the phenomenological Rørvik (ROR) model and an LET weighted dose (LWD) model were evaluated. Results and discussion For the germinoma case, all plans but the P6-PAT reduced the mean RBE-weighted dose to the surrounding healthy tissue compared to the PAT plan. The LET was increasingly higher within the PTV for each pruning iteration, where the mean LET from the P6-PAT plan was 1.5 keV / μm higher than for the PAT plan, while the P4- and P5-PAT plans provided an increase of 0.4 and 0.7 keV / μm , respectively. The other plans increased the LET by a smaller margin compared to the PAT plan. Likewise, the LET values to the healthy tissue were reduced for each degree of pruning. Similar results were found for the ependymoma and the rhabdomyosarcoma case. We demonstrated a PAT pruning technique that can increase both LET and RBE in the target volume and at the same time decreased values in healthy tissue, without affecting the target volume dose coverage.
Collapse
Affiliation(s)
- Helge Henjum
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Johannes Tjelta
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Lars Fredrik Fjæra
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Sara Pilskog
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Camilla H. Stokkevåg
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Erlend Lyngholm
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Andreas H. Handeland
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
12
|
Engwall E, Marthin O, Wase V, Sundström J, Mikhalev V, de Jong BA, Langendijk JA, Melbéus H, Andersson B, Korevaar EW, Both S, Bokrantz R, Glimelius L, Fredriksson A. Partitioning of discrete proton arcs into interlaced subplans can bring proton arc advances to existing proton facilities. Med Phys 2023; 50:5723-5733. [PMID: 37482909 DOI: 10.1002/mp.16617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Proton arcs have shown potential to reduce the dose to organs at risks (OARs) by delivering the protons from many different directions. While most previous studies have been focused on dynamic arcs (delivery during rotation), an alternative approach is discrete arcs, where step-and-shoot delivery is used over a large number of beam directions. The major advantage of discrete arcs is that they can be delivered at existing proton facilities. However, this advantage comes at the expense of longer treatment times. PURPOSE To exploit the dosimetric advantages of proton arcs, while achieving reasonable delivery times, we propose a partitioning approach where discrete arc plans are split into subplans to be delivered over different fractions in the treatment course. METHODS For three oropharyngeal cancer patients, four different arc plans have been created and compared to the corresponding clinical IMPT plan. The treatment plans are all planned to be delivered in 35 fractions, but with different delivery approaches over the fractions. The first arc plan (1×30) has 30 directions to be delivered every fraction, while the others are partitioned into subplans with 10 and 6 beam directions, each to be delivered every third (3×10), fifth fraction (5×6), or seventh fraction (7×10). All plans are assessed with respect to delivery time, target robustness over the treatment course, doses to OARs and NTCP for dysphagia and xerostomia. RESULTS The delivery time (including an additional delay of 30 s between the discrete directions to simulate manual interaction with the treatment control system) is reduced from on average 25.2 min for the 1×30 plan to 9.2 min for the 3×10 and 7×10 plans and 5.7 min for the 5×6 plans. The delivery time for the IMPT plan is 7.9 min. When accounting for the combination of delivery time, target robustness, OAR sparing, and NTCP reduction, the plans with 10 directions in each fraction are the preferred choice. Both the 3×10 and 7×10 plans show improved target robustness compared to the 1×30 plans, while keeping OAR doses and NTCP values at almost as low levels as for the 1×30 plans. For all patients the NTCP values for dysphagia are lower for the partitioned plans with 10 directions compared to the IMPT plans. NTCP reduction for xerostomia compared to IMPT is seen in two of the three patients. The best results are seen for the first patient, where the NTCP reductions for the 7×10 plan are 1.6 p.p. (grade 2 xerostomia) and 1.5 p.p. (grade 2 dysphagia). The corresponding NTCP reductions for the 1×30 plan are 2.7 p.p. (xerostomia, grade 2) and 2.0 p.p. (dysphagia, grade 2). CONCLUSIONS Discrete proton arcs can be implemented at any proton facility with reasonable treatment times using a partitioning approach. The technique also makes the proton arc treatments more robust to changes in the patient anatomy.
Collapse
Affiliation(s)
| | | | | | | | | | - Bas A de Jong
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | - Erik W Korevaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
13
|
McIntyre M, Wilson P, Gorayski P, Bezak E. A Systematic Review of LET-Guided Treatment Plan Optimisation in Proton Therapy: Identifying the Current State and Future Needs. Cancers (Basel) 2023; 15:4268. [PMID: 37686544 PMCID: PMC10486456 DOI: 10.3390/cancers15174268] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The well-known clinical benefits of proton therapy are achieved through higher target-conformality and normal tissue sparing than conventional radiotherapy. However, there is an increased sensitivity to uncertainties in patient motion/setup, proton range and radiobiological effect. Although recent efforts have mitigated some uncertainties, radiobiological effect remains unresolved due to a lack of clinical data for relevant endpoints. Therefore, RBE optimisations may be currently unsuitable for clinical treatment planning. LET optimisation is a novel method that substitutes RBE with LET, shifting LET hotspots outside critical structures. This review outlines the current status of LET optimisation in proton therapy, highlighting knowledge gaps and possible future research. Following the PRISMA 2020 guidelines, a search of the MEDLINE® and Scopus databases was performed in July 2023, identifying 70 relevant articles. Generally, LET optimisation methods achieved their treatment objectives; however, clinical benefit is patient-dependent. Inconsistencies in the reported data suggest further testing is required to identify therapeutically favourable methods. We discuss the methods which are suitable for near-future clinical deployment, with fast computation times and compatibility with existing treatment protocols. Although there is some clinical evidence of a correlation between high LET and adverse effects, further developments are needed to inform future patient selection protocols for widespread application of LET optimisation in proton therapy.
Collapse
Affiliation(s)
- Melissa McIntyre
- Allied Health & Human Performance Academic Unit, University of South Australia, Adelaide, SA 5000, Australia
| | - Puthenparampil Wilson
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- UniSA STEM, University of South Australia, Adelaide, SA 5000, Australia
| | - Peter Gorayski
- Allied Health & Human Performance Academic Unit, University of South Australia, Adelaide, SA 5000, Australia
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, SA 5000, Australia
| | - Eva Bezak
- Allied Health & Human Performance Academic Unit, University of South Australia, Adelaide, SA 5000, Australia
- Department of Physics, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
14
|
Li W, Lin Y, Li H, Rotondo R, Gao H. An iterative convex relaxation method for proton LET optimization. Phys Med Biol 2023; 68:10.1088/1361-6560/acb88d. [PMID: 36731144 PMCID: PMC10037460 DOI: 10.1088/1361-6560/acb88d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
Objective:A constant relative biological effectiveness of 1.1 in current clinical practice of proton radiotherapy (RT) is a crude approximation and may severely underestimate the biological dose from proton RT to normal tissues, especially near the treatment target at the end of Bragg peaks that exhibits high linear energy transfer (LET). LET optimization can account for biological effectiveness of protons during treatment planning, for minimizing biological proton dose and hot spots to normal tissues. However, the LET optimization is usually nonlinear and nonconvex to solve, for which this work will develop an effective optimization method based on iterative convex relaxation (ICR).Approach: In contrast to the generic nonlinear optimization method, such as Quasi-Newton (QN) method, that does not account for specific characteristics of LET optimization, ICR is tailored to LET modeling and optimization in order to effectively and efficiently solve the LET problem. Specifically, nonlinear dose-averaged LET term is iteratively linearized and becomes convex during ICR, while nonconvex dose-volume constraint and minimum-monitor-unit constraint are also handled by ICR, so that the solution for LET optimization is obtained by solving a sequence of convex and linearized convex subproblems. Since the high LET mostly occurs near the target, a 1 cm normal-tissue expansion of clinical target volume (CTV) (excluding CTV), i.e. CTV1cm, is defined to as an auxiliary structure during treatment planning, where LET is minimized.Main results: ICR was validated in comparison with QN for abdomen, lung, and head-and-neck cases. ICR was effective for LET optimization, as ICR substantially reduced the LET and biological dose in CTV1cm the ring, with preserved dose conformality to CTV. Compared to QN, ICR had smaller LET, physical and biological dose in CTV1cm, and higher conformity index values; ICR was also computationally more efficient, which was about 3 times faster than QN.Significance: A LET-specific optimization method based on ICR has been developed for solving proton LET optimization, which has been shown to be more computationally efficient than generic nonlinear optimizer via QN, with better plan quality in terms of LET, biological and physical dose conformality.
Collapse
Affiliation(s)
- Wangyao Li
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, KS 66160, United States of America
| | - Yuting Lin
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, KS 66160, United States of America
| | - Harold Li
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, KS 66160, United States of America
| | - Ronny Rotondo
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, KS 66160, United States of America
| | - Hao Gao
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, KS 66160, United States of America
| |
Collapse
|
15
|
Zhao L, Liu G, Li X, Ding X. An evolutionary optimization algorithm for proton arc therapy. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Proton arc plan normally contains thousands of spot numbers and hundreds of energy layers. A recent study reported that the beam delivery time (BDT) is proportional to the spot numbers. Thus, it is critical to find an optimal plan with a fast delivery speed while maintaining a good plan quality. Thus, we developed a novel evolutionary algorithm to directly search for the optimal spot sparsity solution to balance plan quality and BDT. Approach. The planning platform included a plan quality objective, a generator, and a selector. The generator is based on trust-region-reflective solver. A selector was designed to filter or add the spot according to the expected spot number, based on the user’s input of BDT. The generator and selector are used alternatively to optimize a spot sparsity solution. Three clinical cases’ CT and structure datasets, e.g. brain, lung, and liver cancer, were used for testing purposes. A series of user-defined BDTs from 15 to 250 s were used as direct inputs. The relationship between the plan’s cost function value and BDT was evaluated in these three cases. Main results. The evolutionary algorithm could optimize a proton arc plan based on clinical user input BDT directly. The plan quality remains optimal in the brain, lung, and liver cases until the BDT was shorter than 25 s, 50 s and 100 s, respectively. The plan quality degraded as the input delivery time became too short, indicating that the plan lacked enough spot or degree of freedom. Significance. This is the first proton arc planning framework to directly optimize plan quality with the BDT as an input for the new generation of proton therapy systems. This work paved the roadmap for implementing such new technology in a routine clinic and provided a planning platform to explore the trade-off between the BDT and plan quality.
Collapse
|
16
|
Cao W, Rocha H, Mohan R, Lim G, Goudarzi HM, Ferreira BC, Dias JM. Reflections on beam configuration optimization for intensity-modulated proton therapy. Phys Med Biol 2022; 67:10.1088/1361-6560/ac6fac. [PMID: 35561700 PMCID: PMC11827663 DOI: 10.1088/1361-6560/ac6fac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Presumably, intensity-modulated proton radiotherapy (IMPT) is the most powerful form of proton radiotherapy. In the current state of the art, IMPT beam configurations (i.e. the number of beams and their directions) are, in general, chosen subjectively based on prior experience and practicality. Beam configuration optimization (BCO) for IMPT could, in theory, significantly enhance IMPT's therapeutic potential. However, BCO is complex and highly computer resource-intensive. Some algorithms for BCO have been developed for intensity-modulated photon therapy (IMRT). They are rarely used clinically mainly because the large number of beams typically employed in IMRT renders BCO essentially unnecessary. Moreover, in the newer form of IMRT, volumetric modulated arc therapy, there are no individual static beams. BCO is of greater importance for IMPT because it typically employs a very small number of beams (2-4) and, when the number of beams is small, BCO is critical for improving plan quality. However, the unique properties and requirements of protons, particularly in IMPT, make BCO challenging. Protons are more sensitive than photons to anatomic changes, exhibit variable relative biological effectiveness along their paths, and, as recently discovered, may spare the immune system. Such factors must be considered in IMPT BCO, though doing so would make BCO more resource intensive and make it more challenging to extend BCO algorithms developed for IMRT to IMPT. A limited amount of research in IMPT BCO has been conducted; however, considerable additional work is needed for its further development to make it truly effective and computationally practical. This article aims to provide a review of existing BCO algorithms, most of which were developed for IMRT, and addresses important requirements specific to BCO for IMPT optimization that necessitate the modification of existing approaches or the development of new effective and efficient ones.
Collapse
Affiliation(s)
- Wenhua Cao
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Humberto Rocha
- University of Coimbra, CeBER, Faculty of Economics, Coimbra, Portugal
- University of Coimbra, INESC Coimbra, Coimbra, Portugal
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Gino Lim
- Department of Industrial Engineering, University of Houston, Houston, United States of America
| | - Hadis M Goudarzi
- Department of Industrial Engineering, University of Houston, Houston, United States of America
| | - Brígida C Ferreira
- University of Coimbra, INESC Coimbra, Coimbra, Portugal
- Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Joana M Dias
- University of Coimbra, CeBER, Faculty of Economics, Coimbra, Portugal
- University of Coimbra, INESC Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Mein S, Kopp B, Tessonnier T, Liermann J, Abdollahi A, Debus J, Haberer T, Mairani A. Spot-scanning hadron arc (SHArc) therapy: A proof of concept using single and multi-ion strategies with helium, carbon, oxygen and neon ions. Med Phys 2022; 49:6082-6097. [PMID: 35717613 DOI: 10.1002/mp.15800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To present particle arc therapy treatments using single and multi-ion therapy optimization strategies with helium (4 He), carbon (12 C), oxygen (16 O) and neon (20 Ne) ion beams. METHODS AND MATERIALS An optimization procedure and workflow were devised for spot-scanning hadron arc therapy (SHArc) treatment planning in the PRECISE (PaRticle thErapy using single and Combined Ion optimization StratEgies) treatment planning system (TPS). Physical and biological beam models were developed for helium, carbon, oxygen and neon ions via FLUKA MC simulation. SHArc treatments were optimized using both single ion (12 C, 16 O, or 20 Ne) and multi-ion therapy (16 O+4 He or 20 Ne+4 He) applying variable relative biological effectiveness (RBE) modeling using a modified microdosimetric kinetic model (mMKM) with (α/β)x values of 2Gy, 5Gy and 3.1Gy respectively, for glioblastoma, pancreatic adenocarcinoma, and prostate adenocarcinoma patient cases. Dose, effective dose, linear energy transfer (LET) and RBE were computed with the GPU-accelerated dose engine FRoG and dosimetric/biophysical attributes were evaluated in the context of conventional particle and photon-based therapies (e.g., volumetric modulated arc therapy [VMAT]). RESULTS All SHArc plans met the target optimization goals (3GyRBE) and demonstrated increased target conformity and substantially lower low-dose bath to surrounding normal tissues than VMAT. SHArc plans using a single ion species (12 C, 16 O, or 20 Ne) exhibited favorable LET distributions with the highest-LET components centralized in the target volume, with values ranging from ∼80-170keV/μm, ∼130-220keV/μm and ∼180-350keV/μm, for 12 C, 16 O, or 20 Ne, respectively, exceeding mean target LET of conventional particle therapy (12 C:∼60, 16 O:∼78 20 Ne:∼100 keV/μm). Multi-ion therapy with SHArc delivery (SHArcMIT ) provided a similar level of target LET enhancement as SHArc compared to conventional planning, however, with additional benefits of homogenous physical dose and RBE distributions. CONCLUSION Here, we demonstrate that arc delivery of light and heavy ion beams, using either a single ion species (12 C, 16 O, or 20 Ne) or combining two ions in a single fraction (16 O+4 He or 20 Ne+4 He), affords enhanced physical and biological distributions (e.g., LET) compared with conventional delivery with photons or particle beams. SHArc marks the first single and multi-ion arc therapy treatment optimization approach using light and heavy ions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, 69120, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Benedikt Kopp
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany
| | - Jakob Liermann
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, 69120, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Amir Abdollahi
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, 69120, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, 69120, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, 69120, Germany.,National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, 27100, Italy
| |
Collapse
|
18
|
Deraniyagala R, Ding X, Alonso-Basanta M, Li T, Rong Y. It is beneficial to invest resources to implement proton intracranial SRS. J Appl Clin Med Phys 2022; 23:e13701. [PMID: 35713887 PMCID: PMC9278676 DOI: 10.1002/acm2.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Rohan Deraniyagala
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan, USA
| | - Xuanfeng Ding
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan, USA
| | - Michelle Alonso-Basanta
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Taoran Li
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| |
Collapse
|
19
|
Engwall E, Battinelli C, Wase V, Marthin O, Glimelius L, Bokrantz R, Andersson B, Fredriksson A. Fast robust optimization of proton PBS arc therapy plans using early energy layer selection and spot assignment. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac55a6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/16/2022] [Indexed: 12/31/2022]
Abstract
Abstract
Objective. Proton pencil-beam scanning arcs (PBS arcs) have gained much attention during the past years, due to its potential for increased clinical benefit compared to conventional proton therapy. Previous studies on PBS arcs have primarily been focused on plan quality, and lately efforts have been made to reduce the delivery time. However, the methods presented so far suffer from slow optimization processes. Approach. We present a new method for fast robust optimization of PBS arc plans. The new method assigns a single energy layer per discretized direction prior to spot weight optimization and reduces the number of initial spots considerably compared to conventional methods. We used the new method for three prostate cancer patients with a prescribed dose to the CTV of 77 GyRBE in 35 fractions. For each of the patients, four plans were created: 2-beam IMPT (2IMPT), 1-beam PBS arc (1Arc), 1-beam PBS arc without focus on reducing upward energy jumps (1Arc_unseq) and two-beam PBS arc (2Arc). Main results. All PBS arc plans show a reduced integral dose compared to their respective 2IMPT plans. In the nominal case, the average CTV D98 and D2 metrics over the three patients were best for the 2Arc, followed by 2IMPT (
D
98
¯
/
D
2
¯
:
7523/7986 cGyRBE (2IMPT), 7478/7984 cGy (1Arc), 7486/7951 cGy (1Arc_unseq), 7531/7951 cGyRBE (2Arc)). The average robust target coverage in terms of V95 of the voxelwise minimum dose distribution (evaluated over 42 scenarios) was: 98.0% (2IMPT), 88.6% (1Arc), 92.5% (1Arc_unseq), 97.3% (2Arc). The optimization time, including spot selection and spot dose computation, is longest for the 2Arc plan, but is below 6 min for all patients. The maximum estimated delivery time for all types of arc plans is just above 5 min Significance. The ability for efficient treatment planning constitutes an important step towards clinical introduction of proton PBS arcs.
Collapse
|
20
|
Liu P, Gao XS, Wang Z, Li X, Xi C, Jia C, Xie M, Lyu F, Ding X. Investigate the Dosimetric and Potential Clinical Benefits Utilizing Stereotactic Body Radiation Therapy With Simultaneous Integrated Boost Technique for Locally Advanced Pancreatic Cancer: A Comparison Between Photon and Proton Beam Therapy. Front Oncol 2021; 11:747532. [PMID: 34631584 PMCID: PMC8493097 DOI: 10.3389/fonc.2021.747532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose To investigate the potential clinical benefits of using stereotactic body radiation therapy (SBRT) with simultaneous integrated boost (SIB) technique for locally advanced pancreatic cancer (LAPC) among different treatment modalities and planning strategies, including photon and proton. Method A total of 19 patients were retrospectively selected in this study: 13 cases with the tumor located in the head of the pancreas and 6 cases with the tumor in the body of the pancreas. SBRT-SIB plans were generated using volumetric modulated arc therapy (VMAT), two-field Intensity Modulated Proton Therapy (IMPT), and three-field IMPT. The IMPT used the robust optimization parameters of ± 3.5% range and 5-mm setup uncertainties. Root-mean-square deviation dose (RMSD) volume histograms were used to evaluate the target coverage robustness quantitatively. Dosimetric metrics based on the dose-volume histogram (DVH), homogeneity index (HI), and normal tissue complication probability (NTCP) were analyzed to evaluate the potential clinical benefits among different planning groups. Results With a similar CTV and SIB coverage, two-field IMPT provided a lower maximum dose for the stomach (median: 18.6GyE, p<0.05) and duodenum (median: 32.62GyE, p<0.05) when the target was located in the head of the pancreas compared to VMAT and three-field IMPT. The risks of gastric bleed (3.42%) and grade ≥ 3 GI toxicity (4.55%) were also decreased. However, for the target in the body of the pancreas, VMAT showed a lower maximum dose for the stomach (median 30.93GyE, p<0.05) and toxicity of gastric bleed (median: 8.67%, p<0.05) compared to two-field IMPT and three-field IMPT, while other maximum doses and NTCPs were similar. The RMSD volume histogram (RVH) analysis shows that three-field IMPT provided better robustness for targets but not for OARs. Instead, three-field IMPT increased the Dmean of organs such as the stomach, duodenum, and intestine. Conclusion The results indicated that the tumor locations could play a critical role in determining clinical benefits among different treatment modalities. Two-field IMPT could be a better option for LAPC patients whose tumors are located in the head of the pancreas. It provides lower severe toxicity for the stomach and duodenum. Nevertheless, VMAT is preferred for the body with better protection for the possibility of gastric bleed.
Collapse
Affiliation(s)
- Peilin Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Xian-Shu Gao
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Zishen Wang
- Department of Radiation Oncology, Hebei Yizhou Tumor Hospital, Zhuozhou, China
| | - Xiaomei Li
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Cao Xi
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Chenghao Jia
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Mu Xie
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Feng Lyu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, United States
| |
Collapse
|