1
|
Li M, Jiang S, Zhou S, Chen W, Xiao Y, Fu Y, Feng F, Xu G. Radiomics-based assessment of HER2 status and prognosis in gastric cancer: a retrospective dual-center CT study. Abdom Radiol (NY) 2025:10.1007/s00261-025-04912-0. [PMID: 40195138 DOI: 10.1007/s00261-025-04912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/01/2025] [Accepted: 03/23/2025] [Indexed: 04/09/2025]
Abstract
PURPOSE This research investigated the potential of CT-based radiomics analysis for predicting human epidermal growth factor receptor 2 (HER2) status and assessing the prognosis of patients with gastric cancer (GC). METHODS 431 patients with GC from two medical centers were included in this retrospective study, with patients allocated to a training cohort (n = 221), a testing cohort (n = 94), and an external validation cohort (n = 116). Radiomics features and clinical variables associated with HER2 status were identified, and the radiomics score was subsequently derived. A radiomics model was constructed using the radiomics score, and a nomogram was developed by integrating related variables. The predictive accuracy of models was assessed via receiver operating characteristic curves, with the area under the curve (AUC) being computed. Prognostic significance was assessed by exploring the association between nomogram-predicted HER2 status and overall survival (OS). RESULTS The radiomics model yielded AUCs of 0.801, 0.793, and 0.784 for the training, testing, and external validation cohorts, respectively. A nomogram that integrated sex, CA72-4 levels, and radiomics score exhibited enhanced predictive accuracy, achieving AUCs of 0.847, 0.836, and 0.828 across the cohorts. Decision curve analysis highlighted the clinical utility of the nomogram, illustrating its ability to deliver a higher net benefit. In addition, survival analysis indicated that individuals with nomogram-predicted HER2 positivity experienced significantly shorter OS, providing robust risk stratification and prognostic insights. CONCLUSION The CT-based radiomics nomogram demonstrated the ability to non-invasively predict preoperative HER2 status and stratify prognostic risk in this GC cohort.
Collapse
Affiliation(s)
- Manman Li
- The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, China
| | - Shu Jiang
- The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, China
| | - Siyu Zhou
- Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Wang Chen
- The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, China
| | - Yong Xiao
- The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, China
| | - Yigang Fu
- The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, China
| | - Feng Feng
- Affiliated Tumor Hospital of Nantong University, Nantong, China.
| | - Guodong Xu
- The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, China.
- the Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
2
|
Zheng HD, Tian YC, Huang QY, Huang QM, Ke XT, Xu JH, Liang XY, Lin S, Ye K. Enhancing lymph node metastasis prediction in adenocarcinoma of the esophagogastric junction: A study combining radiomic with clinical features. Med Phys 2024; 51:9057-9070. [PMID: 39207288 DOI: 10.1002/mp.17374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The incidence of adenocarcinoma of the esophagogastric junction (AEJ) is increasing, and with poor prognosis. Lymph node status (LNs) is particularly important for planning treatment and evaluating the prognosis of patients with AEJ. However, the use of radiomic based on enhanced computed tomography (CT) to predict the preoperative lymph node metastasis (PLNM) status of the AEJ has yet to be reported. PURPOSE We sought to investigate the value of radiomic features based on enhanced CT in the accurate prediction of PLNM in patients with AEJ. METHODS Clinical features and enhanced CT data of 235 patients with AEJ from October 2017 to May 2023 were retrospectively analyzed. The data were randomly assigned to the training cohort (n = 164) or the external testing cohort (n = 71) at a ratio of 7:3. A CT-report model, clinical model, radiomic model, and radiomic-clinical combined model were developed to predict PLNM in patients with AEJ. Univariate and multivariate logistic regression were used to screen for independent clinical risk factors. Least absolute shrinkage and selection operator (LASSO) regression was used to select the radiomic features. Finally, a nomogram for the preoperative prediction of PLNM in AEJ was constructed by combining Radiomics-score and clinical risk factors. The models were evaluated by area under the receiver operating characteristic curve (AUC-ROC), calibration curve, and decision curve analyses. RESULTS A total of 181 patients (181/235, 77.02%) had LNM. In the testing cohort, the AUC of the radiomic-clinical model was 0.863 [95% confidence interval (CI) = 0.738-0.957], and the radiomic model (0.816; 95% CI = 0.681-0.929), clinical model (0.792; 95% CI = 0.677-0.888), and CT-report model (0.755; 95% CI = 0.647-0.840). CONCLUSION The radiomic-clinical model is a feasible method for predicting PLNM in patients with AEJ, helping to guide clinical decision-making and personalized treatment planning.
Collapse
Affiliation(s)
- Hui-da Zheng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yu-Chi Tian
- Institute of Research and Clinical Innovations, Neusoft Medical Systems Co., Ltd, Shenyang, China
| | - Qiao-Yi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Qi-Ming Huang
- Department of CT/MRI, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xiao-Ting Ke
- Department of CT/MRI, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jian-Hua Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xiao-Yun Liang
- Institute of Research and Clinical Innovations, Neusoft Medical Systems Co., Ltd, Shenyang, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Kai Ye
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
3
|
Chen D, Zhou R, Li B. Preoperative Prediction of Her-2 and Ki-67 Status in Gastric Cancer Using 18F-FDG PET/CT Radiomics Features of Visceral Adipose Tissue. Br J Hosp Med (Lond) 2024; 85:1-18. [PMID: 39347666 DOI: 10.12968/hmed.2024.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Aims/Background Immunohistochemistry (IHC) is the main method to detect human epidermal growth factor receptor 2 (Her-2) and Ki-67 expression levels. However, IHC is invasive and cannot reflect their expression status in real-time. This study aimed to build radiomics models based on visceral adipose tissue (VAT)'s 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) imaging, and to evaluate the relationship between radiomics features of VAT and positive expression of Her-2 and Ki-67 in gastric cancer (GC). Methods Ninety patients with GC were enrolled in this study. 18F-FDG PET/CT radiomics features were calculated using the PyRadiomics package. Two methods were employed to reduce radiomics features. The machine learning models, logistic regression (LR), and support vector machine (SVM), were constructed and estimated by the receiver operator characteristic (ROC) curve. The correlation of outstanding features with Ki-67 and Her-2 expression status was evaluated. Results For the Ki-67 set, the area under of the receiver operator characteristic curve (AUC) and accuracy were 0.86 and 0.79 for the LR model and 0.83 and 0.69 for the SVM model. For the Her-2 set, the AUC and accuracy were 0.84 and 0.86 for the LR model and 0.65 and 0.85 for the SVM model. The LR model for Ki-67 exhibited outstanding prediction performance. Three wavelet transform features were correlated with Her-2 expression status (p all < 0.001), and one wavelet transform feature was correlated with the expression status of Ki-67 (p = 0.042). Conclusion 18F-FDG PET/CT-based radiomics models of VAT demonstrate good performance in predicting Her-2 and Ki-67 expression status in patients with GC. Radiomics features can be used as imaging biomarkers for GC.
Collapse
Affiliation(s)
- Demei Chen
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Rui Zhou
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Bo Li
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
4
|
Li Y, Dai WG, Lin Q, Wang Z, Xu H, Chen Y, Wang J. Predicting human epidermal growth factor receptor 2 status of patients with gastric cancer by computed tomography and clinical features. Gastroenterol Rep (Oxf) 2024; 12:goae042. [PMID: 38726026 PMCID: PMC11078894 DOI: 10.1093/gastro/goae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Background There have been no studies on predicting human epidermal growth factor receptor 2 (HER2) status in patients with resectable gastric cancer (GC) in the neoadjuvant and perioperative settings. We aimed to investigate the use of preoperative contrast-enhanced computed tomography (CECT) imaging features combined with clinical characteristics for predicting HER2 expression in GC. Methods We retrospectively enrolled 301 patients with GC who underwent curative resection and preoperative CECT. HER2 status was confirmed by postoperative immunohistochemical analysis with or without fluorescence in situ hybridization. A prediction model was developed using CECT imaging features and clinical characteristics that were independently associated with HER2 status using multivariate logistic regression analysis. Receiver operating characteristic curves were constructed and the performance of the prediction model was evaluated. The bootstrap method was used for internal validation. Results Three CECT imaging features and one serum tumor marker were independently associated with HER2 status in GC: enhancement ratio in the arterial phase (odds ratio [OR] = 4.535; 95% confidence interval [CI], 2.220-9.264), intratumoral necrosis (OR = 2.64; 95% CI, 1.180-5.258), tumor margin (OR = 3.773; 95% CI, 1.968-7.235), and cancer antigen 125 (CA125) level (OR = 5.551; 95% CI, 1.361-22.651). A prediction model derived from these variables showed an area under the receiver operating characteristic curve of 0.802 (95% CI, 0.740-0.864) for predicting HER2 status in GC. The established model was stable, and the parameters were accurately estimated. Conclusions Enhancement ratio in the arterial phase, intratumoral necrosis, tumor margin, and CA125 levels were independently associated with HER2 status in GC. The prediction model derived from these factors may be used preoperatively to estimate HER2 status in GC and guide clinical treatment.
Collapse
Affiliation(s)
- Yin Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Wei-Gang Dai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Qingyu Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zeyao Wang
- Department of Surgery, HuiYa Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Hai Xu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yuying Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jifei Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
5
|
Jiang X, Li T, Wang J, Zhang Z, Chen X, Zhang J, Zhao X. Noninvasive Assessment of HER2 Expression Status in Gastric Cancer Using 18F-FDG Positron Emission Tomography/Computed Tomography-Based Radiomics: A Pilot Study. Cancer Biother Radiopharm 2024; 39:169-177. [PMID: 38193811 DOI: 10.1089/cbr.2023.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Purpose: Immunohistochemistry (IHC) is the main method to detect human epidermal growth factor receptor 2 (HER2) expression levels. However, IHC is invasive and cannot reflect HER2 expression status in real time. The aim of this study was to construct and verify three types of radiomics models based on 18F-fuorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) imaging and to evaluate the predictive ability of these radiomics models for the expression status of HER2 in patients with gastric cancer (GC). Patients and Methods: A total of 118 patients with GC were enrolled in this study. 18F-FDG PET/CT imaging was performed prior to surgery. The LIFEx software package was applied to extract PET and CT radiomics features. The minimum absolute contraction and selection operator (least absolute shrinkage and selection operator [LASSO]) algorithm was used to select the best radiomics features. Three machine learning methods, logistic regression (LR), support vector machine (SVM), and random forest (RF) models, were constructed and verified. The Synthetic Minority Oversampling Technique (SMOTE) was applied to address data imbalance. Results: In the training and test sets, the area under the curve (AUC) values of the LR, SVM, and RF models were 0.809, 0.761, 0.861 and 0.628, 0.993, 0.717, respectively, and the Brier scores were 0.118, 0.214, and 0.143, respectively. Among the three models, the LR and RF models exhibited extremely good prediction performance. The AUC values of the three models significantly improved after SMOTE balanced the data. Conclusions: 18F-FDG PET/CT-based radiomics models, especially LR and RF models, demonstrate good performance in predicting HER2 expression status in patients with GC and can be used to preselect patients who may benefit from HER2-targeted therapy.
Collapse
Affiliation(s)
- Xiaojing Jiang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tianyue Li
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianfang Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhaoqi Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaolin Chen
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingmian Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, China
| | - Xinming Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, China
| |
Collapse
|
6
|
Yu X, Jiang W, Dong X, Yan B, Xu S, Lin Z, Zhuo S, Yan J. Nomograms integrating the collagen signature and systemic immune-inflammation index for predicting prognosis in rectal cancer patients. BJS Open 2024; 8:zrae014. [PMID: 38513282 PMCID: PMC10957166 DOI: 10.1093/bjsopen/zrae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/29/2023] [Accepted: 01/11/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND This study aimed to develop and validate a model based on the collagen signature and systemic immune-inflammation index to predict prognosis in rectal cancer patients who underwent neoadjuvant treatment. METHODS Patients with rectal cancer who had residual disease after neoadjuvant treatment at two Chinese institutions between 2010 and 2018 were selected, one used as a training cohort and the other as a validation cohort. In total, 142 fully quantitative collagen features were extracted using multiphoton imaging, and a collagen signature was generated by least absolute shrinkage and selection operator Cox regression. Nomograms were developed by multivariable Cox regression. The performance of the nomograms was assessed via calibration, discrimination and clinical usefulness. The outcomes of interest were overall survival and disease-free survival calculated at 1, 2 and 3 years. RESULTS Of 559 eligible patients, 421 were selected (238 for the training cohort and 183 for the validation cohort). The eight-collagen-features collagen signature was built and multivariable Cox analysis demonstrated that it was an independent prognostic factor of prognosis along with the systemic immune-inflammation index, lymph node status after neoadjuvant treatment stage and tumour regression grade. Then, two nomograms that included the four predictors were computed for disease-free survival and overall survival. The nomograms showed satisfactory discrimination and calibration with a C-index of 0.792 for disease-free survival and 0.788 for overall survival in the training cohort and 0.793 for disease-free survival and 0.802 for overall survival in the validation cohort. Decision curve analysis revealed that the nomograms could add more net benefit than the traditional clinical-pathological variables. CONCLUSIONS The study found that the collagen signature, systemic immune-inflammation index and nomograms were significantly associated with prognosis.
Collapse
Affiliation(s)
- Xian Yu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, P.R. China
| | - Wei Jiang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Xiaoyu Dong
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Botao Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Shuoyu Xu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zexi Lin
- School of Science, Jimei University, Xiamen, P.R. China
| | - Shuangmu Zhuo
- School of Science, Jimei University, Xiamen, P.R. China
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, P.R. China
| |
Collapse
|
7
|
Tian S, Yu R, Zhou F, Zhan N, Li J, Wang X, Peng X. Prediction of HER2 status via random forest in 3257 Chinese patients with gastric cancer. Clin Exp Med 2023; 23:5015-5024. [PMID: 37318648 DOI: 10.1007/s10238-023-01111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
The accurate evaluation of human epidermal growth factor receptor 2 (HER2) is crucial for successful trastuzumab-based therapy in individuals with gastric cancer (GC). The present study, involving a retrospective cohort (N = 2865) from Wuhan Union Hospital and a prospective cohort (N = 392) from Renmin Hospital of Wuhan University, evaluated the benefits of clinical features using random forest and logistic regression models for the detection of HER2 status in patients with GC. Patients from the Union cohort were randomly assigned to either a training (N = 2005) or an internal validation (N = 860) group. Data processing and feature selection were done in Python, which was also used to build random forest and logistic regression models for the prediction of HER2 overexpression. The Renmin cohort (N = 392) was used as the external validation group. Ten features were closely correlated with HER2 overexpression, including age, albumin/globulin ratio, globulin, activated partial thromboplastin time, tumor stage, node stage, tumor node metastasis stage, tumor size, tumor differentiation, and neuron-specific enolase (NSE). Random forest and logistic regression had areas under the curve (AUC) of 0.9995 and 0.6653 in the training group and 0.923 and 0.667 in the internal validation group, respectively. When the two predictive models were validated using data from the Renmin cohort, random forest and logistic regression had AUCs of 0.9994 and 0.627, respectively. This is the first multicenter study to predict HER2 overexpression in individuals with GC, based on clinical variables. The random forest model significantly outperformed the logistic regression model.
Collapse
Affiliation(s)
- Shan Tian
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Fangfang Zhou
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Na Zhan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Jiao Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Xia Wang
- Department of Pharmacy, The Second Affiliated Hospital of Jianghan University, No.122, Xianzheng Road, Hanyang District, Wuhan, 430050, Hubei, China.
| | - Xiulan Peng
- Department of Oncology, The Second Affiliated Hospital of Jianghan University, No.122, Xianzheng Road, Hanyang District, Wuhan, 430050, Hubei Province, China.
| |
Collapse
|
8
|
Xu ML, Zeng SE, Li F, Cui XW, Liu GF. Preoperative prediction of lymphovascular invasion in patients with T1 breast invasive ductal carcinoma based on radiomics nomogram using grayscale ultrasound. Front Oncol 2022; 12:1071677. [PMID: 36568215 PMCID: PMC9770991 DOI: 10.3389/fonc.2022.1071677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose The aim of this study was to develop a radiomics nomogram based on grayscale ultrasound (US) for preoperatively predicting Lymphovascular invasion (LVI) in patients with pathologically confirmed T1 (pT1) breast invasive ductal carcinoma (IDC). Methods One hundred and ninety-two patients with pT1 IDC between September 2020 and August 2022 were analyzed retrospectively. Study population was randomly divided in a 7: 3 ratio into a training dataset of 134 patients (37 patients with LVI-positive) and a validation dataset of 58 patients (19 patients with LVI-positive). Clinical information and conventional US (CUS) features (called clinic_CUS features) were recorded and evaluated to predict LVI. In the training dataset, independent predictors of clinic_CUS features were obtained by univariate and multivariate logistic regression analyses and incorporated into a clinic_CUS prediction model. In addition, radiomics features were extracted from the grayscale US images, and the radiomics score (Radscore) was constructed after radiomics feature selection. Subsequent multivariate logistic regression analysis was also performed for Radscore and the independent predictors of clinic_CUS features, and a radiomics nomogram was developed. The performance of the nomogram model was evaluated via its discrimination, calibration, and clinical usefulness. Results The US reported axillary lymph node metastasis (LNM) (US_LNM) status and tumor margin were determined as independent risk factors, which were combined for the construction of clinic_CUS prediction model for LVI in pT1 IDC. Moreover, tumor margin, US_LNM status and Radscore were independent predictors, incorporated as the radiomics nomogram model, which achieved a superior discrimination to the clinic_CUS model in the training dataset (AUC: 0.849 vs. 0.747; P < 0.001) and validation dataset (AUC: 0.854 vs. 0.713; P = 0.001). Calibration curve for the radiomic nomogram showed good concordance between predicted and actual probability. Furthermore, decision curve analysis (DCA) confirmed that the radiomics nomogram had higher clinical net benefit than the clinic_CUS model. Conclusion The US-based radiomics nomogram, incorporating tumor margin, US_LNM status and Radscore, showed a satisfactory preoperative prediction of LVI in pT1 IDC patients.
Collapse
Affiliation(s)
- Mao-Lin Xu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shu-E Zeng
- Department of Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Li
- Department of Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Fang Li, ; Xin-Wu Cui, ; Gui-Feng Liu,
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Fang Li, ; Xin-Wu Cui, ; Gui-Feng Liu,
| | - Gui-Feng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Fang Li, ; Xin-Wu Cui, ; Gui-Feng Liu,
| |
Collapse
|
9
|
Tu JX, Lin XT, Ye HQ, Yang SL, Deng LF, Zhu RL, Wu L, Zhang XQ. Global research trends of artificial intelligence applied in esophageal carcinoma: A bibliometric analysis (2000-2022) via CiteSpace and VOSviewer. Front Oncol 2022; 12:972357. [PMID: 36091151 PMCID: PMC9453500 DOI: 10.3389/fonc.2022.972357] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/29/2022] [Indexed: 12/09/2022] Open
Abstract
ObjectiveUsing visual bibliometric analysis, the application and development of artificial intelligence in clinical esophageal cancer are summarized, and the research progress, hotspots, and emerging trends of artificial intelligence are elucidated.MethodsOn April 7th, 2022, articles and reviews regarding the application of AI in esophageal cancer, published between 2000 and 2022 were chosen from the Web of Science Core Collection. To conduct co-authorship, co-citation, and co-occurrence analysis of countries, institutions, authors, references, and keywords in this field, VOSviewer (version 1.6.18), CiteSpace (version 5.8.R3), Microsoft Excel 2019, R 4.2, an online bibliometric platform (http://bibliometric.com/) and an online browser plugin (https://www.altmetric.com/) were used.ResultsA total of 918 papers were included, with 23,490 citations. 5,979 authors, 39,962 co-cited authors, and 42,992 co-cited papers were identified in the study. Most publications were from China (317). In terms of the H-index (45) and citations (9925), the United States topped the list. The journal “New England Journal of Medicine” of Medicine, General & Internal (IF = 91.25) published the most studies on this topic. The University of Amsterdam had the largest number of publications among all institutions. The past 22 years of research can be broadly divided into two periods. The 2000 to 2016 research period focused on the classification, identification and comparison of esophageal cancer. Recently (2017-2022), the application of artificial intelligence lies in endoscopy, diagnosis, and precision therapy, which have become the frontiers of this field. It is expected that closely esophageal cancer clinical measures based on big data analysis and related to precision will become the research hotspot in the future.ConclusionsAn increasing number of scholars are devoted to artificial intelligence-related esophageal cancer research. The research field of artificial intelligence in esophageal cancer has entered a new stage. In the future, there is a need to continue to strengthen cooperation between countries and institutions. Improving the diagnostic accuracy of esophageal imaging, big data-based treatment and prognosis prediction through deep learning technology will be the continuing focus of research. The application of AI in esophageal cancer still has many challenges to overcome before it can be utilized.
Collapse
Affiliation(s)
- Jia-xin Tu
- School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Xue-ting Lin
- School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Hui-qing Ye
- School of Public Health, Nanchang University, Nanchang, China
| | - Shan-lan Yang
- School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Li-fang Deng
- School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Ruo-ling Zhu
- School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Lei Wu
- School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
- *Correspondence: Lei Wu, ; Xiao-qiang Zhang,
| | - Xiao-qiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Lei Wu, ; Xiao-qiang Zhang,
| |
Collapse
|
10
|
Tong Y, Li J, Chen J, Hu C, Xu Z, Duan S, Wang X, Yu R, Cheng X. A Radiomics Nomogram Integrated With Clinic-Radiological Features for Preoperative Prediction of DNA Mismatch Repair Deficiency in Gastric Adenocarcinoma. Front Oncol 2022; 12:865548. [PMID: 35912185 PMCID: PMC9327646 DOI: 10.3389/fonc.2022.865548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose To develop and validate a radiomics nomogram integrated with clinic-radiological features for preoperative prediction of DNA mismatch repair deficiency (dMMR) in gastric adenocarcinoma. Materials and Methods From March 2014 to August 2020, 161 patients with pathologically confirmed gastric adenocarcinoma were included from two centers (center 1 as the training and internal testing sets, n = 101; center 2 as the external testing sets, n = 60). All patients underwent preoperative contrast-enhanced computerized tomography (CT) examination. Radiomics features were extracted from portal-venous phase CT images. Max-relevance and min-redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) methods were used to select features, and then radiomics signature was constructed using logistic regression analysis. A radiomics nomogram was built incorporating the radiomics signature and independent clinical predictors. The model performance was assessed using receiver operating characteristic (ROC) curve analysis, calibration curve, and decision curve analysis (DCA). Results The radiomics signature, which was constructed using two selected features, was significantly associated with dMMR gastric adenocarcinoma in the training and internal testing sets (P < 0.05). The radiomics signature model showed a moderate discrimination ability with an area under the ROC curve (AUC) of 0.81 in the training set, which was confirmed with an AUC of 0.78 in the internal testing set. The radiomics nomogram consisting of the radiomics signature and clinical factors (age, sex, and location) showed excellent discrimination in the training, internal testing, and external testing sets with AUCs of 0.93, 0.82, and 0.83, respectively. Further, calibration curves and DCA analysis demonstrated good fit and clinical utility of the radiomics nomogram. Conclusions The radiomics nomogram combining radiomics signature and clinical characteristics (age, sex, and location) may be used to individually predict dMMR of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Yahan Tong
- Department of Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| | - Jiaying Li
- Department of Radiology, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jieyu Chen
- Department of Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Can Hu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Zhiyuan Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Shaofeng Duan
- Precision Health Institution, GE Healthcare, Shanghai, China
| | - Xiaojie Wang
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Risheng Yu
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Xiangdong Cheng, ; Risheng Yu,
| | - Xiangdong Cheng
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- *Correspondence: Xiangdong Cheng, ; Risheng Yu,
| |
Collapse
|
11
|
Jiang W, Wang S, Wan J, Zheng J, Dong X, Liu Z, Wang G, Xu S, Xiao W, Gao Y, Zhuo S, Yan J. Association of the Collagen Signature with Pathological Complete Response in Rectal Cancer Patients. Cancer Sci 2022; 113:2409-2424. [PMID: 35485874 PMCID: PMC9277261 DOI: 10.1111/cas.15385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 11/28/2022] Open
Abstract
Collagen in the tumor microenvironment is recognized as a potential biomarker for predicting treatment response. This study investigated whether the collagen features are associated with pathological complete response (pCR) in locally advanced rectal cancer (LARC) patients receiving neoadjuvant chemoradiotherapy (nCRT) and develop and validate a prediction model for individualized prediction of pCR. The prediction model was developed in a primary cohort (353 consecutive patients). In total, 142 collagen features were extracted from the multiphoton image of pretreatment biopsy, and the least absolute shrinkage and selection operator (Lasso) regression was applied for feature selection and collagen signature building. A nomogram was developed using multivariable analysis. The performance of the nomogram was assessed with respect to its discrimination, calibration, and clinical utility. An independent cohort (163 consecutive patients) was used to validate the model. The collagen signature comprised four collagen features significantly associated with pCR both in the primary and validation cohorts (p < 0.001). Predictors in the individualized prediction nomogram included the collagen signature and clinicopathological predictors. The nomogram showed good discrimination with area under the ROC curve (AUC) of 0.891 in the primary cohort and good calibration. Application of the nomogram in the validation cohort still gave good discrimination (AUC = 0.908) and good calibration. Decision curve analysis demonstrated that the nomogram was clinically useful. In conclusion, the collagen signature in the tumor microenvironment of pretreatment biopsy is significantly associated with pCR. The nomogram based on the collagen signature and clinicopathological predictors could be used for individualized prediction of pCR in LARC patients before nCRT.
Collapse
Affiliation(s)
- Wei Jiang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.,School of Science, Jimei University, Xiamen, Fujian, 361021, China
| | - Shijie Wang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinliang Wan
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jixiang Zheng
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaoyu Dong
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhangyuanzhu Liu
- Department of Hepatobiliary and Pancreatic Surgery, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Guangxing Wang
- School of Science, Jimei University, Xiamen, Fujian, 361021, China
| | - Shuoyu Xu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.,Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Weiwei Xiao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China
| | - Yuanhong Gao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China
| | - Shuangmu Zhuo
- School of Science, Jimei University, Xiamen, Fujian, 361021, China
| | - Jun Yan
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|