1
|
Huang S, Chen Z, Zhong S, Zhang Y, Zeng C, Zheng X, Li Y, Chen S. Inhibition of TOX exerts anti-tumor effects in acute myeloid leukemia by upregulating IRF7 expression. Eur J Pharmacol 2025; 987:177163. [PMID: 39615865 DOI: 10.1016/j.ejphar.2024.177163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
Thymocyte selection-associated high mobility group box protein (TOX) is regarded as a crucial transcription factor involved in T cell exhaustion in acute myeloid leukemia (AML). Previous studies have identified aberrant TOX expression as a major oncogenic driver in hematologic malignancies, indicating that TOX may potentially be both an immune biomarker and an immunotherapy target. However, due to heterogeneity in the distribution patterns of TOX and its correlation with clinical prognosis, the mechanism underlying TOX-mediated tumor immune responses remains unclear. In this study, we demonstrate that high TOX expression in AML patients is associated with poor prognosis, and TOX overexpression promotes AML cell proliferation and restricts apoptosis. In vitro TOX inhibition promoted the apoptosis of AML cells, suppressed cell viability, and induced cell cycle arrest in the G0/G1 phase. Moreover, TOX knockdown could reduce tumor burden in vivo in immunodeficient mice and prolong their survival. Furthermore, the anti-AML effects of inhibiting TOX may act through activation of the IFN-α signal pathway and upregulating IRF7 expression. In summary, we report for the first time that TOX knockdown exerts powerful anti-tumor effects in AML. These findings will provide a theoretical basis for targeted therapy in AML patients.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Animals
- Interferon Regulatory Factor-7/genetics
- Interferon Regulatory Factor-7/metabolism
- High Mobility Group Proteins/genetics
- High Mobility Group Proteins/metabolism
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Up-Regulation/drug effects
- Mice
- Cell Line, Tumor
- Male
- Female
- Xenograft Model Antitumor Assays
- Gene Expression Regulation, Leukemic/drug effects
- Gene Knockdown Techniques
- Signal Transduction/drug effects
- Middle Aged
Collapse
Affiliation(s)
- Shuxin Huang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China; Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhixi Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China; Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shuxin Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yikai Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xue Zheng
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China; Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Liu Y, Liu W, Wu T. TIGIT: Will it be the next star therapeutic target like PD-1 in hematological malignancies? Crit Rev Oncol Hematol 2024; 204:104495. [PMID: 39236904 DOI: 10.1016/j.critrevonc.2024.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024] Open
Abstract
Research on the mechanism and application of checkpoint inhibitory receptors in hematologic diseases has progressed rapidly. However, in the treatment of relapserefractory (R/R) hematologic malignancies and anti-programmed cell death protein 1 (PD-1), patients who are resistant to anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) are in urgent need of alternative therapeutic targets. T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) has a broad prospect as an inhibitory receptor like PD-1, but its more specific mechanism of action and application in hematologic diseases still need to be further studied. In this review, we discuss the mechanism of TIGIT pathway, combined effects with other immune checkpoints, immune-related therapy, the impact of TIGIT on hematopoietic stem cell transplantation (HSCT) and the tumor microenvironment (TME) provides a potential therapeutic target for hematologic malignancies.
Collapse
Affiliation(s)
- Yang Liu
- The 940th Hostipal of Joint Logistics Support force of Chinese People's Liberation Army, China.
| | - Wenhui Liu
- The 940th Hostipal of Joint Logistics Support force of Chinese People's Liberation Army, China.
| | - Tao Wu
- The 940th Hostipal of Joint Logistics Support force of Chinese People's Liberation Army, China.
| |
Collapse
|
3
|
Wang H, Zheng J, Ma Q, Zhang J, Li Y. GLT8D2 is a prognostic biomarker and regulator of immune cell infiltration in gastric cancer. Front Immunol 2024; 15:1370367. [PMID: 38840920 PMCID: PMC11150579 DOI: 10.3389/fimmu.2024.1370367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Because of the considerable tumor heterogeneity in gastric cancer (GC), only a limited group of patients experiences positive outcomes from immunotherapy. Herein, we aim to develop predictive models related to glycosylation genes to provide a more comprehensive understanding of immunotherapy for GC. RNA sequencing (RNA-seq) data and corresponding clinical outcomes were obtained from GEO and TCGA databases, and glycosylation-related genes were obtained from GlycoGene DataBase. We identified 48 differentially expressed glycosylation-related genes and established a prognostic model (seven prognosis genes including GLT8D2, GALNT6, ST3GAL6, GALNT15, GBGT1, FUT2, GXYLT2) based on these glycosylation-related genes using the results from Cox regression analysis. We found that these glycosylation-related genes revealed a robust correlation with the abundance of Tumor Infiltrating Lymphocytes (TILs), especially the GLT8D2 which is associated with many TILs. Finally, we employed immunohistochemistry and Multiplex Immunohistochemical to discover that GLT8D2 serves as a valuable prognostic biomarker in GC and is closely associated with macrophage-related markers. Collectively, we established a prognostic model based on glycosylation-related genes to provide a more comprehensive understanding of prediction for GC prognosis, and identified that GLT8D2 is closely correlated with adverse prognosis and may underscore its role in regulating immune cell infiltration in GC patients.
Collapse
Affiliation(s)
- Han Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qingyang Ma
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Junchang Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Monti M, Ferrari G, Grosso V, Missale F, Bugatti M, Cancila V, Zini S, Segala A, La Via L, Consoli F, Orlandi M, Valerio A, Tripodo C, Rossato M, Vermi W. Impaired activation of plasmacytoid dendritic cells via toll-like receptor 7/9 and STING is mediated by melanoma-derived immunosuppressive cytokines and metabolic drift. Front Immunol 2024; 14:1227648. [PMID: 38239354 PMCID: PMC10795195 DOI: 10.3389/fimmu.2023.1227648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Plasmacytoid dendritic cells (pDCs) infiltrate a large set of human cancers. Interferon alpha (IFN-α) produced by pDCs induces growth arrest and apoptosis in tumor cells and modulates innate and adaptive immune cells involved in anti-cancer immunity. Moreover, effector molecules exert tumor cell killing. However, the activation state and clinical relevance of pDCs infiltration in cancer is still largely controversial. In Primary Cutaneous Melanoma (PCM), pDCs density decreases over disease progression and collapses in metastatic melanoma (MM). Moreover, the residual circulating pDC compartment is defective in IFN-α production. Methods The activation of tumor-associated pDCs was evaluated by in silico and microscopic analysis. The expression of human myxovirus resistant protein 1 (MxA), as surrogate of IFN-α production, and proximity ligation assay (PLA) to test dsDNA-cGAS activation were performed on human melanoma biopsies. Moreover, IFN-α and CXCL10 production by in vitro stimulated (i.e. with R848, CpG-A, ADU-S100) pDCs exposed to melanoma cell lines supernatants (SN-mel) was tested by intracellular flow cytometry and ELISA. We also performed a bulk RNA-sequencing on SN-mel-exposed pDCs, resting or stimulated with R848. Glycolytic rate assay was performed on SN-mel-exposed pDCs using the Seahorse XFe24 Extracellular Flux Analyzer. Results Based on a set of microscopic, functional and in silico analyses, we demonstrated that the melanoma milieu directly impairs IFN-α and CXCL10 production by pDCs via TLR-7/9 and cGAS-STING signaling pathways. Melanoma-derived immunosuppressive cytokines and a metabolic drift represent relevant mechanisms enforcing pDC-mediated melanoma escape. Discussion These findings propose a new window of intervention for novel immunotherapy approaches to amplify the antitumor innate immune response in cutaneous melanoma (CM).
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giorgia Ferrari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valentina Grosso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Francesco Missale
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Head & Neck Oncology & Surgery Otorhinolaryngology, Nederlands Kanker Instituut, Amsterdam, Netherlands
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Stefania Zini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Agnese Segala
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Consoli
- Oncology Unit, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| | - Matteo Orlandi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
5
|
Wang Z, Ding S, Zhang C, Zhan H, Li Y, Yan J, Jia Y, Wang X, Wang Y. Revealing the impact of TOX3 on osteoarthritis: insights from bioinformatics. Front Med (Lausanne) 2023; 10:1256654. [PMID: 38020130 PMCID: PMC10663247 DOI: 10.3389/fmed.2023.1256654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Osteoarthritis, a prevalent long-term condition of the joints, primarily impacts older individuals, resulting in discomfort, restrictions in mobility, and a decrease in overall well-being. Although Osteoarthritis is widely spread, there is a lack of successful interventions to stop the advancement of the condition. Numerous signaling pathways have been emphasized in recent research on Osteoarthritis, yet the diagnostic significance of numerous genes has not been investigated. To identify genes that were expressed differently in osteoarthritis, we utilized the Gene Expression Omnibus database. To identify marker genes, we built machine learning models including Least Absolute Shrinkage and Selection Operator and Random Forest. We categorized Osteoarthritis samples and performed immune cell infiltration analysis based on the expression patterns of these characteristic genes. Both the Least Absolute Shrinkage and Selection Operator and Random Forest models selected six marker genes (TOX3, ARG1, CST7, RERGL, COL11A1, NCRNA00185) out of a total of 17 differentially expressed genes. The osteoarthritis samples were categorized into two groups, namely a high expression group and a low expression group, based on the median levels of TOX3 expression. Comparative analysis of these groups identified 85 differentially expressed genes, showing notable enrichment in pathways related to lipid metabolism in the group with high expression. Analysis of immune cell infiltration revealed noticeable differences in immune profiles among the two groups. The group with high expression of TOX3 showed a notable increase in Mast cells and Type II IFN Response, whereas B cells, Cytolytic activity, Inflammation-promoting cells, NK cells, pDCs, T cell co-inhibition, Th1 cells, and Th2 cells were significantly decreased. We constructed a ceRNA network for TOX3, revealing 57 lncRNAs and 18 miRNAs involved in 57 lncRNA-miRNA interactions, and 18 miRNA-mRNA interactions with TOX3. Validation of TOX3 expression was confirmed using an external dataset (GSE29746), revealing a notable increase in Osteoarthritis samples. In conclusion, our study presents a comprehensive analysis identifying TOX3 as a potential feature gene in Osteoarthritis. The distinct immune profiles and involvement in fat metabolism pathways associated with TOX3 expression suggest its significance in Osteoarthritis pathogenesis. The study establishes a basis for comprehending the intricate correlation between characteristic genes and Osteoarthritis, as well as for the formulation of individualized therapeutic approaches.
Collapse
Affiliation(s)
- Zhengyan Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Ding
- Department of Orthopedics, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | | | - Hongsheng Zhan
- Department of Orthopedics, Shuguang Hospital, Shanghai, China
| | - Yunfei Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Yan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuyan Jia
- Department of Orthopedics, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xukai Wang
- Department of Orthopedics, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Ying Wang
- Department of Orthopedics, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Li Y, Jiang D, Zhang Q, Liu E, Shao H. Clinical implications and genetical insights of SOX6 expression in acute myeloid leukemia. J Cancer Res Clin Oncol 2023; 149:4443-4453. [PMID: 36117190 DOI: 10.1007/s00432-022-04349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Transcription factor SOX6 belongs to Sry-related high-mobility-group box (SOX) family, has been reported to be downregulated and acts as a tumor-suppressor gene in various solid tumors, but in acute myeloid leukemia (AML) is incompletely understood. METHODS The SOX6 expression was analyzed between AML patients and normal controls from public data and our research cohort. Correlations between SOX6 expression and clinical, genetic features together with survival were further analyzed. RESULTS In both public and our present datasets, we demonstrated that SOX6 expression is notably downregulated in AML patients compared with normal controls. Moreover, the expression level of SOX6 was dynamic, along with the disease status. SOX6 was significantly decreased in relapsed/refractory AML compared with complete remission AML. Clinically, SOX6 underexpression was significantly correlated with bone marrow blasts, and WBC counts. Furthermore, decreased expression of SOX6 was more common in core binding factor AML (CBF-AML), rarely found in complex karyotype AML (CK-AML), and correlated with FLT3 mutations. By survival analyses, low-expression of SOX6 was associated with shorter overall survival (OS) and event-free survival (EFS) among cytogenetic normal AML (CN-AML) patients. Moreover, both univariate and multivariate analyses showed that low SOX6 expression was an independent unfavorable prognostic biomarker for CN-AML. CONCLUSIONS Our findings indicated that SOX6 underexpression, as a frequent event in AML, was associated with genetic abnormalities and prognosis in AML. SOX6 might be a valuable biomarker for risk stratification, predicting prognosis and relapse of AML.
Collapse
Affiliation(s)
- Yan Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Duanfeng Jiang
- Department of Hematology, Second Affiliated Hospital of Hainan Medical College, Haikou, 570311, Hainan, China
| | - Qin Zhang
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Enyi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Haigang Shao
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
7
|
Zhou J, Toh SHM, Tan TK, Balan K, Lim JQ, Tan TZ, Xiong S, Jia Y, Ng SB, Peng Y, Jeyasekharan AD, Fan S, Lim ST, Ong CAJ, Ong CK, Sanda T, Chng WJ. Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell Lymphoma. Mol Cancer 2023; 22:69. [PMID: 37032358 PMCID: PMC10084643 DOI: 10.1186/s12943-023-01767-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Extranodal natural killer/T-cell lymphoma (NKTL) is an aggressive type of non-Hodgkin lymphoma with dismal outcome. A better understanding of disease biology and key oncogenic process is necessary for the development of targeted therapy. Super-enhancers (SEs) have been shown to drive pivotal oncogenes in various malignancies. However, the landscape of SEs and SE-associated oncogenes remain elusive in NKTL. METHODS We used Nano-ChIP-seq of the active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) to profile unique SEs NKTL primary tumor samples. Integrative analysis of RNA-seq and survival data further pinned down high value, novel SE oncogenes. We utilized shRNA knockdown, CRISPR-dCas9, luciferase reporter assay, ChIP-PCR to investigate the regulation of transcription factor (TF) on SE oncogenes. Multi-color immunofluorescence (mIF) staining was performed on an independent cohort of clinical samples. Various function experiments were performed to evaluate the effects of TOX2 on the malignancy of NKTL in vitro and in vivo. RESULTS SE landscape was substantially different in NKTL samples in comparison with normal tonsils. Several SEs at key transcriptional factor (TF) genes, including TOX2, TBX21(T-bet), EOMES, RUNX2, and ID2, were identified. We confirmed that TOX2 was aberrantly overexpressed in NKTL relative to normal NK cells and high expression of TOX2 was associated with worse survival. Modulation of TOX2 expression by shRNA, CRISPR-dCas9 interference of SE function impacted on cell proliferation, survival and colony formation ability of NKTL cells. Mechanistically, we found that RUNX3 regulates TOX2 transcription by binding to the active elements of its SE. Silencing TOX2 also impaired tumor formation of NKTL cells in vivo. Metastasis-associated phosphatase PRL-3 has been identified and validated as a key downstream effector of TOX2-mediated oncogenesis. CONCLUSIONS Our integrative SE profiling strategy revealed the landscape of SEs, novel targets and insights into molecular pathogenesis of NKTL. The RUNX3-TOX2-SE-TOX2-PRL-3 regulatory pathway may represent a hallmark of NKTL biology. Targeting TOX2 could be a valuable therapeutic intervene for NKTL patients and warrants further study in clinic.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- NUS Centre for Cancer Research (N2CR), 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Sabrina Hui-Min Toh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Kalpnaa Balan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Jing Quan Lim
- Division of Cellular and Molecular Research, Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
- Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Tuan Zea Tan
- Genomics and Data Analytics Core (GeDaC), Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Sinan Xiong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Jia
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- NUS Centre for Cancer Research (N2CR), 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Shuangyi Fan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Soon Thye Lim
- Director's office, National Cancer Centre, Singapore, 168583, Singapore
- Office of Education, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Chin-Ann Johnny Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre, Singapore, 168583, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, 168583, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre, Singapore, 168583, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Choon Kiat Ong
- Division of Cellular and Molecular Research, Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- NUS Centre for Cancer Research (N2CR), 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
8
|
Niu H, Wang H. TOX regulates T lymphocytes differentiation and its function in tumor. Front Immunol 2023; 14:990419. [PMID: 36969216 PMCID: PMC10035881 DOI: 10.3389/fimmu.2023.990419] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Thymocyte selection-associated high mobility group box protein (TOX) is expressed differently at all T lymphocytes development stages. Owing to more advanced scientific and technological means, including single-cell sequencing technology, heterogeneity of T lymphocytes and TOX has gradually been revealed. Further exploration of such heterogeneity will help us comprehend the developmental stage and functional characteristics of T lymphocytes in greater detail. Emerging evidence supports its regulation not only in exhausting, but also in activating T lymphocytes, thereby verifying TOX heterogeneity. TOX can be used not only as a latent intervention target for tumor diseases and chronic infections, and a therapeutic strategy for autoimmune diseases, but also as a critical factor predicting the drug response and overall survival of patients with malignant tumors.
Collapse
|
9
|
Chen C, Zhou L, Zhu L, Luo G, Wang L, Zeng C, Zhou H, Li Y. TNFAIP3 mutation is an independent poor overall survival factor for patients with T-cell acute lymphoblastic leukemia. Cancer Med 2023; 12:3952-3961. [PMID: 36056685 PMCID: PMC9972139 DOI: 10.1002/cam4.5196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND It is imperative to explore potential biomarkers for predicting clinical outcome and developing targeted therapies for T-cell acute lymphoblastic leukemia (T-ALL). This study aimed to investigate the mutation patterns of tumor necrosis factor-alpha-inducing protein 3 (TNFAIP3, also known as A20) and its role in the prognosis of T-ALL patients. METHODS Polymerase chain reaction (PCR) and Sanger sequencing data from T-ALL (n = 49, JNU) and targeted sequencing data from T-ALL (n = 54, NFH) in our clinical center and a publicly available dataset (n = 121, PRJCA002270), were used to detect TNFAIP3 mutation. RESULTS Three TNFAIP3 single nucleotide polymorphisms (SNPs; g.3033 C > T, g.3910 G > A, and g.3904 A > G) were detected in T-ALL in the JNU dataset, and g.3033 C > T accounted for the highest proportion, reaching 60% (6/10). Interestingly, TNFAIP3 mutation mainly occurred in adults but not pediatric patients in all three datasets (JNU, NFH, and PRJCA002270). T-ALL patients carrying a TNFAIP3 mutation were associated with a trend of poor overall survival (OS) (p = 0.092). Moreover, TNFAIP3 mutation was also an independent factor for OS for T-ALL patients (p = 0.008). Further subgroup analysis suggested that TNFAIP3 mutation predicted poor OS for T-ALL patients who underwent chemotherapy only (p < 0.001), and it was positively correlated with high risk and early T-cell precursor ALL (ETP-ALL) in two independent validation datasets (NFH and PRJCA002270). CONCLUSION TNFAIP3 mutation mainly occurs in adult T-ALL patients, and it was associated with adverse clinical outcomes for T-ALL patients; thus, it might be a biomarker for prognostic stratification.
Collapse
Affiliation(s)
- Cunte Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Lingling Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lihua Zhu
- Department of Rheumatism and Immunology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Gengxin Luo
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liang Wang
- Department of Oncology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chengwu Zeng
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Song W, Zhang H, Yang F, Nakahira K, Wang C, Shi K, Zhang R. Single cell profiling of γδ hepatosplenic T-cell lymphoma unravels tumor cell heterogeneity associated with disease progression. Cell Oncol (Dordr) 2023; 46:211-226. [PMID: 36417130 PMCID: PMC9947078 DOI: 10.1007/s13402-022-00745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Hepatosplenic T-cell lymphoma (HSTCL), mostly derived from γδ T cells, is a rare but very aggressive lymphoma with poor outcomes. In this study, we generated the first single cell landscape for this rare disease and characterized the molecular pathogenesis underlying the disease progression. METHODS We performed paired single cell RNA-seq and T cell receptor (TCR) sequencing on biopsies from a HSTCL patient pre- and post- chemotherapy treatments. Following by a series of bioinformatics analysis, we investigated the gene expression profile of γδ HSTCS as well as its tumor microenvironment (TME). RESULTS We characterized the unique gene expressing signatures of malignant γδ T cells with a set of marker genes were newly identified in HSTCL (AREG, PLEKHA5, VCAM1 etc.). Although the malignant γδ T cells were expanded from a single TCR clonotype, they evolved into two transcriptionally distinct tumor subtypes during the disease progression. The Tumor_1 subtype was dominant in pre-treatment samples with highly aggressive phenotypes. While the Tumor_2 had relative mild cancer hallmark signatures but expressed genes associated with tumor survival signal and drug resistance (IL32, TOX2, AIF1, AKAP12, CD38 etc.), and eventually became the main tumor subtype post-treatment. We further dissected the tumor microenvironment and discovered the dynamically rewiring cell-cell interaction networks during the treatment. The tumor cells had reduced communications with the microenvironment post-treatment. CONCLUSIONS Our study reveals heterogenous and dynamic tumor and microenvironment underlying pathogenesis of HSTCL and may contribute to identify novel targets for diagnosis and treatment of HSTCL in the future.
Collapse
Affiliation(s)
- Wei Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 Yunnan People’s Republic of China ,School of Medicine, Kunming University of Science and Technology, Kunming, 650500 Yunnan People’s Republic of China ,Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, 650032 Yunnan People’s Republic of China
| | - Haixi Zhang
- Department of Hematology, The First People’s Hospital of Yunnan Province, Kunming, 650032 Yunnan People’s Republic of China ,Yunnan Province Clinical Center for Hematologic Disease, Kunming, 650032 Yunnan People’s Republic of China ,Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, 650032 Yunnan People’s Republic of China
| | - Fan Yang
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500 Yunnan People’s Republic of China
| | - Kiichi Nakahira
- Department of Pharmacology, Nara Medical University, Kashihara, Nara, 634-8521 Japan ,Division of Pulmonary and Critical Care Medicine, Weill Department of Medicine, Joan and Sanford I, Weill Cornell Medicine, New York, NY 10065 USA
| | - Cheng Wang
- Innovec Biotherapeutics, Inc., Beijing, 100193 People’s Republic of China
| | - Keqian Shi
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, People's Republic of China. .,Yunnan Province Clinical Center for Hematologic Disease, Kunming, 650032, Yunnan, People's Republic of China. .,Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, 650032, Yunnan, People's Republic of China.
| | - Ruoyu Zhang
- Innovec Biotherapeutics, Inc., Beijing, 100193, People's Republic of China.
| |
Collapse
|
11
|
Zheng J, Qiu D, Jiang X, Zhao Y, Zhao H, Wu X, Chen J, Lai J, Zhang W, Li X, Li Y, Wu X, Jin Z. Increased PD-1 +Foxp3 + γδ T cells associate with poor overall survival for patients with acute myeloid leukemia. Front Oncol 2022; 12:1007565. [PMID: 36591503 PMCID: PMC9799959 DOI: 10.3389/fonc.2022.1007565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Problems γδ T cells are essential for anti-leukemia function in immunotherapy, however, γδ T cells have different functional subsets, including regulatory cell subsets expressing the Foxp3. Whether they are correlated with immune-checkpoint mediated T cell immune dysfunction remains unknown in patients with acute myeloid leukemia (AML). Methods In this study, we used RNA-seq data from 167 patients in TCGA dataset to analyze the correlation between PD-1 and FOXP3 genes and these two genes' association with the prognosis of AML patients. The expression proportion of Foxp3+/PD-1+ cells in γδ T cells and two subgroups Vδ1 and Vδ2 T cells were performed by flow cytometry. The expression level of FOXP3 and PD-1 genes in γδ T cells were sorted from peripheral blood by MACS magnetic cell sorting technique were analyzed by quantitative real-time PCR. Results We found that PD-1 gene was positively correlated with FOXP3 gene and highly co-expressed PD-1 and FOXP3 genes were associated with poor overall survival (OS) from TCGA database. Then, we detected a skewed distribution of γδ T cells with increased Vδ1 and decreased Vδ2 T cell subsets in AML. Moreover, significantly higher percentages of PD-1+ γδ, Foxp3+ γδ, and PD-1+Foxp3+ γδ T cells were detected in de novo AML patients compared with healthy individuals. More importantly, AML patients containing higher PD-1+Foxp3+ γδ T cells had lower OS, which might be a potential therapeutic target for leukemia immunotherapy. Conclusion A significant increase in the PD-1+Foxp3+ γδ T cell subset in AML was associated with poor clinical outcome, which provides predictive value for the study of AML patients.
Collapse
Affiliation(s)
- Jiamian Zheng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Dan Qiu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China,Department of Traditional Chinese Medicine, Heyuan People’s Hospital, Heyuan, China
| | - Xuan Jiang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yun Zhao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Haotian Zhao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaofang Wu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Jie Chen
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jing Lai
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wenbin Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xutong Li
- Department of Oncology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China,*Correspondence: Yangqiu Li, ; Xiuli Wu, ; Zhenyi Jin,
| | - Xiuli Wu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China,*Correspondence: Yangqiu Li, ; Xiuli Wu, ; Zhenyi Jin,
| | - Zhenyi Jin
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China,Department of Pathology, School of Medicine, Jinan University, Guangzhou, China,*Correspondence: Yangqiu Li, ; Xiuli Wu, ; Zhenyi Jin,
| |
Collapse
|
12
|
Li S, Yang S, Hong Y. Higher thymocyte selection-associated high mobility group box (TOX) expression predicts poor prognosis in patients with ovarian cancer. BMC Cancer 2022; 22:1216. [PMID: 36434543 PMCID: PMC9701062 DOI: 10.1186/s12885-022-10336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Ovarian cancer is one of the most lethal gynecologic malignancies with a dismal prognosis that poses a serious threat to human health, highlighting the need for more knowledge about what is required for identifying some biomarkers for early diagnosis, prediction of prognosis and disease monitoring. TOX, a critical transcription factor related to the development of malignancies that contributing to lymphocytes not just T cells, had been proved prognostic value in some spectrum of cancers. Here, we aimed to study the prognostic role of TOX in ovarian cancer. RESULTS We found that TOX was not only expressed in CD8 T cells but also tumor cells. TOX expression score was higher in ovarian cancer tissues and correlated with survival status. Survival analysis revealed that ovarian cancer patients with high TOX expression score generally shorter overall survival and disease-free survival times. Univariate and Multivariate Cox demonstrated that TOX expression score could be used as an independent prognostic factor for patients with ovarian cancer. CONCLUSION TOX expression in ovarian cancer could be a promising tool for predict overall survival of ovarian cancer patients.
Collapse
Affiliation(s)
- Sai Li
- grid.13402.340000 0004 1759 700XDepartment of gynecologic oncology, Women’s Hospital, Zhejiang University school of medicine, Hangzhou, China
| | - Sifu Yang
- grid.506977.a0000 0004 1757 7957Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang China
| | - Yupeng Hong
- grid.506977.a0000 0004 1757 7957Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang China
| |
Collapse
|
13
|
Zapata-García JA, Riveros-Magaña AR, Ortiz-Lazareno PC, Hernández-Flores G, Jave-Suárez LF, Aguilar-Lemarroy A. Comparative Genomic Hybridization and Transcriptome Sequencing Reveal Genes with Gain in Acute Lymphoblastic Leukemia: JUP Expression Emerges as a Survival-Related Gene. Diagnostics (Basel) 2022; 12:diagnostics12112788. [PMID: 36428851 PMCID: PMC9689318 DOI: 10.3390/diagnostics12112788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) in children or adults is characterized by structural and numeric aberrations in chromosomes; these anomalies strongly correlate with prognosis and clinical outcome. Therefore, this work aimed to identify the genes present in chromosomal gain regions found more frequently in patients with acute lymphoblastic leukemia (ALL) and ALL-derived cell lines using comparative genomic hybridization (CGH). In addition, validation of the genes found in these regions was performed utilizing RNAseq from JURKAT, CEM, and SUP-B15 cell lines, as well as expression microarrays derived from a MILE study. Chromosomes with common gain zones that were maintained in six or more samples were 14, 17, and 22, in which a total of 22 genes were identified. From them, NT5C3B, CNP, ACLY, and GNB1L maintained overexpression at the mRNA level in the cell lines and in patients with ALL. It is noteworthy that SALL2 showed very high expression in T-ALL, while JUP was highly expressed in B-ALL lineages. Interestingly, the latter correlated with worse survival in patients. This provided evidence that the measurement of these genes has high potential for clinical utility; however, their expressions should first be evaluated with a sensitive test in a more significant number of patients.
Collapse
Affiliation(s)
- Jessica Alejandra Zapata-García
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C.P. 44340, Mexico
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara C.P. 44340, Mexico
| | - Alma Rocío Riveros-Magaña
- Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán C.P. 49000, Mexico
- Hospital General Zona 9, Ciudad Guzmán C.P. 49000, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara C.P. 44340, Mexico
| | - Georgina Hernández-Flores
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara C.P. 44340, Mexico
| | - Luis Felipe Jave-Suárez
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C.P. 44340, Mexico
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara C.P. 44340, Mexico
| | - Adriana Aguilar-Lemarroy
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C.P. 44340, Mexico
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara C.P. 44340, Mexico
- Correspondence: ; Tel.: +52-331-520-7625
| |
Collapse
|
14
|
Huang S, Zhao Y, Liao P, Wang J, Li Z, Tan J, Zha X, Chen S, Li Y, Zhong L. Different expression patterns of VISTA concurrent with PD-1, Tim-3, and TIGIT on T cell subsets in peripheral blood and bone marrow from patients with multiple myeloma. Front Oncol 2022; 12:1014904. [PMID: 36439426 PMCID: PMC9684650 DOI: 10.3389/fonc.2022.1014904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 09/05/2023] Open
Abstract
V-type immunoglobulin domain-containing suppressor of T cell activation (VISTA) is considered as an immunosuppressive factor and potential therapeutic target for anticancer therapy. However, little is known about VISTA expression and its role in immunosuppression in multiple myeloma (MM). In this study, VISTA expression and co-expression with programmed cell death receptor-1 (PD-1), T cell immunoglobulin mucin-domain-containing-3 (Tim-3), and T cell immunoglobulin and ITIM domain (TIGIT) in CD3+, CD4+, CD8+, and regulatory T (Treg) cells were analyzed in patients with MM by multi-color fluorescent flow cytometry of peripheral blood (PB) and bone marrow (BM) samples from 36 patients with MM and compared to 36 PB samples and 10 BM samples from healthy individuals (HIs), which served as controls. The results demonstrated a significant increased percentage of VISTA co-expression with PD-1, Tim-3, and TIGIT in CD3+, CD4+, CD8+, and Treg cells in PB from MM patients compared with HIs. A similar trend for VISTA+CD8+ T cells was found in BM. Moreover, a trend of a high percentage on VISTA expression and co-expression in PB rather than BM was found. Furthermore, significant positive correlations existed for VISTA expression concurrent with PD-1, Tim-3, and TIGIT in T cell subsets and clinical indicators, including Revised International Staging System (R-ISS) staging of multiple myeloma, Eastern Cooperative Oncology Group (ECOG) score, and beta-2-microglobulin (β2-MG). In conclusion, higher VISTA expression concurrent with PD-1, Tim-3, and TIGIT on T cells, particularly in the PB of patients with MM, may result in T cell exhaustion and dysfunction and be closely associated with disease progression and clinical indicators. Thus, VISTA may be considered a potential target for reversing T cell exhaustion and improving T cell function in MM.
Collapse
Affiliation(s)
- Shuxin Huang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yujie Zhao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Pengjun Liao
- Department of Hematology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Jinghua Wang
- Department of Hematology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Zhiyan Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiaxiong Tan
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Liye Zhong
- Department of Hematology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| |
Collapse
|
15
|
Huang S, Liang C, Zhao Y, Deng T, Tan J, Zha X, Li Y, Chen S. Increased TOX expression concurrent with PD-1, Tim-3, and CD244 expression in T cells from patients with acute myeloid leukemia. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2022; 102:143-152. [PMID: 34913594 DOI: 10.1002/cyto.b.22049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND T cell dysregulation is a common event in leukemia. Recent findings have indicated that aberrant expression of immune checkpoint proteins may be associated with disease relapse and progression in acute myeloid leukemia (AML). TOX, a transcription factor in the HMG-box protein superfamily, was found to be a potential target for immunotherapy not only in solid tumors but also in hematological malignancies. However, little is known about TOX expression and co-expression with immune checkpoint proteins or the exhausted phenotype in the T cell subsets in AML. Thus, in this study, we analyzed TOX expression and co-expression with PD-1, Tim-3, and CD244 in T cells. METHODS TOX expression and co-expression with PD-1, Tim-3, and CD244 in CD3+, CD4+, regulatory T (Treg), and CD8+ T cells were analyzed by multi-color fluorescent flow cytometry in peripheral blood (PB) and bone marrow (BM) samples from patients with de novo AML and AML in complete remission (CR) and healthy individuals (HIs). RESULTS A significantly increased percentage of TOX+CD3+, CD4+, and CD8+ T cells was found in PB from patients with de novo AML in comparison with HIs. Double-positive TOX+CD244+, TOX+PD-1+, and TOX+Tim-3+ T cells markedly increased in the CD3+, CD4+, and CD8+ T cell populations in de novo AML patients compared with HIs, and similar trends were demonstrated for TOX+Tim-3+CD3+/CD4+/CD8+ T cells in de novo AML compared with AML-CR patients. In addition, the number of TOX+, TOX+PD-1+, and TOX+Tim-3+Treg cells significantly increased in de novo AML patients compared with HIs, and TOX+PD-1+Treg cells were higher in de novo AML compared with AML-CR patients. Moreover, TOX positively correlated with Tim-3 expression in CD8+ and Treg cells, and a positive correlation between the expression of TOX+ CD4+ and CD244+CD4+ T cells was found. Furthermore, an increased percentage of TOX+Tim-3+ T cells in BM was also found in de novo AML patients compared with HIs. CONCLUSIONS Increased TOX concurrent with PD-1, Tim-3, and CD244 in T cells may contribute to T cell exhaustion and impair their function in AML. Such exhausted T cells may be partially revised when AML patients achieve CR after chemotherapy. TOX may be considered a potential target for reversing T cell exhaustion and improving T cell function in AML.
Collapse
Affiliation(s)
- Shuxin Huang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Chaofeng Liang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yujie Zhao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Tairan Deng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiaxiong Tan
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|