1
|
Lin Y, Song Y, Zhang Y, Li X, Kan L, Han S. New insights on anti-tumor immunity of CD8 + T cells: cancer stem cells, tumor immune microenvironment and immunotherapy. J Transl Med 2025; 23:341. [PMID: 40097979 PMCID: PMC11912710 DOI: 10.1186/s12967-025-06291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/23/2025] [Indexed: 03/19/2025] Open
Abstract
Recent breakthroughs in tumor immunotherapy have confirmed the capacity of the immune system to fight several cancers. The effective means of treating cancer involves accelerating the death of tumor cells and improving patient immunity. Dynamic changes in the tumor immune microenvironment alter the actual effects of anti-tumor drug production and may trigger favorable or unfavorable immune responses by modulating tumor-infiltrating lymphocytes. Notably, CD8+ T cells are one of the primary tumor-infiltrating immune cells that provide anti-tumor response. Tumor cells and tumor stem cells will resist or evade destruction through various mechanisms as CD8+ T cells exert their anti-tumor function. This paper reviews the research on the regulation of tumor development and prognosis by cancer stem cells that directly or indirectly alter the role of tumor-infiltrating CD8+ T cells. We also discuss related immunotherapy strategies.
Collapse
Affiliation(s)
- Yibin Lin
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yaochuan Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaodong Li
- Department of Neurosurgery, Siping Central People's Hospital, Siping, Jilin, 136000, China
| | - Liang Kan
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
2
|
Han T, Long C, Liu X, Zhou F, Zhang P, Zhang B, Dong W, Jing M, Deng L, Zhang Y, Zhou J. ADC histogram analysis of tumor-infiltrating CD8+ T cell levels in meningioma. Neurosurg Rev 2025; 48:34. [PMID: 39789323 DOI: 10.1007/s10143-025-03197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/16/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
To investigate the value of preoperative MRI features and ADC histogram analysis for evaluating tumor-infiltrating CD8+ T cells in meningiomas. In this single-center cross-sectional study, we conducted a retrospective analysis of clinical, imaging, and pathological data from 84 patients with meningioma and performed immunohistochemical staining to quantitatively evaluate CD8+ T cells. Using X-Tile software, we divided the patients into high-and low-CD8+ T cells groups based on cut-off values. Furthermore, we compared the clinical and MRI features between the two groups and assessed the predictive value of significant parameters by plotting ROC curves. Additionally, Spearman's analysis was used to examine the association between ADC histogram parameters and CD8+ T cells. The level of tumor-infiltrating CD8+ T cells was found to have a negative correlation with recurrence in patients with meningiomas (r=-0.235, p = 0.031). No statistically significant differences were found in clinical and conventional MRI features between the two groups (all p > 0.05). Conversely, among the ADC histogram parameters, the coefficient of variation (CV), Perc.01, Perc.05, Perc.10, and Perc.25 showed statistically significant differences between the two groups (all p < 0.05) and combined ADC histogram parameters had the highest AUC (0.791; 95%CI (0.689-0.872)). Additionally, we observed a positive correlation between Perc.01, Perc.05, Perc.10 and CD8+ T cells (p < 0.05), the CV and variance was negatively correlated with the levels of CD8+ T cells (p < 0.05). ADC histogram analysis can be used as an imaging tool to preoperatively assess CD8+ T cells in patients with meningioma, and found a certain correlation between them.
Collapse
Affiliation(s)
- Tao Han
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Changyou Long
- Image Center of Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Xianwang Liu
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Fengyu Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Peng Zhang
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Wenjie Dong
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Mengyuan Jing
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Liangna Deng
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Yuting Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China.
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China.
| |
Collapse
|
3
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Abramova OV, Pavlov KA, Chekhonin VP. Systemic and local immunosuppression in glioblastoma and its prognostic significance. Front Immunol 2024; 15:1326753. [PMID: 38481999 PMCID: PMC10932993 DOI: 10.3389/fimmu.2024.1326753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/06/2024] [Indexed: 04/07/2024] Open
Abstract
The effectiveness of tumor therapy, especially immunotherapy and oncolytic virotherapy, critically depends on the activity of the host immune cells. However, various local and systemic mechanisms of immunosuppression operate in cancer patients. Tumor-associated immunosuppression involves deregulation of many components of immunity, including a decrease in the number of T lymphocytes (lymphopenia), an increase in the levels or ratios of circulating and tumor-infiltrating immunosuppressive subsets [e.g., macrophages, microglia, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs)], as well as defective functions of subsets of antigen-presenting, helper and effector immune cell due to altered expression of various soluble and membrane proteins (receptors, costimulatory molecules, and cytokines). In this review, we specifically focus on data from patients with glioblastoma/glioma before standard chemoradiotherapy. We discuss glioblastoma-related immunosuppression at baseline and the prognostic significance of different subsets of circulating and tumor-infiltrating immune cells (lymphocytes, CD4+ and CD8+ T cells, Tregs, natural killer (NK) cells, neutrophils, macrophages, MDSCs, and dendritic cells), including neutrophil-to-lymphocyte ratio (NLR), focus on the immune landscape and prognostic significance of isocitrate dehydrogenase (IDH)-mutant gliomas, proneural, classical and mesenchymal molecular subtypes, and highlight the features of immune surveillance in the brain. All attempts to identify a reliable prognostic immune marker in glioblastoma tissue have led to contradictory results, which can be explained, among other things, by the unprecedented level of spatial heterogeneity of the immune infiltrate and the significant phenotypic diversity and (dys)functional states of immune subpopulations. High NLR is one of the most repeatedly confirmed independent prognostic factors for shorter overall survival in patients with glioblastoma and carcinoma, and its combination with other markers of the immune response or systemic inflammation significantly improves the accuracy of prediction; however, more prospective studies are needed to confirm the prognostic/predictive power of NLR. We call for the inclusion of dynamic assessment of NLR and other blood inflammatory markers (e.g., absolute/total lymphocyte count, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, systemic immune-inflammation index, and systemic immune response index) in all neuro-oncology studies for rigorous evaluation and comparison of their individual and combinatorial prognostic/predictive significance and relative superiority.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V. Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Konstantin A. Pavlov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
4
|
Sportiello M, Poindexter A, Reilly EC, Geber A, Lambert Emo K, Jones TN, Topham DJ. Mouse Memory CD8 T Cell Subsets Defined by Tissue-Resident Memory Integrin Expression Exhibit Distinct Metabolic Profiles. Immunohorizons 2023; 7:652-669. [PMID: 37855738 PMCID: PMC10615656 DOI: 10.4049/immunohorizons.2300040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/24/2023] [Indexed: 10/20/2023] Open
Abstract
Tissue-resident memory CD8 T cells (TRM) principally reside in peripheral nonlymphoid tissues, such as lung and skin, and confer protection against a variety of illnesses ranging from infections to cancers. The functions of different memory CD8 T cell subsets have been linked with distinct metabolic pathways and differ from other CD8 T cell subsets. For example, skin-derived memory T cells undergo fatty acid oxidation and oxidative phosphorylation to a greater degree than circulating memory and naive cells. Lung TRMs defined by the cell-surface expression of integrins exist as distinct subsets that differ in gene expression and function. We hypothesize that TRM subsets with different integrin profiles will use unique metabolic programs. To test this, differential expression and pathway analysis were conducted on RNA sequencing datasets from mouse lung TRMs yielding significant differences related to metabolism. Next, metabolic models were constructed, and the predictions were interrogated using functional metabolite uptake assays. The levels of oxidative phosphorylation, mitochondrial mass, and neutral lipids were measured. Furthermore, to investigate the potential relationships to TRM development, T cell differentiation studies were conducted in vitro with varying concentrations of metabolites. These demonstrated that lipid conditions impact T cell survival, and that glucose concentration impacts the expression of canonical TRM marker CD49a, with no effect on central memory-like T cell marker CCR7. In summary, it is demonstrated that mouse resident memory T cell subsets defined by integrin expression in the lung have unique metabolic profiles, and that nutrient abundance can alter differentiation.
Collapse
Affiliation(s)
- Mike Sportiello
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
- Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY
| | - Alexis Poindexter
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Emma C. Reilly
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Adam Geber
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
- Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY
| | - Kris Lambert Emo
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Taylor N. Jones
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - David J. Topham
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
5
|
Li XP, Guo ZQ, Wang BF, Zhao M. EGFR alterations in glioblastoma play a role in antitumor immunity regulation. Front Oncol 2023; 13:1236246. [PMID: 37601668 PMCID: PMC10436475 DOI: 10.3389/fonc.2023.1236246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the most frequently altered gene in glioblastoma (GBM), which plays an important role in tumor development and anti-tumor immune response. While current molecular targeted therapies against the EGFR signaling pathway and its downstream key molecules have not demonstrated favorable clinical outcomes in GBM. Whereas tumor immunotherapies, especially immune checkpoint inhibitors, have shown durable antitumor responses in many cancers. However, the clinical efficacy is limited in patients carrying EGFR alterations, indicating that EGFR signaling may involve tumor immune response. Recent studies reveal that EGFR alterations not only promote GBM cell proliferation but also influence immune components in the tumor microenvironment (TME), leading to the recruitment of immunosuppressive cells (e.g., M2-like TAMs, MDSCs, and Tregs), and inhibition of T and NK cell activation. Moreover, EGFR alterations upregulate the expression of immunosuppressive molecules or cytokines (such as PD-L1, CD73, TGF-β). This review explores the role of EGFR alterations in establishing an immunosuppressive TME and hopes to provide a theoretical basis for combining targeted EGFR inhibitors with immunotherapy for GBM.
Collapse
Affiliation(s)
| | | | - Bao-Feng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Das S, Mishra RK, Agrawal A. Prognostic factors affecting outcome of multifocal or multicentric glioblastoma: A scoping review. J Neurosci Rural Pract 2023; 14:199-209. [PMID: 37181186 PMCID: PMC10174113 DOI: 10.25259/jnrp_41_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022] Open
Abstract
It has been reported that patients with multiple lesions have shorter overall survival compared to single lesion in glioblastoma (GBM). Number of lesions can profoundly impact the prognosis and treatment outcome in GBM. In view of the advancement of imaging, multiple GBM (mGBM) lesions are increasingly recognized and reported. The scoping review was conducted and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension statement for systematic review. Database was searched to collect relevant articles based on predefined eligibility criteria. Our observations suggest that multifocal/multicentric GBM has poorer outcome compared to GBM with singular lesion (sGBM). As the factors influencing the prognosis and outcome is poorly understood and there is no consensus in the existing literature, this review is clinically relevant. As patients with single lesion are more likely to undergo gross total excision, it is likely that further adjuvant treatment may be decided by extent of resection. This review will be helpful for design of further prospective randomized studies for optimal management of mGBM.
Collapse
Affiliation(s)
- Saikat Das
- Department of Radiation Oncology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Rakesh Kumar Mishra
- Department of Neurosurgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Amit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| |
Collapse
|
7
|
Zhang Y, Wang X, Shi M, Song Y, Yu J, Han S. Programmed death ligand 1 and tumor-infiltrating CD8+ T lymphocytes are associated with the clinical features in meningioma. BMC Cancer 2022; 22:1171. [DOI: 10.1186/s12885-022-10249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Objective
To investigate the expression of programmed death ligand-1 (PD-L1) and the levels of CD8+ tumor-infiltrating lymphocytes (TILs) in meningioma as well as determine the association between their levels and the clinical outcomes.
Methods
We performed a retrospective case-control study on 93 patients with meningioma. The patients showed tumor recurrence and were matched with the control patients without recurrence in their age, gender, admission time, tumor sites, tumor volume, peritumoral brain edema (PTBE), Simpson grade resection, WHO grade, postoperative radiotherapy, and the follow-up duration. We reviewed the clinical data of patients and performed immunohistochemistry analysis to investigate the PD-L1 expression and the levels of CD8+ TILs. Multivariate logistic regression was performed to analyze the association between clinical features and immune markers. The conditional logistic regression models were used to calculate the odds ratios (ORs) with 95% confidence intervals (CIs), and Kaplan–Meier analysis was performed to analyze tumor recurrence.
Results
Tumor volume was correlated with the PD-L1 expression (P = 0.003, HR = 5.288, 95%CI, 1.786–15.651). PTBE served as an independent predictor of CD8+ TIL levels (P = 0.001, HR = 0.176, 95%CI 0.065–0.477). The levels of CD8+ TILs were associated with tumor recurrence (P = 0.020, OR = 0.325, 95%CI, 0.125–0.840).
Conclusion
Tumor volume was associated with PD-L1 expression, and PTBE was an independent predictor of CD8+ TIL levels in meningioma. CD8+ TIL levels correlated with tumor recurrence in meningioma.
Collapse
|