1
|
Lan J, Feng D, He X, Zhang Q, Zhang R. Basic Properties and Development Status of Aluminum Adjuvants Used for Vaccines. Vaccines (Basel) 2024; 12:1187. [PMID: 39460352 PMCID: PMC11511158 DOI: 10.3390/vaccines12101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Aluminum adjuvants, renowned for their safety and efficacy, act as excellent adsorbents and vaccine immunogen enhancers, significantly contributing to innate, endogenous, and humoral immunity. An ideal adjuvant not only boosts the immune response but also ensures optimal protective immunity. Aluminum adjuvants are the most widely used vaccine adjuvants and have played a crucial role in both the prevention of existing diseases and the development of new vaccines. With the increasing emergence of new vaccines, traditional immune adjuvants are continually being researched and upgraded. The future of vaccine development lies in the exploration and integration of novel adjuvant technologies that surpass the capabilities of traditional aluminum adjuvants. One promising direction is the incorporation of nanoparticles, which offer precise delivery and controlled release of antigens, thereby enhancing the overall immune response. CONCLUSIONS This review summarizes the types, mechanisms, manufacturers, patents, advantages, disadvantages, and future prospects of aluminum adjuvants. Although aluminum adjuvants have certain limitations, their contribution to enhancing vaccine immunity is significant and cannot be ignored. Future research should continue to explore their mechanisms of action and address potential adverse reactions to achieve improved vaccine efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Rong Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 117004, China; (J.L.); (D.F.); (Q.Z.)
| |
Collapse
|
2
|
Tian T, Zhu Y, Shi J, Shang K, Yin Z, Shi H, He Y, Ding J, Zhang F. The development of a human Brucella mucosal vaccine: What should be considered? Life Sci 2024; 355:122986. [PMID: 39151885 DOI: 10.1016/j.lfs.2024.122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Brucellosis is a chronic infectious disease that is zoonotic in nature. Brucella can infect humans through interactions with livestock, primarily via the digestive tract, respiratory tract, and oral cavity. This bacterium has the potential to be utilized as a biological weapon and is classified as a Category B pathogen by the Centers for Disease Control and Prevention. Currently, there is no approved vaccine for humans against Brucella, highlighting an urgent need for the development of a vaccine to mitigate the risks posed by this pathogen. Brucella primarily infects its host by adhering to and penetrating mucosal surfaces. Mucosal immunity plays a vital role in preventing local infections, clearing microorganisms from mucosal surfaces, and inhibiting the spread of pathogens. As mucosal vaccine strategies continue to evolve, the development of a safe and effective mucosal vaccine against Brucella appears promising.This paper reviews the immune mechanism of mucosal vaccines, the infection mechanism of Brucella, successful Brucella mucosal vaccines in animals, and mucosal adjuvants. Additionally, it elucidates targeting and optimization strategies for mucosal vaccines to facilitate the development of human vaccines against Brucella.
Collapse
Affiliation(s)
- Tingting Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yuejie Zhu
- Reproductive Fertility Assistance Center, First Afffliated Hospital of Xinjiang Medical University, China
| | - Juan Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Kaiyu Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Zhengwei Yin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Huidong Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yueyue He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Jianbing Ding
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China; Department of Clinical laboratory, The First Affiliated hospital of Xinjiang Medical University, China.
| |
Collapse
|
3
|
Shi S, Zhang L, Zheng A, Xie F, Kesse S, Yang Y, Peng J, Xu Y. Enhanced anti-tumor efficacy of electroporation (EP)-mediated DNA vaccine boosted by allogeneic lymphocytes in pre-established tumor models. Cancer Immunol Immunother 2024; 73:248. [PMID: 39358555 PMCID: PMC11447239 DOI: 10.1007/s00262-024-03838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Tumor-reactive T cells play a crucial role in anti-tumor responses, but T cells induced by DNA vaccination are time-consuming processes and exhibit limited anti-tumor efficacy. Therefore, we evaluated the anti-tumor effectiveness of reactive T cells elicited by electroporation (EP)-mediated DNA vaccine targeting epidermal growth factor receptor variant III (pEGFRvIII plasmid), in conjunction with adoptive cell therapy (ACT), involving the transfer of lymphocytes from a pEGFRvIII EP-vaccinated healthy donor. METHODS The validation of the established pEGFRvIII plasmid and EGFRvIII-positive cell model was confirmed through immunofluorescence and western blot analysis. Flow cytometry and cytotoxicity assays were performed to evaluate the functionality of antigen-specific reactive T cells induced by EP-mediated pEGFRvIII vaccines, ACT, or their combination. The anti-tumor effectiveness of EP-mediated pEGFRvIII vaccines alone or combined with ACT was evaluated in the B16F10-EGFRvIII tumor model. RESULTS EP-mediated pEGFRvIII vaccines elicited serum antibodies and a robust cellular immune response in both healthy and tumor-bearing mice. However, this response only marginally inhibited early-stage tumor growth in established tumor models. EP-mediated pEGFRvIII vaccination followed by adoptive transfer of lymphocytes from vaccinated healthy donors led to notable anti-tumor efficacy, attributed to the synergistic action of antigen-specific CD4+ Th1 cells supplemented by ACT and antigen-specific CD8+ T cells elicited by the EP-mediated DNA vaccination. CONCLUSIONS Our preclinical studies results demonstrate an enhanced anti-tumor efficacy of EP-mediated DNA vaccination boosted with adoptively transferred, vaccinated healthy donor-derived allogeneic lymphocytes.
Collapse
Affiliation(s)
- Sanyuan Shi
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Luchen Zhang
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Anjie Zheng
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Fang Xie
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Samuel Kesse
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Yang Yang
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Jinliang Peng
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China.
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China.
- School of Pharmacy, Dali University, No. 22, Snowman Rd, Dali City, 671000, People's Republic of China.
| |
Collapse
|
4
|
Guo Q, Wang L, Wuriqimuge, Dong L, Feng M, Bao X, Zhang K, Cai Z, Qu X, Zhang S, Wu J, Wu H, Wang C, Yu X, Kong W, Zhang H. Metformin improved a heterologous prime-boost of dual-targeting cancer vaccines to inhibit tumor growth in a melanoma mouse model. Int Immunopharmacol 2024; 128:111431. [PMID: 38244520 DOI: 10.1016/j.intimp.2023.111431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
Therapeutic cancer vaccines, which induce anti-tumor immunity by targeting specific antigens, constitute a promising approach to cancer therapy. Our previous work proposed an optimized heterologous immunization strategy using cancer gene vaccines co-targeting MUC1 and survivin. Administration of a DNA vaccine three times within a week followed by a single recombinant MVA (rMVA) boost was able to efficiently induce anti-tumor immunity and inhibit tumor growth in tumor-bearing mouse models However, the complex immunosuppressive tumor microenvironment always limits infiltration by vaccine-induced T cells. Modifying the immunosuppressive microenvironment of tumors would be a breakthrough in enhancing the therapeutic effects of a cancer vaccine. Recent studies have reported that metformin, a type 2 diabetes drug, may ameliorate the tumor microenvironment, thereby enhancing anti-tumor immunity. Here, we tested whether the combinational therapeutic strategy of cancer vaccines administered with a heterologous prime-boost strategy with metformin enhanced anti-tumor effects in a melanoma mouse model. The results showed that metformin promoted the transition of M2-tumor-associated macrophages (M2-TAM) to M1-TAM, induced more tumor-infiltrating proliferative CD4 and CD8 T cells, and decreased exhausted T cells. This combinational treatment induced anti-tumor immunity from cancer vaccines, ameliorating the tumor microenvironment, showing improved tumor inhibition, and prolonging survival in tumor-bearing mice compared with either a cancer vaccine or metformin alone.
Collapse
Affiliation(s)
- Qianqian Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lizheng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wuriqimuge
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ling Dong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Mengfan Feng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xin Bao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ke Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zongyu Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xueli Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Shiqi Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
5
|
Takanashi A, Pouton CW, Al-Wassiti H. Delivery and Expression of mRNA in the Secondary Lymphoid Organs Drive Immune Responses to Lipid Nanoparticle-mRNA Vaccines after Intramuscular Injection. Mol Pharm 2023; 20:3876-3885. [PMID: 37491979 PMCID: PMC10411422 DOI: 10.1021/acs.molpharmaceut.2c01024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 07/27/2023]
Abstract
Lipid nanoparticles (LNPs) are the prime delivery vehicle for mRNA vaccines. Previous hypotheses suggested that LNPs contribute to innate reactogenicity and lead to the establishment of a vaccine adaptive response. It has not been clear whether LNP adjuvancy in the muscle is the prime driver of adaptive immune responses or whether delivery to secondary lymphatic organs is necessary to induce strong adaptive responses. To address this, we formulated reporter gene (NLuc) or OVA mRNA into LNP or coadministered the mRNA with empty LNP. After IM injection, we correlated the delivery with adaptive immune responses. Additionally, we investigated humoral responses to modified mRNA encoding the SARS-CoV-2 spike protein. Compared to unformulated mRNA encoding nanoluciferase, with or without co-administered empty LNPs, LNP-formulated mRNA resulted in high levels of nanoluciferase in the secondary lymphoid organs. Similarly, LNP-mRNA encoding ovalbumin led to a cellular immune response against OVA while free mRNA, with or without empty adjuvanted LNPs, caused little or no immune response. Finally, only mice injected with LNP-formulated mRNA encoding SARS-CoV-2 spike protein elicited robust cellular and humoral immune responses. Our results suggest that the mRNA delivery and transfection of secondary lymphatic organs, not LNP adjuvancy or RNA expression in muscle, are the main drivers for adaptive immune response in mice. This work informs the design of next-generation mRNA delivery systems where better delivery to secondary lymphatic organs should lead to a better vaccine response.
Collapse
Affiliation(s)
- Asuka Takanashi
- Drug Delivery, Disposition
and Dynamics (D4), Monash Institute of Pharmaceutical
Sciences, Monash University (Parkville Campus), Parkville, VIC 3052, Australia
| | - Colin W. Pouton
- Drug Delivery, Disposition
and Dynamics (D4), Monash Institute of Pharmaceutical
Sciences, Monash University (Parkville Campus), Parkville, VIC 3052, Australia
| | - Hareth Al-Wassiti
- Drug Delivery, Disposition
and Dynamics (D4), Monash Institute of Pharmaceutical
Sciences, Monash University (Parkville Campus), Parkville, VIC 3052, Australia
| |
Collapse
|