1
|
Chen H, Wang X, Liu S, Tang Z, Xie F, Yin J, Sun P, Wang H. Circular RNA in Pancreatic Cancer: Biogenesis, Mechanism, Function and Clinical Application. Int J Med Sci 2025; 22:1612-1629. [PMID: 40093798 PMCID: PMC11905278 DOI: 10.7150/ijms.107773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Circular RNAs (circRNAs) are a class of novel RNA molecules featured by single-strand covalently closed circular structure, which not only are extensively found in eukaryotes and are highly conserved, but also conduct paramount roles in the occurrence and progression of pancreatic cancer (PC) through diverse mechanisms. As recent studies have demonstrated, circRNAs typically exhibit tissue-specific and cell specific expression patterns, with strong potential as biomarkers for disease diagnosis and prognosis. On the basis of their localization and specific interactions with DNA, RNA, and proteins, circRNAs are considered to possess specific biological functions by acting as microRNA (miRNA) sponges, RNA binding protein (RBP) sponges, transcriptional regulators, molecular scaffolds and translation templates. On that account, further addressing the technical difficulties in the detection and research of circRNAs and filling gaps in their biological knowledge will definitely push ahead this comparatively young research field and bring circRNAs to the forefront of clinical practice. Thus, this review systematically summarizes the biogenesis, function, molecular mechanisms, biomarkers and therapeutic targets of circRNAs in PC.
Collapse
Affiliation(s)
- Hang Chen
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Shan Liu
- Department of Anesthesiology, Chongqing Seventh People's Hospital, Chongqing University of Technology, Chongqing, 400054, China
| | - Ziwei Tang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
- Chongqing Medical University, Chongqing, 400016, China
| | - Fuming Xie
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Jingyang Yin
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Pijiang Sun
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| |
Collapse
|
2
|
Dong F, Zhou J, Wu Y, Gao Z, Li W, Song Z. MicroRNAs in pancreatic cancer drug resistance: mechanisms and therapeutic potential. Front Cell Dev Biol 2025; 12:1499111. [PMID: 39882259 PMCID: PMC11774998 DOI: 10.3389/fcell.2024.1499111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Pancreatic cancer (PC) remains one of the most lethal malignancies, primarily due to its intrinsic resistance to conventional therapies. MicroRNAs (miRNAs), key regulators of gene expression, have been identified as crucial modulators of drug resistance mechanisms in this cancer type. This review synthesizes recent advancements in our understanding of how miRNAs influence treatment efficacy in PC. We have thoroughly summarized and discussed the complex role of miRNA in mediating drug resistance in PC treatment. By highlighting specific miRNAs that are implicated in drug resistance pathways, we provide insights into their functional mechanisms and interactions with key molecular targets. We also explore the potential of miRNA-based strategies as novel therapeutic approaches and diagnostic tools to overcome resistance and improve patient outcomes. Despite promising developments, challenges such as specificity, stability, and effective delivery of miRNA-based therapeutics remain. This review aims to offer a critical perspective on current research and propose future directions for leveraging miRNA-based interventions in the fight against PC.
Collapse
Affiliation(s)
- Fangying Dong
- Emergency Department, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jing Zhou
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yijie Wu
- Department of general practice, Taozhuang Branch of the First People’s Hospital of Jiashan, Jiaxing, Zhejiang, China
| | - Zhaofeng Gao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Weiwei Li
- Emergency Department, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
3
|
Zeng Y, Zeng Q, Yang B, Hu Y. Therapeutic strategies to overcome ALK-fusion and BRAF-mutation as acquired resistance mechanism in EGFR-mutated non-small cell lung cancer: two case reports. Front Oncol 2024; 14:1390523. [PMID: 39555453 PMCID: PMC11563980 DOI: 10.3389/fonc.2024.1390523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. EGFR tyrosine inhibitors are the preferred first-line treatment for patients with epidermal growth factor-cell receptor mutant (EGFR mutant) advanced NSCLC. Unfortunately, drug resistance inevitably occurs leading to disease progression. Activation of the ALK and BRAF bypass signaling pathways is a rare cause of acquired drug resistance for EGFR-TKIs.We report two NSCLC-patients with EGFR- mutations, in exon 19, and exon 18, correspondingly, who were treated with EGFR-TKIs. The first case shows acquired BRAF-mutation, and the second case demonstrates acquired ALK-fusion. The overall survival of patients was significantly prolonged by drug-match therapies. As it is well-known that ALK-fusion and BRAF-mutations are described forms of acquired resistance. These two case reports contribute to the previous reports that ALK-fusion and BRAF-mutation are potential underlying mechanisms of EGFR-TKI resistance.
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zeng
- Department of Intensive Care Unit, Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Bin Yang
- Department of Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Hu
- Department of Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Tang X, Guo M, Zhang Y, Lv J, Gu C, Yang Y. Examining the evidence for mutual modulation between m6A modification and circular RNAs: current knowledge and future prospects. J Exp Clin Cancer Res 2024; 43:216. [PMID: 39095902 PMCID: PMC11297759 DOI: 10.1186/s13046-024-03136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The resistance of cancer cells to treatment significantly impedes the success of therapy, leading to the recurrence of various types of cancers. Understanding the specific mechanisms of therapy resistance may offer novel approaches for alleviating drug resistance in cancer. Recent research has shown a reciprocal relationship between circular RNAs (circRNAs) and N6-methyladenosine (m6A) modification, and their interaction can affect the resistance and sensitivity of cancer therapy. This review aims to summarize the latest developments in the m6A modification of circRNAs and their importance in regulating therapy resistance in cancer. Furthermore, we explore their mutual interaction and exact mechanisms and provide insights into potential future approaches for reversing cancer resistance.
Collapse
Affiliation(s)
- Xiaozhu Tang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengjie Guo
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junxian Lv
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
5
|
Weidle UH, Nopora A. CircRNAs in Pancreatic Cancer: New Tools for Target Identification and Therapeutic Intervention. Cancer Genomics Proteomics 2024; 21:327-349. [PMID: 38944427 PMCID: PMC11215428 DOI: 10.21873/cgp.20451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024] Open
Abstract
We have reviewed the literature for circular RNAs (circRNAs) with efficacy in preclinical pancreatic-cancer related in vivo models. The identified circRNAs target chemoresistance mechanisms (n=5), secreted proteins and transmembrane receptors (n=15), transcription factors (n=9), components of the signaling- (n=11), ubiquitination- (n=2), autophagy-system (n=2), and others (n=9). In addition to identifying targets for therapeutic intervention, circRNAs are potential new entities for treatment of pancreatic cancer. Up-regulated circRNAs can be inhibited by antisense oligonucleotides (ASO), small interfering RNAs (siRNAs), short hairpin RNAs (shRNAs) or clustered regularly interspaced short-palindromic repeats-CRISPR associated protein (CRISPR-CAS)-based intervention. The function of down-regulated circRNAs can be reconstituted by replacement therapy using plasmids or virus-based vector systems. Target validation experiments and the development of improved delivery systems for corresponding agents were examined.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
6
|
Qiu M, Chen Y, Zeng C. Biological functions of circRNA in regulating the hallmarks of gastrointestinal cancer (Review). Int J Oncol 2024; 64:49. [PMID: 38488023 PMCID: PMC10997371 DOI: 10.3892/ijo.2024.5637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Circular RNA (circRNA) was first observed in the cytoplasm of eukaryotic cells in 1979, but it was not characterized in detail until 2012, when high‑throughput sequencing technology was more advanced and available. Consequently, the mechanism of circRNA formation and its biological function have been progressively elucidated by researchers. circRNA is abundant in eukaryotic cells and exhibits a certain degree of organization, timing and disease‑specificity. Additionally, it is poorly degradable, meeting the characteristics of an ideal clinical biomarker. In the present review, the recent research progress of circRNAs in digestive tract malignant tumors was primarily discussed. This included the roles, biological functions and clinical significance of circRNA, providing references for its research value and clinical potential in gastrointestinal cancer.
Collapse
Affiliation(s)
- Mengjun Qiu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Youxiang Chen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chunyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
7
|
Wei L, Sun J, Wang X, Huang Y, Huang L, Han L, Zheng Y, Xu Y, Zhang N, Yang M. Noncoding RNAs: an emerging modulator of drug resistance in pancreatic cancer. Front Cell Dev Biol 2023; 11:1226639. [PMID: 37560164 PMCID: PMC10407809 DOI: 10.3389/fcell.2023.1226639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
Pancreatic cancer is the eighth leading cause of cancer-related deaths worldwide. Chemotherapy including gemcitabine, 5-fluorouracil, adriamycin and cisplatin, immunotherapy with immune checkpoint inhibitors and targeted therapy have been demonstrated to significantly improve prognosis of pancreatic cancer patients with advanced diseases. However, most patients developed drug resistance to these therapeutic agents, which leading to shortened patient survival. The detailed molecular mechanisms contributing to pancreatic cancer drug resistance remain largely unclear. The growing evidences have shown that noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are involved in pancreatic cancer pathogenesis and development of drug resistance. In the present review, we systematically summarized the new insight on of various miRNAs, lncRNAs and circRNAs on drug resistance of pancreatic cancer. These results demonstrated that targeting the tumor-specific ncRNA may provide novel options for pancreatic cancer treatments.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Linying Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yanxiu Zheng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuan Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Xu C, Ye Q, Ye C, Liu S. circACTR2 attenuates gemcitabine chemoresiatance in pancreatic cancer through PTEN mediated PI3K/AKT signaling pathway. Biol Direct 2023; 18:14. [PMID: 36991449 PMCID: PMC10061898 DOI: 10.1186/s13062-023-00368-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Recently, accumulating studies have unveiled that circRNAs exert critical function in a variety of tumor biological processes including chemoresistance. Our previous study has found circACTR2 is significantly down-regulated in acquired gemcitabine (GEM)- resistant pancreatic cancer (PC) cells, which has not been well-explored. Our study aimed to research the function and molecular mechanism of circACTR2 in PC chemoresistance. METHODS qRT-PCR and western blot analysis was performed to detect gene expression. The effect of circACTR2 on PC GEM resistance were examined by CCK-8 and flow cytometry assays. Whether circACTR2 could sponge miR-221-3p and regulate PTEN expression were determined by bioinformatics analysis, RNA pull-down, and Dual-luciferase reporter assay. RESULTS circACTR2 was notably down-regulated in a panel of GEM-resistant PC cells lines, and negatively associated with aggressive phenotype and poor prognosis of PC. circACTR2 downregulation contributed to GEM chemoresistance of PC cells with decreased S phase ratio of cell cycle and cell apoptosis, as confirmed by gain- and loss-of-function assays in vitro. In addition, circACTR2 overexpression retarded GEM resistance in vivo. Further, circACTR2 acted as a ceRNA against miR-221-3p, which directly targeted PTEN. The mechanistic studies revealed that loss of circACTR2 promoted GEM resistance in PC through activating the PI3K/AKT signaling pathway by downregulating PTEN expression in a miR-221-3p dependent manner. CONCLUSIONS circACTR2 reversed the chemoresistance of PC cells to GEM through inhibiting PI3K/AKT signaling pathway by sponging miR-221-3p and upregulating PTEN expression.
Collapse
Affiliation(s)
- Chao Xu
- Department of Gastroenterology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, P.R. China.
| | - Qinwen Ye
- Department of Gastroenterology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, P.R. China
| | - Chao Ye
- Department of Gastroenterology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, P.R. China
| | - Shaojun Liu
- Department of Gastrointestinal surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| |
Collapse
|
9
|
Prognostic, Diagnostic, and Clinicopathological Significance of Circular RNAs in Pancreatic Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14246187. [PMID: 36551673 PMCID: PMC9777076 DOI: 10.3390/cancers14246187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic cancer (PC) is a highly aggressive malignant tumor with a high mortality rate. It is urgent to find optimal molecular targets for the early diagnosis and treatment of PC. Here, we aimed to systematically analyze the prognostic, diagnostic, and clinicopathological significance of circular RNAs (circRNAs) in PC. Relevant studies were screened through PubMed, Web of Science, and other databases. The prognostic value of PC-associated circRNAs was assessed using the composite hazard ratio (HR), the diagnostic performance was assessed using the area under the summary receiver operator characteristic (SROC) curve (AUC), and the correlation with clinicopathological characteristics using the composite odds ratio (OR) was explored. In our study, 48 studies were included: 34 for prognosis, 11 for diagnosis, and 30 for correlation with clinicopathological characteristics. For prognosis, upregulated circRNAs were associated with poorer overall survival (OS) (HR = 2.02) and disease-free survival/progression-free survival (HR = 1.84) while downregulated circRNAs were associated with longer OS (HR = 0.55). Notably, the combination of circRNAs, including hsa_circ_0064288, hsa_circ_0000234, hsa_circ_0004680, hsa_circ_0071036, hsa_circ_0000677, and hsa_circ_0001460, was associated with worse OS (HR = 2.35). For diagnosis, the AUC was 0.83, and the pooled sensitivity and specificity were 0.79 and 0.73, respectively. For clinicopathologic characteristics, upregulated circRNAs were associated with poorer tumor differentiation, more nerve and vascular invasion, higher T stage, lymphatic metastasis, distant metastasis, advanced TNM stage, and higher preoperative CA19-9 level. In contrast, downregulated circRNAs were negatively associated with PC differentiation and lymphatic metastasis. Overall, our results showed that circRNAs are closely related to the prognosis and clinicopathological characteristics of PC patients and could be utilized for early diagnosis; thus, they are promising biomarkers for clinical application in PC.
Collapse
|
10
|
Seimiya T, Otsuka M, Fujishiro M. Roles of circular RNAs in the pathogenesis and treatment of pancreatic cancer. Front Cell Dev Biol 2022; 10:1023332. [PMID: 36467402 PMCID: PMC9712786 DOI: 10.3389/fcell.2022.1023332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 08/29/2023] Open
Abstract
Circular RNAs are single-stranded RNAs with a covalently closed structure formed by the process of back-splicing. Aberrant expression of circular RNAs contributes to the pathogenesis of a wide range of cancers. Pancreatic cancer is one of the most lethal cancers due to diagnostic difficulties and limited therapeutic options. Circular RNAs are emerging as novel diagnostic biomarkers and therapeutic targets for pancreatic cancer. Moreover, recent advances in the therapeutic application of engineered circular RNAs have provided a promising approach to overcoming pancreatic cancer. This review discusses the roles of circular RNAs in the pathogenesis of pancreatic cancer and in potential treatment applications and their usefulness as diagnostic biomarkers.
Collapse
Affiliation(s)
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
11
|
Yan T, Tian X, Liu F, Liu Q, Sheng Q, Wu J, Jiang S. The emerging role of circular RNAs in drug resistance of non-small cell lung cancer. Front Oncol 2022; 12:1003230. [PMID: 36303840 PMCID: PMC9592927 DOI: 10.3389/fonc.2022.1003230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Due to the characteristics of aggressiveness and high risk of postoperative recurrence, non-small cell lung cancer (NSCLC) is a serious hazard to human health, accounting for 85% of all lung cancer cases. Drug therapies, including chemotherapy, targeted therapy and immunotherapy, are effective treatments for NSCLC in clinics. However, most patients ultimately develop drug resistance, which is also the leading cause of treatment failure in cancer. To date, the mechanisms of drug resistance have yet to be fully elucidated, thus original strategies are developed to overcome this issue. Emerging studies have illustrated that circular RNAs (circRNAs) participate in the generation of therapeutic resistance in NSCLC. CircRNAs mediate the modulations of immune cells, cytokines, autophagy, ferroptosis and metabolism in the tumor microenvironment (TME), which play essential roles in the generation of drug resistance of NSCLC. More importantly, circRNAs function as miRNAs sponges to affect specific signaling pathways, directly leading to the generation of drug resistance. Consequently, this review highlights the mechanisms underlying the relationship between circRNAs and drug resistance in NSCLC. Additionally, several therapeutic drugs associated with circRNAs are summarized, aiming to provide references for circRNAs serving as potential therapeutic targets in overcoming drug resistance in NSCLC.
Collapse
Affiliation(s)
- Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinchen Tian
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qing Sheng
- School of Architecture and Fine Art, Dalian University of Technology, Dalian, China
| | - Jianlin Wu
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Jianlin Wu, ; Shulong Jiang,
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Jianlin Wu, ; Shulong Jiang,
| |
Collapse
|
12
|
Lin H, Wang Y, Wang P, Long F, Wang T. Mutual regulation between N6-methyladenosine (m6A) modification and circular RNAs in cancer: impacts on therapeutic resistance. Mol Cancer 2022; 21:148. [PMID: 35843942 PMCID: PMC9290271 DOI: 10.1186/s12943-022-01620-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/08/2022] [Indexed: 02/08/2023] Open
Abstract
The resistance of tumor cells to therapy severely impairs the efficacy of treatment, leading to recurrence and metastasis of various cancers. Clarifying the underlying mechanisms of therapeutic resistance may provide new strategies for overcoming cancer resistance. N6-methyladenosine (m6A) is the most prevalent RNA modification in eukaryotes, and is involved in the regulation of RNA splicing, translation, transport, degradation, stability and processing, thus affecting several physiological processes and cancer progression. As a novel type of multifunctional non-coding RNAs (ncRNAs), circular RNAs (circRNAs) have been demonstrated to play vital roles in anticancer therapy. Currently, accumulating studies have revealed the mutual regulation of m6A modification and circRNAs, and their interaction can further influence the sensitivity of cancer treatment. In this review, we mainly summarized the recent advances of m6A modification and circRNAs in the modulation of cancer therapeutic resistance, as well as their interplay and potential mechanisms, providing promising insights and future directions in reversal of therapeutic resistance in cancer.
Collapse
Affiliation(s)
- Hong Lin
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China.
| | - Ting Wang
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
13
|
Guo L, Jia L, Luo L, Xu X, Xiang Y, Ren Y, Ren D, Shen L, Liang T. Critical Roles of Circular RNA in Tumor Metastasis via Acting as a Sponge of miRNA/isomiR. Int J Mol Sci 2022; 23:ijms23137024. [PMID: 35806027 PMCID: PMC9267010 DOI: 10.3390/ijms23137024] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs), a class of new endogenous non-coding RNAs (ncRNAs), are closely related to the carcinogenic process and play a critical role in tumor metastasis. CircRNAs can lay the foundation for tumor metastasis via promoting tumor angiogenesis, make tumor cells gain the ability of migration and invasion by regulating epithelial-mesenchymal transition (EMT), interact with immune cells, cytokines, chemokines, and other non-cellular components in the tumor microenvironment, damage the normal immune function or escape the immunosuppressive network, and further promote cell survival and metastasis. Herein, based on the characteristics and biological functions of circRNA, we elaborated on the effect of circRNA via circRNA-associated competing endogenous RNA (ceRNA) network by acting as miRNA/isomiR sponges on tumor angiogenesis, cancer cell migration and invasion, and interaction with the tumor microenvironment (TME), then explored the potential interactions across different RNAs, and finally discussed the potential clinical value and application as a promising biomarker. These results provide a theoretical basis for the further application of metastasis-related circRNAs in cancer treatment. In summary, we briefly summarize the diverse roles of a circRNA-associated ceRNA network in cancer metastasis and the potential clinical application, especially the interaction of circRNA and miRNA/isomiR, which may complicate the RNA regulatory network and which will contribute to a novel insight into circRNA in the future.
Collapse
Affiliation(s)
- Li Guo
- Smart Health Big Data Analysis and Location Services Engineering Laboratory of Jiangsu Province, Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.X.); (Y.R.); (D.R.)
| | - Lin Jia
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (L.J.); (L.L.); (X.X.); (L.S.)
| | - Lulu Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (L.J.); (L.L.); (X.X.); (L.S.)
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (L.J.); (L.L.); (X.X.); (L.S.)
| | - Yangyang Xiang
- Smart Health Big Data Analysis and Location Services Engineering Laboratory of Jiangsu Province, Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.X.); (Y.R.); (D.R.)
| | - Yujie Ren
- Smart Health Big Data Analysis and Location Services Engineering Laboratory of Jiangsu Province, Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.X.); (Y.R.); (D.R.)
| | - Dekang Ren
- Smart Health Big Data Analysis and Location Services Engineering Laboratory of Jiangsu Province, Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.G.); (Y.X.); (Y.R.); (D.R.)
| | - Lulu Shen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (L.J.); (L.L.); (X.X.); (L.S.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (L.J.); (L.L.); (X.X.); (L.S.)
- Correspondence:
| |
Collapse
|
14
|
Wang S, Qian L, Cao T, Xu L, Jin Y, Hu H, Fu Q, Li Q, Wang Y, Wang J, Xia Y, Huang X. Advances in the Study of CircRNAs in Tumor Drug Resistance. Front Oncol 2022; 12:868363. [PMID: 35615158 PMCID: PMC9125088 DOI: 10.3389/fonc.2022.868363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have revealed that circRNAs can affect tumor DNA damage and repair, apoptosis, proliferation, and invasion and influence the transport of intratumor substances by acting as miRNA sponges and transcriptional regulators and binding to proteins in a variety of ways. However, research on the role of circRNAs in cancer radiotherapy and chemoresistance is still in its early stages. Chemotherapy is a common approach to oncology treatment, but the development of tumor resistance limits the overall clinical efficacy of chemotherapy for cancer patients. The current study suggests that circRNAs have a facilitative or inhibitory effect on the development of resistance to conventional chemotherapy in a variety of tumors, suggesting that circRNAs may serve as a new direction for the study of antitumor drug resistance. In this review, we will briefly discuss the biological features of circRNAs and summarize the recent progression of the involvement of circRNAs in the development and pathogenesis of cancer chemoresistance.
Collapse
Affiliation(s)
- Song Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Long Qian
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Tingting Cao
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Li Xu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Yan Jin
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Hao Hu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Qingsheng Fu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Qian Li
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Ye Wang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Jiawei Wang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Yabin Xia
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Xiaoxu Huang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
- *Correspondence: Xiaoxu Huang,
| |
Collapse
|
15
|
Xiao R, Wang H, Yang B. MicroRNA-98-5p modulates cervical cancer progression via controlling PI3K/AKT pathway. Bioengineered 2021; 12:10596-10607. [PMID: 34895048 PMCID: PMC8810110 DOI: 10.1080/21655979.2021.2000722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/13/2023] Open
Abstract
To probe into the potential mechanism of microRNA (miR)-98-5p inhibiting the biological progress of cervical cancer (CC) cells via regulating PI3K/Akt pathway. Reverse transcription quantitative polymerase chain reaction was applied to detect miR-98-5p expression in CC tissues and cell lines; Cell counting kit-8 and Edu analysis were performed for checking cell proliferation, flow cytometry for cell apoptosis, transwell for cell invasion and migration, Western blot for proliferation-related proteins Ki67 and Proliferating cell nuclear antigen expression, apoptosis-related proteins Bcl-2 and Bax expression, epithelial-mesenchymal transition (EMT)-related proteins Snail, matrix metalloproteinase-3, E-cadherin and N-cadherin expression, as well as PI3K/Akt pathway-related proteins PTEN, PI3K as well as Akt expression levels, and the nude mouse tumor xenograft experiment was applied to verify in vivo. The result clarified, miR-98-5p was reduced in CC. Overexpression miR-98-5p could inhibit CC cell proliferation, invasion, migration and EMT, whereas promoted its apoptosis, but silencing miR-98-5p was opposite. Overexpression miR-98-5p could depress the activation of PI3K/Akt pathway in CC in vivo and in vitro. MiR-98-5p targeted CBX5. In short, miR-98-5p is able to be used as a potential target for treating CC in future research.
Collapse
Affiliation(s)
- RongXin Xiao
- Department of Gynaecology, Funing People’s Hospital, Yancheng City, JiangSu Province, China
| | - Hong Wang
- Department of Gynaecology, Funing People’s Hospital, Yancheng City, JiangSu Province, China
| | - Biao Yang
- Department of Gynaecology, Funing People’s Hospital, Yancheng City, JiangSu Province, China
| |
Collapse
|
16
|
Tanabe S, Quader S, Ono R, Cabral H, Aoyagi K, Hirose A, Yokozaki H, Sasaki H. Cell Cycle Regulation and DNA Damage Response Networks in Diffuse- and Intestinal-Type Gastric Cancer. Cancers (Basel) 2021; 13:5786. [PMID: 34830941 PMCID: PMC8616335 DOI: 10.3390/cancers13225786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Dynamic regulation in molecular networks including cell cycle regulation and DNA damage response play an important role in cancer. To reveal the feature of cancer malignancy, gene expression and network regulation were profiled in diffuse- and intestinal-type gastric cancer (GC). The results of the network analysis with Ingenuity Pathway Analysis (IPA) showed that the activation states of several canonical pathways related to cell cycle regulation were altered. The G1/S checkpoint regulation pathway was activated in diffuse-type GC compared to intestinal-type GC, while canonical pathways of the cell cycle control of chromosomal replication, and the cyclin and cell cycle regulation, were activated in intestinal-type GC compared to diffuse-type GC. A canonical pathway on the role of BRCA1 in the DNA damage response was activated in intestinal-type GC compared to diffuse-type GC, where gene expression of BRCA1, which is related to G1/S phase transition, was upregulated in intestinal-type GC compared to diffuse-type GC. Several microRNAs (miRNAs), such as mir-10, mir-17, mir-19, mir-194, mir-224, mir-25, mir-34, mir-451 and mir-605, were identified to have direct relationships in the G1/S cell cycle checkpoint regulation pathway. Additionally, cell cycle regulation may be altered in epithelial-mesenchymal transition (EMT) conditions. The alterations in the activation states of the pathways related to cell cycle regulation in diffuse- and intestinal-type GC highlighted the significance of cell cycle regulation in EMT.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan;
| | - Sabina Quader
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan;
| | - Ryuichi Ono
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan;
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-0033, Japan;
| | - Kazuhiko Aoyagi
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Akihiko Hirose
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan;
| | - Hiroshi Yokozaki
- Department of Pathology, Kobe University of Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Hiroki Sasaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| |
Collapse
|