1
|
Ladbury C, Sidiqi B, Cantrell N, Jones G, Skalina KA, Fekrmandi F, Andraos TY, Gogineni E, Dolan J, Siva S, Slotman B, Lee P. Stereotactic Body Radiation Therapy for Primary Lung Cancer and Metastases: A Case-Based Discussion on Challenging Cases. Pract Radiat Oncol 2025; 15:262-276. [PMID: 39424129 DOI: 10.1016/j.prro.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Data informing the safety, efficacy, treatment logistics, and dosimetry of stereotactic body radiation therapy (SBRT) for lung tumors has primarily been derived from patients with favorably located solitary tumors. SBRT is now considered a standard-of-care treatment for inoperable early-stage non-small cell lung cancer and lung metastases, and therefore extrapolation beyond this limited foundational patient population remains an active source of interest. METHODS AND MATERIALS This case-based discussion provides a practical framework for delivering SBRT to challenging, yet frequently encountered, cases in radiation oncology. The cases highlighted herein include the use of SBRT for ultracentral tumors, multiple tumors, and reirradiation. Patient characteristics, fractionation, prescription dose, treatment technique, and dose constraints are discussed. Relevant literature to these cases is summarized to provide a framework for the treatment of similar patients. RESULTS Treatment of challenging cases with lung SBRT requires many considerations, including treatment intent, fractionation selection, tumor localization, and plan optimization. In such scenarios, patient selection is critical to understanding the risk-benefit profile of an SBRT approach despite significant advances in delivery techniques and safety. CONCLUSIONS A case-based discussion was developed by the Radiosurgery Society to provide a practical guide to the common challenging scenarios noted above affecting patients with lung tumors. A multidisciplinary approach should guide the treatment of such cases to maximize the therapeutic window.
Collapse
Affiliation(s)
- Colton Ladbury
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California
| | - Baho Sidiqi
- Department of Radiation Medicine, Northwell Health Cancer Institute, New Hyde Park, New York
| | - Nate Cantrell
- Department of Radiation Oncology, University of Oklahoma, Oklahoma City, Oklahoma
| | - Gavin Jones
- Department of Radiation Oncology, Tufts Medical Center, Boston, Massachusetts
| | - Karin A Skalina
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York
| | - Fatemeh Fekrmandi
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Therese Y Andraos
- Department of Radiation Oncology, The Ohio State University James Cancer Hospital, Columbus, Ohio
| | - Emile Gogineni
- Department of Radiation Oncology, The Ohio State University James Cancer Hospital, Columbus, Ohio
| | - Jennifer Dolan
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victora, Australia
| | - Ben Slotman
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Percy Lee
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California; Department of Radiation Oncology, City of Hope Orange County Lennar Foundation Cancer Center, Irvine, California.
| |
Collapse
|
2
|
Psoroulas S, Paunoiu A, Corradini S, Hörner-Rieber J, Tanadini-Lang S. MR-linac: role of artificial intelligence and automation. Strahlenther Onkol 2025; 201:298-305. [PMID: 39843783 PMCID: PMC11839841 DOI: 10.1007/s00066-024-02358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/27/2024] [Indexed: 01/24/2025]
Abstract
The integration of artificial intelligence (AI) into radiotherapy has advanced significantly during the past 5 years, especially in terms of automating key processes like organ at risk delineation and treatment planning. These innovations have enhanced consistency, accuracy, and efficiency in clinical practice. Magnetic resonance (MR)-guided linear accelerators (MR-linacs) have greatly improved treatment accuracy and real-time plan adaptation, particularly for tumors near radiosensitive organs. Despite these improvements, MR-guided radiotherapy (MRgRT) remains labor intensive and time consuming, highlighting the need for AI to streamline workflows and support rapid decision-making. Synthetic CTs from MR images and automated contouring and treatment planning will reduce manual processes, thus optimizing treatment times and expanding access to MR-linac technology. AI-driven quality assurance will ensure patient safety by predicting machine errors and validating treatment delivery. Advances in intrafractional motion management will increase the accuracy of treatment, and the integration of imaging biomarkers for outcome prediction and early toxicity assessment will enable more precise and effective treatment strategies.
Collapse
Affiliation(s)
- Serena Psoroulas
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Alina Paunoiu
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
3
|
Regnery S, Katsigiannopulos E, Lau H, Hoegen-Saßmannshausen P, Weykamp F, Renkamp CK, Rippke C, Schlüter F, Albert S, Meis J, Kirchner M, Balzer A, Andratschke N, Guckenberger M, Debus J, Klüter S, Hörner-Rieber J. How to protect the proximal bronchial tree during stereotactic radiotherapy of ultracentral lung tumors: Lessons from MR-guided treatment. Clin Transl Radiat Oncol 2025; 51:100899. [PMID: 39790128 PMCID: PMC11714375 DOI: 10.1016/j.ctro.2024.100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose To use imaging data from stereotactic MR-guided online adaptive radiotherapy (SMART) of ultracentral lung tumors (ULT) for development of a safe non-adaptive approach towards stereotactic body radiotherapy (SBRT) of ULT. Patients and Methods Analysis is based on 19 patients with ULT who received SMART (10 × 5.0-5.5 Gy) on a 0.35 T MR-Linac (MRIdian®) in the prospective MAGELLAN trial. 4D-planning CT data of six patients served to quantify proximal bronchial tree (PBT) breathing motion. Daily fraction MRIs are used to calculate interfractional translations (mediolateral (ML), anterior-posterior (AP), superior-inferior (SI)) and their dosimetric consequences for the PBT. A planning risk volume (PRV) is calculated for an assumed non-adaptive SBRT in deep-inspiration breath hold (DIBH) with surface-guidance (AlignRT®). Finally, non-adaptive volumetric modulated arc (VMAT) SBRT is simulated with and without a PRV for N = 10 patients (10 × 5.5 Gy). Results The PBT shows relevant breathing motion, especially in superior-inferior direction (median ML: 2.5 mm, AP: 1.9 mm and SI: 9.2 mm). Furthermore, moderate interfractional translations are observed (mean absolute translation ML: 1.3 mm, AP: 1.3 mm, SI: 1.1 mm), with an estimated 2 mm PRV margin for interfractional changes alone. Simulated non-adaptive SBRT leads to PBT overdoses in 60 % of patients (median overdosed fractions VMAT: 2.5, predicted MR-linac plans 4). Both MR-guided online plan adaptation (SMART) and PRV-based non-adaptive VMAT prevent PBT overdoses, but SMART yields significantly higher planning target volume (PTV) coverage (SMART: median 96 % [IQR 95-96], VMAT: median 89 % [IQR 77-94], p = 0.014). Conclusions Both intrafractional breathing motion and interfractional translations may impact doses to the PBT during SBRT of ULT. SMART protects the PBT from overdoses while maintaining high PTV coverage. Non-adaptive SBRT appears safe with advanced breathing motion management and PRV, but yields inferior PTV coverage.
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Efthimios Katsigiannopulos
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
| | - Hin Lau
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Philipp Hoegen-Saßmannshausen
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Katharina Renkamp
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Fabian Schlüter
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Sophia Albert
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Jan Meis
- Institute of Medical Biometry University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Marietta Kirchner
- Institute of Medical Biometry University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Alexandra Balzer
- Institute of Medical Biometry University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Riou O, Prunaretty J, Michalet M. Personalizing radiotherapy with adaptive radiotherapy: Interest and challenges. Cancer Radiother 2024; 28:603-609. [PMID: 39353797 DOI: 10.1016/j.canrad.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 10/04/2024]
Abstract
Adaptive radiotherapy (ART) is a recent development in radiotherapy technology and treatment personalization that allows treatment to be tailored to the daily anatomical changes of patients. While it was until recently only performed "offline", i.e. between two radiotherapy sessions, it is now possible during ART to perform a daily online adaptive process for a given patient. Therefore, ART allows a daily customization to ensure optimal coverage of the treatment target volumes with minimized margins, taking into account only the uncertainties related to the adaptive process itself. This optimization appears particularly relevant in case of daily variations in the positioning of the target volume or of the organs at risk (OAR) associated with a proximity of these volumes and a tenuous therapeutic index. ART aims to minimize severe acute and late toxicity and allows tumor dose escalation. These new achievements have been possible thanks to technological development, the contribution of new multimodal and onboard imaging modalities and the integration of artificial intelligence tools for the contouring, planning and delivery of radiation therapy. Online ART is currently available on two types of radiotherapy machines: MR-linear accelerators and recently CBCT-linear accelerators. We will first describe the benefits, advantages, constraints and limitations of each of these two modalities, as well as the online adaptive process itself. We will then evaluate the clinical situations for which online adaptive radiotherapy is particularly indicated on MR- and CBCT-linear accelerators. Finally, we will detail some challenges and possible solutions in the development of online ART in the coming years.
Collapse
Affiliation(s)
- Olivier Riou
- Department of Radiation Oncology, Institut du cancer de Montpellier, Montpellier, France; Fédération universitaire d'oncologie radiothérapie de Méditerranée Occitanie, université de Montpellier, Montpellier, France; U1194, Inserm, Montpellier, France.
| | - Jessica Prunaretty
- Department of Radiation Oncology, Institut du cancer de Montpellier, Montpellier, France; Fédération universitaire d'oncologie radiothérapie de Méditerranée Occitanie, université de Montpellier, Montpellier, France; U1194, Inserm, Montpellier, France
| | - Morgan Michalet
- Department of Radiation Oncology, Institut du cancer de Montpellier, Montpellier, France; Fédération universitaire d'oncologie radiothérapie de Méditerranée Occitanie, université de Montpellier, Montpellier, France; U1194, Inserm, Montpellier, France
| |
Collapse
|
5
|
Paul K, Dorsch S, Elter A, Beyer C, Naumann J, Hansmann T, Feldmeier E, Haberer T, Karger CP, Debus J, Klüter S. Online MR-guided proton and ion beam radiotherapy: investigation of image quality. Phys Med Biol 2024; 69:185013. [PMID: 39191287 DOI: 10.1088/1361-6560/ad7453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Objective.Magnetic resonance (MR) images free of artefacts are of pivotal importance for MR-guided ion radiotherapy. This study investigates MR image quality for simultaneous irradiation in an experimental setup using phantom imaging as well asin-vivoimaging. Observed artefacts are described within the study and their cause is investigated with the goal to find conclusions and solutions for potential future hybrid devices.Approach.An open MR scanner with a field strength of 0.25 T has been installed in front of an ion beamline. Simultaneous magnetic resonance imaging and irradiation using raster scanning were performed to analyze image quality in dedicated phantoms. Magnetic field measurements were performed to assist the explanation of observed artifacts. In addition,in-vivoimages were acquired by operating the magnets for beam scanning without transporting a beam.Main Results.The additional frequency component within the isocenter caused by the fringe field of the horizontal beam scanning magnet correlates with the amplitude and frequency of the scanning magnet steering and can cause ghosting artifacts in the images. These are amplified with high currents and fast operating of the scanning magnet. Applying a real-time capable pulse sequencein-vivorevealed no ghosting artifacts despite a continuously changing current pattern and a clinical treatment plan activation scheme, suggesting that the use of fast imaging is beneficial for the aim of creating high quality in-beam MR images. This result suggests, that the influence of the scanning magnets on the MR acquisition might be of negligible importance and does not need further measures like extensive magnetic shielding of the scanning magnets.Significance.Our study delimited artefacts observed in MR images acquired during simultaneous raster scanning ion beam irradiation. The application of a fast pulse sequence showed no image artefacts and holds the potential that online MR imaging in future hybrid devices might be feasible.
Collapse
Affiliation(s)
- K Paul
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - S Dorsch
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - A Elter
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Beyer
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - J Naumann
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - T Hansmann
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - E Feldmeier
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - T Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - C P Karger
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Core Center Heidelberg, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - S Klüter
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
6
|
Buchele C, Renkamp CK, Regnery S, Behnisch R, Rippke C, Schlüter F, Hoegen-Saßmannshausen P, Debus J, Hörner-Rieber J, Alber M, Klüter S. Intrafraction organ movement in adaptive MR-guided radiotherapy of abdominal lesions - dosimetric impact and how to detect its extent in advance. Radiat Oncol 2024; 19:80. [PMID: 38918828 PMCID: PMC11202341 DOI: 10.1186/s13014-024-02466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
INTRODUCTION Magnetic resonance guided radiotherapy (MRgRT) allows daily adaptation of treatment plans to compensate for positional changes of target volumes and organs at risk (OARs). However, current adaptation times are relatively long and organ movement occurring during the adaptation process might offset the benefit gained by adaptation. The aim of this study was to evaluate the dosimetric impact of these intrafractional changes. Additionally, a method to predict the extent of organ movement before the first treatment was evaluated in order to have the possibility to compensate for them, for example by adding additional margins to OARs. MATERIALS & METHODS Twenty patients receiving adaptive MRgRT for treatment of abdominal lesions were retrospectively analyzed. Magnetic resonance (MR) images acquired at the start of adaptation and immediately before irradiation were used to calculate adapted and pre-irradiation dose in OARs directly next to the planning target volume. The extent of organ movement was determined on MR images acquired during simulation sessions and adaptive treatments, and their agreement was evaluated. Correlation between the magnitude of organ movement during simulation and the duration of simulation session was analyzed in order to assess whether organ movement might be relevant even if the adaptation process could be accelerated in the future. RESULTS A significant increase in dose constraint violations was observed from adapted (6.9%) to pre-irradiation (30.2%) dose distributions. Overall, OAR dose increased significantly by 4.3% due to intrafractional organ movement. Median changes in organ position of 7.5 mm (range 1.5-10.5 mm) were detected within a median time of 17.1 min (range 1.6-28.7 min). Good agreement was found between the range of organ movement during simulation and adaptation (66.8%), especially if simulation sessions were longer and multiple MR images were acquired. No correlation was determined between duration of simulation sessions and magnitude of organ movement. CONCLUSION Intrafractional organ movement can impact dose distributions and lead to violations of OAR tolerance doses, which impairs the benefit of daily on-table plan adaptation. By application of simulation images, the extent of intrafractional organ movement can be predicted, which possibly allows to compensate for them.
Collapse
Affiliation(s)
- Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany.
- Medical Faculty, Heidelberg University, Heidelberg, Baden-Württemberg, Germany.
| | - C Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Rouven Behnisch
- Institute of Medical Biometry (IMBI), Heidelberg University, Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
| | - Fabian Schlüter
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
| | - Philipp Hoegen-Saßmannshausen
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Germany.
| |
Collapse
|
7
|
Hering S, Nieto A, Marschner S, Hofmaier J, Schmidt-Hegemann NS, da Silva Mendes V, Landry G, Niyazi M, Manapov F, Belka C, Corradini S, Eze C. The role of online MR-guided multi-fraction stereotactic ablative radiotherapy in lung tumours. Clin Transl Radiat Oncol 2024; 45:100736. [PMID: 38433949 PMCID: PMC10909605 DOI: 10.1016/j.ctro.2024.100736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 03/05/2024] Open
Abstract
Background The aim of this prospective observational study was to evaluate the dosimetry benefits, changes in pulmonary function, and clinical outcome of online adaptive MR-guided SBRT. Methods From 11/2020-07/2022, 45 consecutive patients with 59 lesions underwent multi-fraction SBRT (3-8 fractions) at our institution. Patients were eligible if they had biopsy-proven NSCLC or lung cancer/metastases diagnosed via clinical imaging. Endpoints were local control (LC) and overall survival (OS). We evaluated PTV/GTV dose coverage, organs at risk exposure, and changes in pulmonary function (PF). Acute toxicity was classified per the National Cancer Institute-Common Terminology Criteria for Adverse Events version 5.0. Results The median PTV was 14.4 cm3 (range: 3.4 - 96.5 cm3). In total 195/215 (91%) plans were reoptimised. In the reoptimised vs. predicted plans, PTV coverage by the prescribed dose increased in 94.6% of all fractions with a median increase in PTV VPD of 5.6% (range: -1.8 - 44.6%, p < 0.001), increasing the number of fractions with PTV VPD ≥ 95% from 33% to 98%. The PTV D95% and D98% (BED10) increased in 93% and 95% of all fractions with a median increase of 7.7% (p < 0.001) and 10.6% (p < 0.001). The PTV D95% (BED10) increased by a mean of 9.6 Gy (SD: 10.3 Gy, p < 0.001). At a median follow-up of 21.4 months (95% CI: 12.3-27.0 months), 1- and 2-year LC rates were 94.8% (95% CI: 87.6 - 100.0%) and 91.1% (95% CI: 81.3 - 100%); 1- and 2-year OS rates were 85.6% (95% CI: 75.0 - 96.3%) and 67.1 % (95% CI: 50.3 - 83.8%). One grade ≥ 3 toxicity and no significant reduction in short-term PF parameters were recorded. Conclusions Online adaptive MR-guided SBRT is an effective, safe and generally well tolerated treatment option for lung tumours achieving encouraging local control rates with significantly improved target volume coverage.
Collapse
Affiliation(s)
- Svenja Hering
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Alexander Nieto
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Marschner
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jan Hofmaier
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | | | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Chukwuka Eze
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
8
|
Fink CA, Buchele C, Baumann L, Liermann J, Hoegen P, Ristau J, Regnery S, Sandrini E, König L, Rippke C, Bonekamp D, Schlemmer HP, Debus J, Koerber SA, Klüter S, Hörner-Rieber J. Dosimetric benefit of online treatment plan adaptation in stereotactic ultrahypofractionated MR-guided radiotherapy for localized prostate cancer. Front Oncol 2024; 14:1308406. [PMID: 38425342 PMCID: PMC10902126 DOI: 10.3389/fonc.2024.1308406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Background Apart from superior soft tissue contrast, MR-guided stereotactic body radiation therapy (SBRT) offers the chance for daily online plan adaptation. This study reports on the comparison of dose parameters before and after online plan adaptation in MR-guided SBRT of localized prostate cancer. Materials and methods 32 consecutive patients treated with ultrahypofractionated SBRT for localized prostate cancer within the prospective SMILE trial underwent a planning process for MR-guided radiotherapy with 37.5 Gy applied in 5 fractions. A base plan, derived from MRI simulation at an MRIdian Linac, was registered to daily MRI scans (predicted plan). Following target and OAR recontouring, the plan was reoptimized based on the daily anatomy (adapted plan). CTV and PTV coverage and doses at OAR were compared between predicted and adapted plans using linear mixed regression models. Results In 152 out of 160 fractions (95%), an adapted radiation plan was delivered. Mean CTV and PTV coverage increased by 1.4% and 4.5% after adaptation. 18% vs. 95% of the plans had a PTV coverage ≥95% before and after online adaptation, respectively. 78% vs. 100% of the plans had a CTV coverage ≥98% before and after online adaptation, respectively. The D0.2cc for both bladder and rectum were <38.5 Gy in 93% vs. 100% before and after online adaptation. The constraint at the urethra with a dose of <37.5 Gy was achieved in 59% vs. 93% before and after online adaptation. Conclusion Online adaptive plan adaptation improves target volume coverage and reduces doses to OAR in MR-guided SBRT of localized prostate cancer. Online plan adaptation could potentially further reduce acute and long-term side effects and improve local failure rates in MR-guided SBRT of localized prostate cancer.
Collapse
Affiliation(s)
- Christoph A. Fink
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Lukas Baumann
- Institute of Medical Biometry (IMBI), University of Heidelberg, Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Ristau
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Elisabetta Sandrini
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - David Bonekamp
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Side Heidelberg, Heidelberg, Germany
| | | | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Side Heidelberg, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan A. Koerber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Radiation Oncology, Barmherzige Brueder Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Abstract
Magnetic resonance imaging-guided radiation therapy (MRIgRT) has improved soft tissue contrast over computed tomography (CT) based image-guided RT. Superior visualization of the target and surrounding radiosensitive structures has the potential to improve oncological outcomes partly due to safer dose-escalation and adaptive planning. In this review, we highlight the workflow of adaptive MRIgRT planning, which includes simulation imaging, daily MRI, identifying isocenter shifts, contouring, plan optimization, quality control, and delivery. Increased utilization of MRIgRT will depend on addressing technical limitations of this technology, while addressing treatment efficacy, cost-effectiveness, and workflow training.
Collapse
Affiliation(s)
- Cecil M Benitez
- Department of Radiation Oncology, UCLA Medical Center, Los Angeles, CA
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida; Miami, FL
| | - Luise A Künzel
- National Center for Tumor Diseases (NCT), Dresden; German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.; OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden Rossendorf, Dresden, Germany
| | - Daniela Thorwarth
- Department of Radiation Oncology, Section for Biomedical Physics, University of Tübingen, Tübingen, Germany..
| |
Collapse
|
10
|
Xiong Y, Rabe M, Rippke C, Kawula M, Nierer L, Klüter S, Belka C, Niyazi M, Hörner-Rieber J, Corradini S, Landry G, Kurz C. Impact of daily plan adaptation on accumulated doses in ultra-hypofractionated magnetic resonance-guided radiation therapy of prostate cancer. Phys Imaging Radiat Oncol 2024; 29:100562. [PMID: 38463219 PMCID: PMC10924058 DOI: 10.1016/j.phro.2024.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
Background and purpose Ultra-hypofractionated online adaptive magnetic resonance-guided radiotherapy (MRgRT) is promising for prostate cancer. However, the impact of online adaptation on target coverage and organ-at-risk (OAR) sparing at the level of accumulated dose has not yet been reported. Using deformable image registration (DIR)-based accumulation, we compared the delivered adapted dose with the simulated non-adapted dose. Materials and methods Twenty-three prostate cancer patients treated at two clinics with 0.35 T magnetic resonance-guided linear accelerator (MR-linac) following the same treatment protocol (5 × 7.5 Gy with urethral sparing and daily adaptation) were included. The fraction MR images were deformably registered to the planning MR image. Both non-adapted and adapted fraction doses were accumulated with the corresponding vector fields. Two DIR approaches were implemented. PTV* (planning target volume minus urethra+2mm) D95%, CTV* (clinical target volume minus urethra) D98%, and OARs (urethra+2mm, bladder, and rectum) D0.2cc, were evaluated. Statistical significance was inferred from a two-tailed Wilcoxon signed-rank test (p < 0.05). Results Normalized to the baseline, the accumulated PTV* D95% increased significantly by 2.7 % ([1.5, 4.3]%) through adaptation, and the CTV* D98% by 1.2 % ([0.1, 1.7]%). For the OARs after adaptation, accumulated bladder D0.2cc decreased by 0.4 % ([-1.2, 0.4]%), urethra+2mmD0.2cc by 0.8 % ([-1.6, -0.1]%), while rectum D0.2cc increased by 2.6 % ([1.2, 4.9]%). For all patients, rectum D0.2cc was still below the clinical constraint. Results of both DIR approaches differed on average by less than 0.2 %. Conclusions Online adaptation in MRgRT improved target coverage and OARs sparing at the level of accumulated dose.
Collapse
Affiliation(s)
- Yuqing Xiong
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Maria Kawula
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lukas Nierer
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner site Munich, a Partnership between DKFZ and LMU University Hospital Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
- National Center for Tumor Diseases, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Wu TC, Smith LM, Woolf D, Faivre-Finn C, Lee P. Exploring the Advantages and Challenges of MR-Guided Radiotherapy in Non-Small-Cell Lung Cancer: Who are the Optimal Candidates? Semin Radiat Oncol 2024; 34:56-63. [PMID: 38105094 DOI: 10.1016/j.semradonc.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The landscape of lung radiotherapy (RT) has rapidly evolved over the past decade with modern RT and surgical techniques, systemic therapies, and expanding indications for RT. To date, 2 MRI-guided RT (MRgRT) units, 1 using a 0.35T magnet and 1 using a 1.5T magnet, are available for commercial use with more systems in the pipeline. MRgRT offers distinct advantages such as real-time target tracking, margin reduction, and on-table treatment adaptation, which may help overcome many of the common challenges associated with thoracic RT. Nonetheless, the use of MRI for image guidance and the current MRgRT units also have intrinsic limitations. In this review article, we will discuss clinical experiences to date, advantages, challenges, and future directions of MRgRT to the lung.
Collapse
Affiliation(s)
- Trudy C Wu
- Department of Radiation Oncology, University of California, Los Angeles, CA
| | - Lauren M Smith
- Department of Radiation Oncology, University of California, Los Angeles, CA
| | - David Woolf
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom.; Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - Corinne Faivre-Finn
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom.; Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - Percy Lee
- Department of Radiation Oncology, City of Hope National Medical Center, Los Angeles, CA..
| |
Collapse
|
12
|
Rabe M, Paganelli C, Schmitz H, Meschini G, Riboldi M, Hofmaier J, Nierer-Kohlhase L, Dinkel J, Reiner M, Parodi K, Belka C, Landry G, Kurz C, Kamp F. Continuous time-resolved estimated synthetic 4D-CTs for dose reconstruction of lung tumor treatments at a 0.35 T MR-linac. Phys Med Biol 2023; 68:235008. [PMID: 37669669 DOI: 10.1088/1361-6560/acf6f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Objective.To experimentally validate a method to create continuous time-resolved estimated synthetic 4D-computed tomography datasets (tresCTs) based on orthogonal cine MRI data for lung cancer treatments at a magnetic resonance imaging (MRI) guided linear accelerator (MR-linac).Approach.A breathing porcine lung phantom was scanned at a CT scanner and 0.35 T MR-linac. Orthogonal cine MRI series (sagittal/coronal orientation) at 7.3 Hz, intersecting tumor-mimicking gelatin nodules, were deformably registered to mid-exhale 3D-CT and 3D-MRI datasets. The time-resolved deformation vector fields were extrapolated to 3D and applied to a reference synthetic 3D-CT image (sCTref), while accounting for breathing phase-dependent lung density variations, to create 82 s long tresCTs at 3.65 Hz. Ten tresCTs were created for ten tracked nodules with different motion patterns in two lungs. For each dataset, a treatment plan was created on the mid-exhale phase of a measured ground truth (GT) respiratory-correlated 4D-CT dataset with the tracked nodule as gross tumor volume (GTV). Each plan was recalculated on the GT 4D-CT, randomly sampled tresCT, and static sCTrefimages. Dose distributions for corresponding breathing phases were compared in gamma (2%/2 mm) and dose-volume histogram (DVH) parameter analyses.Main results.The mean gamma pass rate between all tresCT and GT 4D-CT dose distributions was 98.6%. The mean absolute relative deviations of the tresCT with respect to GT DVH parameters were 1.9%, 1.0%, and 1.4% for the GTVD98%,D50%, andD2%, respectively, 1.0% for the remaining nodulesD50%, and 1.5% for the lungV20Gy. The gamma pass rate for the tresCTs was significantly larger (p< 0.01), and the GTVD50%deviations with respect to the GT were significantly smaller (p< 0.01) than for the sCTref.Significance.The results suggest that tresCTs could be valuable for time-resolved reconstruction and intrafractional accumulation of the dose to the GTV for lung cancer patients treated at MR-linacs in the future.
Collapse
Affiliation(s)
- Moritz Rabe
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Chiara Paganelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Henning Schmitz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Giorgia Meschini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Marco Riboldi
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - Jan Hofmaier
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lukas Nierer-Kohlhase
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Julien Dinkel
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center, German Center for Lung Research (DZL), Munich, Germany
| | - Michael Reiner
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Florian Kamp
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Radiation Oncology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
13
|
Regnery S, Leiner L, Buchele C, Hoegen P, Sandrini E, Held T, Deng M, Eichkorn T, Rippke C, Renkamp CK, König L, Lang K, Adeberg S, Debus J, Klüter S, Hörner-Rieber J. Comparison of different dose accumulation strategies to estimate organ doses after stereotactic magnetic resonance-guided adaptive radiotherapy. Radiat Oncol 2023; 18:92. [PMID: 37248504 DOI: 10.1186/s13014-023-02284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
INTRODUCTION Re-irradiation is frequently performed in the era of precision oncology, but previous doses to organs-at-risk (OAR) must be assessed to avoid cumulative overdoses. Stereotactic magnetic resonance-guided online adaptive radiotherapy (SMART) enables highly precise ablation of tumors close to OAR. However, OAR doses may change considerably during adaptive treatment, which complicates potential re-irradiation. We aimed to compare the baseline plan with different dose accumulation techniques to inform re-irradiation. PATIENTS & METHODS We analyzed 18 patients who received SMART to lung or liver tumors inside prospective databases. Cumulative doses were calculated inside the planning target volumes (PTV) and OAR for the adapted plans and theoretical non-adapted plans via (1) cumulative dose volume histograms (DVH sum plan) and (2) deformable image registration (DIR)-based dose accumulation to planning images (DIR sum plan). We compared cumulative dose parameters between the baseline plan, DVH sum plan and DIR sum plan using equivalent doses in 2 Gy fractions (EQD2). RESULTS Individual patients presented relevant increases of near-maximum doses inside the proximal bronchial tree, spinal cord, heart and gastrointestinal OAR when comparing adaptive treatment to the baseline plans. The spinal cord near-maximum doses were significantly increased in the liver patients (D2% median: baseline 6.1 Gy, DIR sum 8.1 Gy, DVH sum 8.4 Gy, p = 0.04; D0.1 cm³ median: baseline 6.1 Gy, DIR sum 8.1 Gy, DVH sum 8.5 Gy, p = 0.04). Three OAR overdoses occurred during adaptive treatment (DIR sum: 1, DVH sum: 2), and four more intense OAR overdoses would have occurred during non-adaptive treatment (DIR sum: 4, DVH sum: 3). Adaptive treatment maintained similar PTV coverages to the baseline plans, while non-adaptive treatment yielded significantly worse PTV coverages in the lung (D95% median: baseline 86.4 Gy, DIR sum 82.4 Gy, DVH sum 82.2 Gy, p = 0.006) and liver patients (D95% median: baseline 87.4 Gy, DIR sum 82.1 Gy, DVH sum 81.1 Gy, p = 0.04). CONCLUSION OAR doses can increase during SMART, so that re-irradiation should be planned based on dose accumulations of the adapted plans instead of the baseline plan. Cumulative dose volume histograms represent a simple and conservative dose accumulation strategy.
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Lukas Leiner
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elisabetta Sandrini
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Maximilian Deng
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - C Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Kristin Lang
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- National Center for Tumor diseases (NCT), Heidelberg, Germany.
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
14
|
Ladbury C, Amini A, Schwer A, Liu A, Williams T, Lee P. Clinical Applications of Magnetic Resonance-Guided Radiotherapy: A Narrative Review. Cancers (Basel) 2023; 15:cancers15112916. [PMID: 37296879 DOI: 10.3390/cancers15112916] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Magnetic resonance-guided radiotherapy (MRgRT) represents a promising new image guidance technology for radiation treatment delivery combining an onboard MRI scanner with radiation delivery technology. By enabling real-time low-field or high-field MRI acquisition, it facilitates improved soft tissue delineation, adaptive treatment, and motion management. Now that MRgRT has been available for nearly a decade, research has shown the technology can be used to effectively shrink treatment margins to either decrease toxicity (in breast, prostate cancer, and pancreatic cancer) or facilitate dose-escalation and improved oncologic outcomes (in pancreatic and liver cancer), as well as enabling indications that require clear soft tissue delineation and gating (lung and cardiac ablation). In doing so, the use of MRgRT has the potential to significantly improve the outcomes and quality of life of the patients it treats. The present narrative review aims to describe the rationale for MRgRT, the current and forthcoming state of technology, existing studies, and future directions for the advancement of MRgRT, including associated challenges.
Collapse
Affiliation(s)
- Colton Ladbury
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Amanda Schwer
- Department of Radiation Oncology, City of Hope Orange County Lennar Foundation Cancer Center, Irvine, CA 92618, USA
| | - An Liu
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Terence Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Percy Lee
- Department of Radiation Oncology, City of Hope Orange County Lennar Foundation Cancer Center, Irvine, CA 92618, USA
| |
Collapse
|
15
|
Regnery S, de Colle C, Eze C, Corradini S, Thieke C, Sedlaczek O, Schlemmer HP, Dinkel J, Seith F, Kopp-Schneider A, Gillmann C, Renkamp CK, Landry G, Thorwarth D, Zips D, Belka C, Jäkel O, Debus J, Hörner-Rieber J. Pulmonary magnetic resonance-guided online adaptive radiotherapy of locally advanced: the PUMA trial. Radiat Oncol 2023; 18:74. [PMID: 37143154 PMCID: PMC10161406 DOI: 10.1186/s13014-023-02258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Patients with locally-advanced non-small-cell lung cancer (LA-NSCLC) are often ineligible for surgery, so that definitive chemoradiotherapy (CRT) represents the treatment of choice. Nevertheless, long-term tumor control is often not achieved. Intensification of radiotherapy (RT) to improve locoregional tumor control is limited by the detrimental effect of higher radiation exposure of thoracic organs-at-risk (OAR). This narrow therapeutic ratio may be expanded by exploiting the advantages of magnetic resonance (MR) linear accelerators, mainly the online adaptation of the treatment plan to the current anatomy based on daily acquired MR images. However, MR-guidance is both labor-intensive and increases treatment times, which raises the question of its clinical feasibility to treat LA-NSCLC. Therefore, the PUMA trial was designed as a prospective, multicenter phase I trial to demonstrate the clinical feasibility of MR-guided online adaptive RT in LA-NSCLC. METHODS Thirty patients with LA-NSCLC in stage III A-C will be accrued at three German university hospitals to receive MR-guided online adaptive RT at two different MR-linac systems (MRIdian Linac®, View Ray Inc. and Elekta Unity®, Elekta AB) with concurrent chemotherapy. Conventionally fractioned RT with isotoxic dose escalation up to 70 Gy is applied. Online plan adaptation is performed once weekly or in case of major anatomical changes. Patients are followed-up by thoracic CT- and MR-imaging for 24 months after treatment. The primary endpoint is twofold: (1) successfully completed online adapted fractions, (2) on-table time. Main secondary endpoints include adaptation frequency, toxicity, local tumor control, progression-free and overall survival. DISCUSSION PUMA aims to demonstrate the clinical feasibility of MR-guided online adaptive RT of LA-NSCLC. If successful, PUMA will be followed by a clinical phase II trial that further investigates the clinical benefits of this approach. Moreover, PUMA is part of a large multidisciplinary project to develop MR-guidance techniques. TRIAL REGISTRATION ClinicalTrials.gov: NCT05237453 .
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiara de Colle
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Thieke
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Oliver Sedlaczek
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Julien Dinkel
- Department of Radiology, LMU Munich, Munich, Germany
| | - Ferdinand Seith
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany
| | | | - Clarissa Gillmann
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Oliver Jäkel
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.
- National Center for Tumor diseases (NCT), Heidelberg, Germany.
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
16
|
Chuong MD, Palm RF, Tjong MC, Hyer DE, Kishan AU. Advances in MRI-Guided Radiation Therapy. Surg Oncol Clin N Am 2023; 32:599-615. [PMID: 37182995 DOI: 10.1016/j.soc.2023.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Image guidance for radiation therapy (RT) has evolved over the last few decades and now is routinely performed using cone-beam computerized tomography (CBCT). Conventional linear accelerators (LINACs) that use CBCT have limited soft tissue contrast, are not able to image the patient's internal anatomy during treatment delivery, and most are not capable of online adaptive replanning. RT delivery systems that use MRI have become available within the last several years and address many of the imaging limitations of conventional LINACs. Herein, the authors review the technical characteristics and advantages of MRI-guided RT as well as emerging clinical outcomes.
Collapse
Affiliation(s)
- Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, 8900 North Kendall Drive, Miami, FL 33176, USA.
| | - Russell F Palm
- Department of Radiation Oncology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Michael C Tjong
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, USA
| | - Amar U Kishan
- Department of Radiation Oncology, University of California Los Angeles, 1338 S Hope Street, Los Angeles, CA 90015, USA
| |
Collapse
|
17
|
Bryant JM, Weygand J, Keit E, Cruz-Chamorro R, Sandoval ML, Oraiqat IM, Andreozzi J, Redler G, Latifi K, Feygelman V, Rosenberg SA. Stereotactic Magnetic Resonance-Guided Adaptive and Non-Adaptive Radiotherapy on Combination MR-Linear Accelerators: Current Practice and Future Directions. Cancers (Basel) 2023; 15:2081. [PMID: 37046741 PMCID: PMC10093051 DOI: 10.3390/cancers15072081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Stereotactic body radiotherapy (SBRT) is an effective radiation therapy technique that has allowed for shorter treatment courses, as compared to conventionally dosed radiation therapy. As its name implies, SBRT relies on daily image guidance to ensure that each fraction targets a tumor, instead of healthy tissue. Magnetic resonance imaging (MRI) offers improved soft-tissue visualization, allowing for better tumor and normal tissue delineation. MR-guided RT (MRgRT) has traditionally been defined by the use of offline MRI to aid in defining the RT volumes during the initial planning stages in order to ensure accurate tumor targeting while sparing critical normal tissues. However, the ViewRay MRIdian and Elekta Unity have improved upon and revolutionized the MRgRT by creating a combined MRI and linear accelerator (MRL), allowing MRgRT to incorporate online MRI in RT. MRL-based MR-guided SBRT (MRgSBRT) represents a novel solution to deliver higher doses to larger volumes of gross disease, regardless of the proximity of at-risk organs due to the (1) superior soft-tissue visualization for patient positioning, (2) real-time continuous intrafraction assessment of internal structures, and (3) daily online adaptive replanning. Stereotactic MR-guided adaptive radiation therapy (SMART) has enabled the safe delivery of ablative doses to tumors adjacent to radiosensitive tissues throughout the body. Although it is still a relatively new RT technique, SMART has demonstrated significant opportunities to improve disease control and reduce toxicity. In this review, we included the current clinical applications and the active prospective trials related to SMART. We highlighted the most impactful clinical studies at various tumor sites. In addition, we explored how MRL-based multiparametric MRI could potentially synergize with SMART to significantly change the current treatment paradigm and to improve personalized cancer care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stephen A. Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.M.B.)
| |
Collapse
|
18
|
Regnery S, Katsigiannopulos E, Hoegen P, Weykamp F, Sandrini E, Held T, Deng M, Eichkorn T, Buchele C, Rippke C, Renkamp CK, König L, Lang K, Thomas M, Winter H, Adeberg S, Klüter S, Debus J, Hörner-Rieber J. To fly or not to fly: Stereotactic MR-guided adaptive radiotherapy effectively treats ultracentral lung tumors with favorable long-term outcomes. Lung Cancer 2023; 179:107175. [PMID: 36965207 DOI: 10.1016/j.lungcan.2023.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND Stereotactic radiotherapy of ultracentral lung tumors (ULT) is challenging as it may cause overdoses to sensitive mediastinal organs with severe complications. We aimed to describe long-term outcomes after stereotactic magnetic resonance (MR)-guided online adaptive radiotherapy (SMART) as an innovative treatment of ULT. PATIENTS & METHODS We analyzed 36 patients that received SMART to 40 tumors between 02/2020 - 08/2021 inside prospective databases. ULT were defined by planning target volume (PTV) overlap with the proximal bronchial tree or esophagus. We calculated Kaplan Meier estimates for overall survival (OS) and progression-free survival (PFS), and competing risk estimates for the incidence of tumor progression and treatment-related toxicities. ULT patients (N = 16) were compared to non-ULT patients (N = 20). RESULTS Baseline characteristics were similar between ULT and non-ULT, but ULT were larger (median PTV: ULT 54.7 cm3, non-ULT 19.2 cm3). Median follow-up was 23.6 months. ULT and non-ULT showed a similar OS (2-years: ULT 67%, non-ULT 60%, p = 0.7) and PFS (2-years: ULT 37%, non-ULT 34%, p = 0.73). Progressions occurred mainly at distant sites (2-year incidence of distant progression: ULT 63%, non-ULT 61%, p = 0.77), while local tumor control was favorable (2-year incidence of local progression: ULT 7%, non-ULT 0%, p = 0.22). Treatment of ULT led to significantly more toxicities ≥ grade (G) 2 (ULT: 9 (56%), non-ULT: 1 (5%), p = 0.002). Most toxicities were moderate (G2). Two ULT patients developed high-grade toxicities: 1) esophagitis G3 and bronchial bleeding G4 after VEGF treatment, 2) bronchial bleeding G3. Estimated incidence of high-grade toxicities was 19% (3-48%) in ULT, and no treatment-related death occurred. CONCLUSION Our small series supports SMART as potentially effective treatment of ULT. SMART with careful fractionation could reduce severe complications, but treatment of ULT remains a high-risk procedure and needs careful benefit-risk-assessment.
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Efthimios Katsigiannopulos
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Elisabetta Sandrini
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Maximilian Deng
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - C Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Kristin Lang
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Michael Thomas
- National Center for Tumor Diseases (NCT), Heidelberg, Germany; Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Roentgenstrasse 1, 69126 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Hauke Winter
- National Center for Tumor Diseases (NCT), Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; Department of Thoracic Surgery, Thoraxklinik at Heidelberg University Hospital, Roentgenstrasse 1, 69126 Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
19
|
Regnery S, Ristau J, Weykamp F, Hoegen P, Sprengel SD, Paul KM, Buchele C, Klüter S, Rippke C, Renkamp CK, Pohl M, Meis J, Welzel T, Adeberg S, Koerber SA, Debus J, Hörner-Rieber J. Magnetic resonance guided adaptive stereotactic body radiotherapy for lung tumors in ultracentral location: the MAGELLAN trial (ARO 2021-3). Radiat Oncol 2022; 17:102. [PMID: 35614486 PMCID: PMC9134672 DOI: 10.1186/s13014-022-02070-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stereotactic Body Radiotherapy (SBRT) is a standard treatment for inoperable primary and secondary lung tumors. In case of ultracentral tumor location, defined as tumor contact with vulnerable mediastinal structures such as the proximal bronchial tree (PBT) or esophagus, SBRT is associated with an increased risk for severe complications. Magnetic resonance (MR)-guided SBRT can mitigate this risk based on gated dose delivery and daily plan adaptation. The MAGELLAN trial aims to find the maximum tolerated dose (MTD) of MR-guided SBRT of ultracentral lung tumors (ULT). PATIENTS AND METHODS MAGELLAN is a prospective phase I dose escalation trial. A maximum of 38 patients with primary and secondary ULT with a tumor size ≤ 5 cm will be enrolled. Ultracentral location is defined as an overlap of the planning target volume (PTV) with the PBT or esophagus. Patients are treated at a 0.35 Tesla MR-linac (MRIdian® Linac, ViewRay Inc. ) employing a gating strategy and daily plan adaptation. Dose escalation starts at 10 × 5.5 Gy (biologically effective dose BED3/10: 155.83 Gy/85.25 Gy), may proceed up to 10 × 6.5 Gy (BED3/10: 205.83 Gy/107.25 Gy) and is guided by a customized time-to-event continual reassessment method (TITE CRM) with backup element, which alternately assigns patients to dose escalation and backup cohorts. DISCUSSION The results of the MAGELLAN trial will guide further research and clinical implementation of MR-guided SBRT as ablative treatment of ULT. Moreover, the combination of MR-guided radiotherapy with TITE-CRM including a backup element may serve as blueprint for future radiation dose escalation studies in critical locations. TRIAL REGISTRATION Registered at ClinicalTrials.gov: NCT04925583 on 14th June 2021.
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Ristau
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon David Sprengel
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Katharina Maria Paul
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Claudia Katharina Renkamp
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Moritz Pohl
- Institute of Medical Biometry, University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Jan Meis
- Institute of Medical Biometry, University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Thomas Welzel
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Alexander Koerber
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
20
|
Nierer L, Eze C, da Silva Mendes V, Braun J, Thum P, von Bestenbostel R, Kurz C, Landry G, Reiner M, Niyazi M, Belka C, Corradini S. Dosimetric benefit of MR-guided online adaptive radiotherapy in different tumor entities: liver, lung, abdominal lymph nodes, pancreas and prostate. Radiat Oncol 2022; 17:53. [PMID: 35279185 PMCID: PMC8917666 DOI: 10.1186/s13014-022-02021-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/27/2022] [Indexed: 01/18/2023] Open
Abstract
Background Hybrid magnetic resonance (MR)-Linac systems have recently been introduced into clinical practice. The systems allow online adaption of the treatment plan with the aim of compensating for interfractional anatomical changes. The aim of this study was to evaluate the dose volume histogram (DVH)-based dosimetric benefits of online adaptive MR-guided radiotherapy (oMRgRT) across different tumor entities and to investigate which subgroup of plans improved the most from adaption. Methods Fifty patients treated with oMRgRT for five different tumor entities (liver, lung, multiple abdominal lymph nodes, pancreas, and prostate) were included in this retrospective analysis. Various target volume (gross tumor volume GTV, clinical target volume CTV, and planning target volume PTV) and organs at risk (OAR) related DVH parameters were compared between the dose distributions before and after plan adaption. Results All subgroups clearly benefited from online plan adaption in terms of improved PTV coverage. For the liver, lung and abdominal lymph nodes cases, a consistent improvement in GTV coverage was found, while many fractions of the prostate subgroup showed acceptable CTV coverage even before plan adaption. The largest median improvements in GTV near-minimum dose (D98%) were found for the liver (6.3%, p < 0.001), lung (3.9%, p < 0.001), and abdominal lymph nodes (6.8%, p < 0.001) subgroups. Regarding OAR sparing, the largest median OAR dose reduction during plan adaption was found for the pancreas subgroup (-87.0%). However, in the pancreas subgroup an optimal GTV coverage was not always achieved because sparing of OARs was prioritized. Conclusion With online plan adaptation, it was possible to achieve significant improvements in target volume coverage and OAR sparing for various tumor entities and account for interfractional anatomical changes.
Collapse
|