1
|
Sollmann N, Fuderer M, Crameri F, Weingärtner S, Baeßler B, Gulani V, Keenan KE, Mandija S, Golay X, deSouza NM. Color Maps: Facilitating the Clinical Impact of Quantitative MRI. J Magn Reson Imaging 2025; 61:1572-1579. [PMID: 39180202 PMCID: PMC11896930 DOI: 10.1002/jmri.29573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Presenting quantitative data using non-standardized color maps potentially results in unrecognized misinterpretation of data. Clinically meaningful color maps should intuitively and inclusively represent data without misleading interpretation. Uniformity of the color gradient for color maps is critically important. Maximal color and lightness contrast, readability for color vision-impaired individuals, and recognizability of the color scheme are highly desirable features. This article describes the use of color maps in five key quantitative MRI techniques: relaxometry, diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE)-MRI, MR elastography (MRE), and water-fat MRI. Current display practice of color maps is reviewed and shortcomings against desirable features are highlighted. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional RadiologyUniversity Hospital UlmUlmGermany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- TUM‐Neuroimaging Center, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Miha Fuderer
- Radiotherapy, Division Imaging and OncologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | | | - Bettina Baeßler
- Department of Diagnostic and Interventional RadiologyUniversity Hospital WuerzburgWuerzburgGermany
| | - Vikas Gulani
- Department of RadiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Kathryn E. Keenan
- Physical Measurement LaboratoryNational Institute of Standards and TechnologyBoulderColoradoUSA
| | - Stefano Mandija
- Radiotherapy, Division Imaging and OncologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Xavier Golay
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Gold Standard PhantomsSheffieldUK
- BioxydynManchesterUK
| | - Nandita M. deSouza
- The Institute of Cancer ResearchLondonUK
- The Royal Marsden NHS Foundation TrustLondonUK
| |
Collapse
|
2
|
Pollak C, Kügler D, Bauer T, Rüber T, Reuter M. FastSurfer-LIT: Lesion inpainting tool for whole-brain MRI segmentation with tumors, cavities, and abnormalities. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2025; 3:imag_a_00446. [PMID: 40109899 PMCID: PMC11917724 DOI: 10.1162/imag_a_00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/31/2024] [Accepted: 12/07/2024] [Indexed: 03/22/2025]
Abstract
Resection cavities, tumors, and other lesions can fundamentally alter brain structure and present as abnormalities in brain MRI. Specifically, quantifying subtle neuroanatomical changes in other, not directly affected regions of the brain is essential to assess the impact of tumors, surgery, chemo/radiotherapy, or drug treatments. However, only a limited number of solutions address this important task, while many standard analysis pipelines simply do not support abnormal brain images at all. In this paper, we present a method to perform sensitive neuroanatomical analysis of healthy brain regions in the presence of large lesions and cavities. Our approach called "FastSurfer Lesion Inpainting Tool" (FastSurfer-LIT) leverages the recently emerged Denoising Diffusion Probabilistic Models (DDPM) to fill lesion areas with healthy tissue that matches and extends the surrounding tissue. This enables subsequent processing with established MRI analysis methods such as the calculation of adjusted volume and surface measurements using FastSurfer or FreeSurfer. FastSurfer-LIT significantly outperforms previously proposed solutions on a large dataset of simulated brain tumors (N = 100) and synthetic multiple sclerosis lesions (N = 39) with improved Dice and Hausdorff measures, and also on a highly heterogeneous dataset with lesions and cavities in a manual assessment (N = 100). Finally, we demonstrate increased reliability to reproduce pre-operative cortical thickness estimates from corresponding post-operative temporo-mesial resection surgery MRIs. The method is publicly available at https://github.com/Deep-MI/LIT and will be integrated into the FastSurfer toolbox.
Collapse
Affiliation(s)
- Clemens Pollak
- AI in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - David Kügler
- AI in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Tobias Bauer
- Department of Neuroradiology, Bonn University Hospital, Bonn, Germany
- Department of Epileptology, Bonn University Hospital, Bonn, Germany
| | - Theodor Rüber
- Department of Neuroradiology, Bonn University Hospital, Bonn, Germany
- Department of Epileptology, Bonn University Hospital, Bonn, Germany
- Center for Medical Data Usability and Translation, University of Bonn, Bonn, Germany
| | - Martin Reuter
- AI in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Lenga P, Scherer M, Peretzke R, Neher P, Jesser J, Unterberg AW, Krieg S, Becker D. Q-Ball high-resolution fiber tractography: Optimizing corticospinal tract delineation near gliomas and its role in the prediction of postoperative motor deficits- A proof of concept study. BRAIN & SPINE 2024; 4:104139. [PMID: 39634168 PMCID: PMC11615608 DOI: 10.1016/j.bas.2024.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/06/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
Introduction After resection of eloquent gliomas, impacting motor pathways, patients frequently harbour pronounced motor deficits (MD), predominantly attributed to damage to the corticospinal tract (CST). Research question This study compares the results of conventional DTI-FT and q-ball (QBI)-high resolution FT with patient's postoperative morbidity, relating postoperative MD with the nearest distance from the lesion to the CST (nD-LCST). Materials and methods In this ongoing prospective trial, we utilized probabilistic High-Resolution Fiber Tracking (HRFT) through q-ball imaging (QBI-FT) and conventional Diffusion Tensor Imaging Fiber Tracking (DTI-FT), based on equal and standard diffusion-weighted MRI. Our analysis focused on the normalized Distance from the lesion to the CST-FT (nD-LCST), compared with MD evaluated via standardized clinical examination. Results Post-surgery, 4 patients developed new MD or deteriorated respectively. Among these, one patient was diagnosed with glioblastoma, one with diffuse astrocytoma, one with anaplastic astrocytoma, and one with oligodendroglioma. QBI-FT analysis revealed that patients with MD had a significantly lower median nD-LCST (-0.4 IQR = 2.1), in contrast to those without MD (8.4 IQR = 3.9; p = 0.029). Median values of QBI-FT were located within the tumor outlines, when MD deteriorated. Patients with postoperatively impaired MD had larger tumor volumes compared to those without MD. Discussion and conclusion Our preliminary findings suggest that QBI-FT may offer advantages over DTI-FT in predicting postoperative motor deficits, potentially enhancing neurosurgical planning. However, due to the small sample size of our study, these results are exploratory, and further research with larger patient populations is necessary to confirm the benefits of QBI-FT. QBI-FT shows promise as a complementary tractography technique suitable for clinical purposes alongside standard DTI-FT.
Collapse
Affiliation(s)
- Pavlina Lenga
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Medical Faculty of Heidelberg University, Heidelberg, Germany
| | - Moritz Scherer
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Medical Faculty of Heidelberg University, Heidelberg, Germany
| | - Robin Peretzke
- Medical Faculty of Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Medical Image Computing, Heidelberg, Germany
| | - Peter Neher
- Medical Faculty of Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Medical Image Computing, Heidelberg, Germany
| | - Jessica Jesser
- Medical Faculty of Heidelberg University, Heidelberg, Germany
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas W. Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Medical Faculty of Heidelberg University, Heidelberg, Germany
| | - Sandro Krieg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Medical Faculty of Heidelberg University, Heidelberg, Germany
| | - Daniela Becker
- IU International University of Applied Sciences, Germany
- Department of Neurology, SRH Kurpfalzkrankenhaus, Heidelberg, Germany
| |
Collapse
|
4
|
Kamagata K, Andica C, Uchida W, Takabayashi K, Saito Y, Lukies M, Hagiwara A, Fujita S, Akashi T, Wada A, Hori M, Kamiya K, Zalesky A, Aoki S. Advancements in Diffusion MRI Tractography for Neurosurgery. Invest Radiol 2024; 59:13-25. [PMID: 37707839 PMCID: PMC11805476 DOI: 10.1097/rli.0000000000001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
ABSTRACT Diffusion magnetic resonance imaging tractography is a noninvasive technique that enables the visualization and quantification of white matter tracts within the brain. It is extensively used in preoperative planning for brain tumors, epilepsy, and functional neurosurgical procedures such as deep brain stimulation. Over the past 25 years, significant advancements have been made in imaging acquisition, fiber direction estimation, and tracking methods, resulting in considerable improvements in tractography accuracy. The technique enables the mapping of functionally critical pathways around surgical sites to avoid permanent functional disability. When the limitations are adequately acknowledged and considered, tractography can serve as a valuable tool to safeguard critical white matter tracts and provides insight regarding changes in normal white matter and structural connectivity of the whole brain beyond local lesions. In functional neurosurgical procedures such as deep brain stimulation, it plays a significant role in optimizing stimulation sites and parameters to maximize therapeutic efficacy and can be used as a direct target for therapy. These insights can aid in patient risk stratification and prognosis. This article aims to discuss state-of-the-art tractography methodologies and their applications in preoperative planning and highlight the challenges and new prospects for the use of tractography in daily clinical practice.
Collapse
|
5
|
Sollmann N, Zhang H, Kloth C, Zimmer C, Wiestler B, Rosskopf J, Kreiser K, Schmitz B, Beer M, Krieg SM. Modern preoperative imaging and functional mapping in patients with intracranial glioma. ROFO-FORTSCHR RONTG 2023; 195:989-1000. [PMID: 37224867 DOI: 10.1055/a-2083-8717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Magnetic resonance imaging (MRI) in therapy-naïve intracranial glioma is paramount for neuro-oncological diagnostics, and it provides images that are helpful for surgery planning and intraoperative guidance during tumor resection, including assessment of the involvement of functionally eloquent brain structures. This study reviews emerging MRI techniques to depict structural information, diffusion characteristics, perfusion alterations, and metabolism changes for advanced neuro-oncological imaging. In addition, it reflects current methods to map brain function close to a tumor, including functional MRI and navigated transcranial magnetic stimulation with derived function-based tractography of subcortical white matter pathways. We conclude that modern preoperative MRI in neuro-oncology offers a multitude of possibilities tailored to clinical needs, and advancements in scanner technology (e. g., parallel imaging for acceleration of acquisitions) make multi-sequence protocols increasingly feasible. Specifically, advanced MRI using a multi-sequence protocol enables noninvasive, image-based tumor grading and phenotyping in patients with glioma. Furthermore, the add-on use of preoperatively acquired MRI data in combination with functional mapping and tractography facilitates risk stratification and helps to avoid perioperative functional decline by providing individual information about the spatial location of functionally eloquent tissue in relation to the tumor mass. KEY POINTS:: · Advanced preoperative MRI allows for image-based tumor grading and phenotyping in glioma.. · Multi-sequence MRI protocols nowadays make it possible to assess various tumor characteristics (incl. perfusion, diffusion, and metabolism).. · Presurgical MRI in glioma is increasingly combined with functional mapping to identify and enclose individual functional areas.. · Advancements in scanner technology (e. g., parallel imaging) facilitate increasing application of dedicated multi-sequence imaging protocols.. CITATION FORMAT: · Sollmann N, Zhang H, Kloth C et al. Modern preoperative imaging and functional mapping in patients with intracranial glioma. Fortschr Röntgenstr 2023; 195: 989 - 1000.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, United States
| | - Haosu Zhang
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Christopher Kloth
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Johannes Rosskopf
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Kornelia Kreiser
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Radiology and Neuroradiology, Universitäts- und Rehabilitationskliniken Ulm, Ulm, Germany
| | - Bernd Schmitz
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Sandro M Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| |
Collapse
|
6
|
Zhylka A, Sollmann N, Kofler F, Radwan A, De Luca A, Gempt J, Wiestler B, Menze B, Schroeder A, Zimmer C, Kirschke JS, Sunaert S, Leemans A, Krieg SM, Pluim J. Reconstruction of the Corticospinal Tract in Patients with Motor-Eloquent High-Grade Gliomas Using Multilevel Fiber Tractography Combined with Functional Motor Cortex Mapping. AJNR Am J Neuroradiol 2023; 44:283-290. [PMID: 36797033 PMCID: PMC10187805 DOI: 10.3174/ajnr.a7793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/17/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND AND PURPOSE Tractography of the corticospinal tract is paramount to presurgical planning and guidance of intraoperative resection in patients with motor-eloquent gliomas. It is well-known that DTI-based tractography as the most frequently used technique has relevant shortcomings, particularly for resolving complex fiber architecture. The purpose of this study was to evaluate multilevel fiber tractography combined with functional motor cortex mapping in comparison with conventional deterministic tractography algorithms. MATERIALS AND METHODS Thirty-one patients (mean age, 61.5 [SD, 12.2] years) with motor-eloquent high-grade gliomas underwent MR imaging with DWI (TR/TE = 5000/78 ms, voxel size = 2 × 2 × 2 mm3, 1 volume at b = 0 s/mm2, 32 volumes at b = 1000 s/mm2). DTI, constrained spherical deconvolution, and multilevel fiber tractography-based reconstruction of the corticospinal tract within the tumor-affected hemispheres were performed. The functional motor cortex was enclosed by navigated transcranial magnetic stimulation motor mapping before tumor resection and used for seeding. A range of angular deviation and fractional anisotropy thresholds (for DTI) was tested. RESULTS For all investigated thresholds, multilevel fiber tractography achieved the highest mean coverage of the motor maps (eg, angular threshold = 60°; multilevel/constrained spherical deconvolution/DTI, 25% anisotropy threshold = 71.8%, 22.6%, and 11.7%) and the most extensive corticospinal tract reconstructions (eg, angular threshold = 60°; multilevel/constrained spherical deconvolution/DTI, 25% anisotropy threshold = 26,485 mm3, 6308 mm3, and 4270 mm3). CONCLUSIONS Multilevel fiber tractography may improve the coverage of the motor cortex by corticospinal tract fibers compared with conventional deterministic algorithms. Thus, it could provide a more detailed and complete visualization of corticospinal tract architecture, particularly by visualizing fiber trajectories with acute angles that might be of high relevance in patients with gliomas and distorted anatomy.
Collapse
Affiliation(s)
- A Zhylka
- From the Department of Biomedical Engineering (A.Z., J.P.), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - N Sollmann
- Department of Diagnostic and Interventional Radiology (N.S.), University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology (N.S., F.K., B.W., C.Z., J.S.K.), School of Medicine, Klinikum rechts der Isar
- TUM-Neuroimaging Center (N.S., C.Z., J.S.K., S.M.K.), Klinikum rechts der Isar
- Department of Radiology and Biomedical Imaging (N.S.), University of California, San Francisco, San Francisco, California
| | - F Kofler
- Helmholtz AI (F.K.), Helmholtz Zentrum Munich, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology (N.S., F.K., B.W., C.Z., J.S.K.), School of Medicine, Klinikum rechts der Isar
- Image-Based Biomedical Modeling (F.K., B.M.)
- Department of Informatics, TranslaTUM (F.K., B.W.), Central Institute for Translational Cancer Research
| | - A Radwan
- Department of Imaging and Pathology (A.R., S.S.), Translational MRI
- Department of Neurosciences (A.R., S.S.), Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - A De Luca
- Image Sciences Institute (A.D.L., A.L.)
- Neurology Department (A.D.L.), University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J Gempt
- Department of Neurosurgery (J.G., A.S., S.M.K.), School of Medicine, Klinikumrechts der Isar, Technical University of Munich, Munich, Germany
| | - B Wiestler
- Department of Diagnostic and Interventional Neuroradiology (N.S., F.K., B.W., C.Z., J.S.K.), School of Medicine, Klinikum rechts der Isar
- Department of Informatics, TranslaTUM (F.K., B.W.), Central Institute for Translational Cancer Research
| | - B Menze
- Image-Based Biomedical Modeling (F.K., B.M.)
- Department of Quantitative Biomedicine (B.M.), University of Zurich, Zurich, Switzerland
| | - A Schroeder
- Department of Neurosurgery (J.G., A.S., S.M.K.), School of Medicine, Klinikumrechts der Isar, Technical University of Munich, Munich, Germany
| | - C Zimmer
- Department of Diagnostic and Interventional Neuroradiology (N.S., F.K., B.W., C.Z., J.S.K.), School of Medicine, Klinikum rechts der Isar
- TUM-Neuroimaging Center (N.S., C.Z., J.S.K., S.M.K.), Klinikum rechts der Isar
| | - J S Kirschke
- Department of Diagnostic and Interventional Neuroradiology (N.S., F.K., B.W., C.Z., J.S.K.), School of Medicine, Klinikum rechts der Isar
- TUM-Neuroimaging Center (N.S., C.Z., J.S.K., S.M.K.), Klinikum rechts der Isar
| | - S Sunaert
- Department of Imaging and Pathology (A.R., S.S.), Translational MRI
- Department of Neurosciences (A.R., S.S.), Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - A Leemans
- Image Sciences Institute (A.D.L., A.L.)
| | - S M Krieg
- TUM-Neuroimaging Center (N.S., C.Z., J.S.K., S.M.K.), Klinikum rechts der Isar
- Department of Neurosurgery (J.G., A.S., S.M.K.), School of Medicine, Klinikumrechts der Isar, Technical University of Munich, Munich, Germany
| | - J Pluim
- From the Department of Biomedical Engineering (A.Z., J.P.), Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
7
|
N-acetyl-aspartate and Myo-inositol as Markers of White Matter Microstructural Organization in Mild Cognitive Impairment: Evidence from a DTI- 1H-MRS Pilot Study. Diagnostics (Basel) 2023; 13:diagnostics13040654. [PMID: 36832141 PMCID: PMC9955118 DOI: 10.3390/diagnostics13040654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
We implemented a multimodal approach to examine associations between structural and neurochemical changes that could signify neurodegenerative processes related to mild cognitive impairment (MCI). Fifty-nine older adults (60-85 years; 22 MCI) underwent whole-brain structural 3T MRI (T1W, T2W, DTI) and proton magnetic resonance spectroscopy (1H-MRS). The regions of interest (ROIs) for 1H-MRS measurements were the dorsal posterior cingulate cortex, left hippocampal cortex, left medial temporal cortex, left primary sensorimotor cortex, and right dorsolateral prefrontal cortex. The findings revealed that subjects in the MCI group showed moderate to strong positive associations between the total N-acetylaspartate to total creatine and the total N-acetylaspartate to myo-inositol ratios in the hippocampus and dorsal posterior cingulate cortex and fractional anisotropy (FA) of WM tracts crossing these regions-specifically, the left temporal tapetum, right corona radiata, and right posterior cingulate gyri. In addition, negative associations between the myo-inositol to total creatine ratio and FA of the left temporal tapetum and right posterior cingulate gyri were observed. These observations suggest that the biochemical integrity of the hippocampus and cingulate cortex is associated with a microstructural organization of ipsilateral WM tracts originating in the hippocampus. Specifically, elevated myo-inositol might be an underlying mechanism for decreased connectivity between the hippocampus and the prefrontal/cingulate cortex in MCI.
Collapse
|
8
|
Bonosi L, Marrone S, Benigno UE, Buscemi F, Musso S, Porzio M, Silven MP, Torregrossa F, Grasso G. Maximal Safe Resection in Glioblastoma Surgery: A Systematic Review of Advanced Intraoperative Image-Guided Techniques. Brain Sci 2023; 13:brainsci13020216. [PMID: 36831759 PMCID: PMC9954589 DOI: 10.3390/brainsci13020216] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) represents the most common and aggressive central nervous system tumor associated with a poor prognosis. The aim of this study was to depict the role of intraoperative imaging techniques in GBM surgery and how they can ensure the maximal extent of resection (EOR) while preserving the functional outcome. The authors conducted a systematic review following PRISMA guidelines on the PubMed/Medline and Scopus databases. A total of 1747 articles were identified for screening. Studies focusing on GBM-affected patients, and evaluations of EOR and functional outcomes with the aid of advanced image-guided techniques were included. The resulting studies were assessed for methodological quality using the Risk of Bias in Systematic Review tool. Open Science Framework registration DOI 10.17605/OSF.IO/3FDP9. Eighteen studies were eligible for this systematic review. Among the selected studies, eight analyzed Sodium Fluorescein, three analyzed 5-aminolevulinic acid, two evaluated IoMRI imaging, two evaluated IoUS, and three evaluated multiple intraoperative imaging techniques. A total of 1312 patients were assessed. Gross Total Resection was achieved in the 78.6% of the cases. Follow-up time ranged from 1 to 52 months. All studies assessed the functional outcome based on the Karnofsky Performance Status scale, while one used the Neurologic Assessment in Neuro-Oncology score. In 77.7% of the cases, the functional outcome improved or was stable over the pre-operative assessment. Combining multiple intraoperative imaging techniques could provide better results in GBM surgery than a single technique. However, despite good surgical outcomes, patients often present a neurocognitive decline leading to a marked deterioration of the quality of life. Advanced intraoperative image-guided techniques can allow a better understanding of the anatomo-functional relationships between the tumor and the surrounding brain, thus maximizing the EOR while preserving functional outcomes.
Collapse
|
9
|
Hajtovic S, Sun J, Multani JS, Herrmann LL, Britton H, Gautreaux J, Tortolero L, Harrison G, Golfinos JG, Shepherd TM, Tanweer O, Placantonakis DG. Surgical cytoreduction of deep-seated high-grade glioma through tubular retractor. J Neurosurg 2022:1-12. [PMID: 36334293 DOI: 10.3171/2022.9.jns22842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Maximal safe resection is the goal of surgical treatment for high-grade glioma (HGG). Deep-seated hemispheric gliomas present a surgical challenge due to safety concerns and previously were often considered inoperable. The authors hypothesized that use of tubular retractors would allow resection of deep-seated gliomas with an acceptable safety profile. The purpose of this study was to describe surgical outcomes and survival data after resection of deep-seated HGG with stereotactically placed tubular retractors, as well as to discuss the technical advances that enable such procedures. METHODS This is a retrospective review of 20 consecutive patients who underwent 22 resections of deep-seated hemispheric HGG with the Viewsite Brain Access System by a single surgeon. Patient demographics, survival, tumor characteristics, extent of resection (EOR), and neurological outcomes were recorded. Cannulation trajectories and planned resection volumes depended on the relative location of white matter tracts extracted from diffusion tractography. The surgical plans were designed on the Brainlab system and preoperatively visualized on the Surgical Theater virtual reality SNAP platform. Volumetric assessment of EOR was obtained on the Brainlab platform and confirmed by a board-certified neuroradiologist. RESULTS Twenty adult patients (18 with IDH-wild-type glioblastomas and 2 with IDH-mutant grade IV astrocytomas) and 22 surgeries were included in the study. The cohort included both newly diagnosed (n = 17; 77%) and recurrent (n = 5; 23%) tumors. Most tumors (64%) abutted the ventricular system. The average preoperative and postoperative tumor volumes measured 33.1 ± 5.3 cm3 and 15.2 ± 5.1 cm3, respectively. The median EOR was 93%. Surgical complications included 2 patients (10%) who developed entrapment of the temporal horn, necessitating placement of a ventriculoperitoneal shunt; 1 patient (5%) who suffered a wound infection and pulmonary embolus; and 1 patient (5%) who developed pneumonia. In 2 cases (9%) patients developed new permanent visual field deficits, and in 5 cases (23%) patients experienced worsening of preoperative deficits. Preoperative neurological or cognitive deficits remained the same in 9 cases (41%) and improved in 7 (32%). The median overall survival was 14.4 months in all patients (n = 20) and in the newly diagnosed IDH-wild-type glioblastoma group (n = 16). CONCLUSIONS Deep-seated HGGs, which are surgically challenging and frequently considered inoperable, are amenable to resection through tubular retractors, with an acceptable safety profile. Such cytoreductive surgery may allow these patients to experience an overall survival comparable to those with more superficial tumors.
Collapse
Affiliation(s)
- Sabastian Hajtovic
- Departments of1Neurosurgery and.,2The City University of New York (CUNY) School of Medicine, New York, New York
| | | | | | | | | | | | | | - Gillian Harrison
- Departments of1Neurosurgery and.,4Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | - Omar Tanweer
- 6Department of Neurosurgery, Baylor College of Medicine, Houston, Texas; and
| | - Dimitris G Placantonakis
- Departments of1Neurosurgery and.,7Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|