1
|
Simic V, Nikolic A, Ning S, Milosevic M, Leonard F, Liu X, Kojic M. A parametric study of motion and attachment to capillary walls of circulating tumor cells (CTCs) interacting with non-activated and activated platelets. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 264:108699. [PMID: 40056847 DOI: 10.1016/j.cmpb.2025.108699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND AND OBJECTIVE Our previous research examined the biophysical conditions required for CTC arrest using a custom-built solid-fluid 2D axisymmetric computational model. Application of that model resulted in calculating the limiting conditions under which a CTC can pass through a narrowed capillary with a platelet attached to the capillary wall. This paper is a step forward in determining the effects of a selected set of parameters: number of platelets, CTC diameter, stiffness, and ligand-receptor bond stiffness of the CTC (with or without attached platelets) on the CTC trajectory, its axial position, and its attachment to the wall. Consideration of a single CTC provides the "net" effects of platelets on CTC attachment, although, in reality, there can be many configurations of cells and platelets, leading to additional interactions and outcomes regarding metastasis. We consider cases where platelets are resting and when they are activated. The effects of platelet activation on cell attachment to the wall-and hence on metastasis-are among the main goals of this paper. Quantification of platelet activation is achieved through an original concept that connects our computational model with data from a unique experimental investigation. The selected parameters provide METHODS: : The modeling concept of the motion of the CTC and platelets within the fluid relies on a strong coupling approach with a remeshing procedure. Additionally, a 1D FE truss (rope) element is implemented to simulate active ligand-receptor bonds, including the correction of platelet-cell adhesion forces due to platelet activation, as determined experimentally. RESULTS We have experimentally determined the attractive forces between cells and both non-activated and thrombin-activated platelets. The experimental results are incorporated into our computational models. This parametric study provides insight into the biomechanical conditions for CTC motion and arrest, contributing to the predictive capabilities for metastasis initiation and progression. Relationships are established between the properties of CTCs (size and stiffness), platelet size and stiffness, and ligand-receptor interaction intensity on one side, and the time in contact between CTCs and platelets, as well as the conditions for cell arrest, on the other side. CONCLUSIONS It is found that the number of platelets enhances the adhesion of the CTC to the wall due to effects on the fluid flow field and the overall increase in adhesion force with a higher number of platelets. Furthermore, it was found that adherence (metastasis), under otherwise identical conditions, is enhanced in the case of a softer cell. Although the 2D model simplifies real 3D conditions, it provides insight into the effects of geometrical and material parameters relevant to metastasis within capillaries in the presence of both non-activated and activated platelets.
Collapse
Affiliation(s)
- Vladimir Simic
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia; Bioengineering Research and Development Center, BioIRC Kragujevac, Serbia
| | - Aleksandar Nikolic
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia; Institute for Artificial Intelligence of Serbia, Novi Sad, Serbia
| | - Shao Ning
- Houston Methodist Research Institute, Department of Nanomedicine, Houston, USA
| | - Miljan Milosevic
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia; Bioengineering Research and Development Center, BioIRC Kragujevac, Serbia; Belgrade Metropolitan University, Belgrade, Serbia
| | - Fransisca Leonard
- Houston Methodist Research Institute, Department of Nanomedicine, Houston, USA
| | - Xuewu Liu
- Houston Methodist Research Institute, Department of Nanomedicine, Houston, USA
| | - Milos Kojic
- Bioengineering Research and Development Center, BioIRC Kragujevac, Serbia; Houston Methodist Research Institute, Department of Nanomedicine, Houston, USA; Serbian Academy of Sciences and Arts, Belgrade, Serbia.
| |
Collapse
|
2
|
Ding X, Liu C, Li X, Wang Z, Wu Y, Song Y, Yu W, Wu S. Real-world comparison of neoadjuvant chemoimmunotherapy and chemotherapy in muscle-invasive bladder cancer. Sci Rep 2025; 15:17588. [PMID: 40399449 PMCID: PMC12095507 DOI: 10.1038/s41598-025-99889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/23/2025] [Indexed: 05/23/2025] Open
Abstract
Muscle-invasive bladder cancer (MIBC) continues to pose a significant health challenge, as conventional neoadjuvant chemotherapy (NAC) has shown limited improvements in efficacy outcomes. Recent clinical trials suggest that combining NAC with immune checkpoint blockade (NAC.NICB) may enhance therapeutic efficacy. This study aimed to explore the short-term therapeutic efficacy and outcomes of NAC.NICB compared to NAC in real-world settings for the treatment of MIBC. A total of 100 patients with MIBC who received either NAC or NAC.NICB were included in the study. The treatment efficacy of the NAC and NAC.NICB groups was evaluated based on pathological complete response (pCR) and the rate of pathological downstaging through post treatment pathological assessment. In the NAC.NICB group, clinical characteristics were compared between patients who achieved pCR and those who did not, using the independent samples t-test or the Mann-Whitney U test. Overall, 71 patients received NAC and 29 patients received NAC.NICB. At baseline, the NAC.NICB group exhibited higher T and N stages compared to the NAC group. However, 48.3% (14/29) of the patients in the NAC.NICB group achieved pCR, which was significantly higher than that observed in the NAC group (18/71, 25.4%; p = 0.034). In addition, the pathological downstaging rate in the NAC.NICB group was higher than that of the NAC group (75.9% vs. 47.9%; p = 0.014). The disease control rate (DCR) in the NAC.NICB group was higher than that observed in the NAC group (96.6% vs. 77.5%; p = 0.020). Higher pretreatment hemoglobin levels (p = 0.018) or lower platelet levels (p = 0.026) in patients undergoing NAC.NICB therapy may serve as a potential predictor for achieving a higher pCR rate. Neoadjuvant chemotherapy combined with immune checkpoint blockade improves pCR and pathological downstaging rates in MIBC, highlighting the benefits of neoadjuvant chemoimmunotherapy for MIBC.
Collapse
Affiliation(s)
- Xinjia Ding
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Xiaohui Li
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Zhigao Wang
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Yanping Wu
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Yi Song
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Beijing, China.
| | - Shikai Wu
- Department of Medical Oncology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
3
|
Kang Z, Wang C, Xu W, Zhang B, Wan J, Li H, Shang P. Development and validation of a predictive model for postoperative metastasis of upper tract urothelial carcinoma after radical nephroureterectomy and analysis of risk factors for different metastatic sites: a multicenter study. Int Urol Nephrol 2025:10.1007/s11255-025-04455-9. [PMID: 40117076 DOI: 10.1007/s11255-025-04455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/08/2025] [Indexed: 03/23/2025]
Abstract
PURPOSE To develop a prediction model for assessing the risk of postoperative metastasis in upper tract urothelial carcinoma (UTUC) patients after radical nephroureterectomy (RNU) and to analyze independent risk factors for metastasis at different sites. METHODS We retrospectively analyzed data from 555 UTUC patients who underwent RNU at 3 medical centers between January 2012 and August 2023. Patients were randomly divided into a training cohort (n = 388) and a validation cohort (n = 167) at a 7:3 ratio. Univariate and multivariate Cox regression analyses were performed in the training cohort to identify postoperative metastasis risk factors. A nomogram was developed based on these factors and validated. In addition, independent risk factors for metastasis at different sites were analyzed. RESULTS Among the 555 patients, 122 (22.0%) developed postoperative metastasis. Middle and lower ureteral tumors, T stage ≥ T3, high-grade tumors, lymphovascular invasion (LVI), and a prognostic nutritional index (PNI) < 48.75 were associated with poorer metastasis-free survival (MFS). The nomogram achieved C-indexes of 0.816 and 0.812 in the training and validation cohorts. Age < 65 years was a risk factor for lymph node metastasis, tumor size and necrosis predicted liver metastasis, and a higher preoperative platelet-to-lymphocyte ratio (PLR) was associated with bone metastasis. Median overall survival (OS) for lymph node, lung, liver, multiple sites, bone, and brain metastasis were 14, 10, 6, 5.5, 5, and 4.5 months, respectively. CONCLUSION The prediction model developed effectively assesses postoperative metastasis risk in UTUC patients' aids in guiding individualized treatment. The risk factors for different metastasis sites are generally similar, with slight variations, which may offer new directions for future research on site-specific therapeutic strategies.
Collapse
Affiliation(s)
- ZiMing Kang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu Province, China
| | - Cheng Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu Province, China
| | - WanRong Xu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu Province, China
| | - Biao Zhang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu Province, China
| | - JiangHou Wan
- Department of Urology, Lanzhou University First Hospital, Lanzhou University, Lanzhou, Gansu Province, China
| | - HengPing Li
- Department of Urology, Gansu Provincial Hospital, Lanzhou, Gansu Province, China
| | - PanFeng Shang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu Province, China.
| |
Collapse
|
4
|
Miao L, Yang Y, Cheng M, Chen L, Han C. Ginsenoside Rb prevents the metastasis of hepatocarcinoma by blocking the platelet-tumor cell interaction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1721-1733. [PMID: 39172150 DOI: 10.1007/s00210-024-03387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND The interaction between platelets and tumor cells is a crucial step in the progression of tumor metastasis. Blocking platelet-tumor cell interaction is a potential target against metastasis. Ginsenoside Rb (G-Rb) exhibits potential anti-tumor pharmacological properties and may offer a therapeutic option for cancer. PURPOSE This study aimed to investigate anti-metastatic effects of G-Rb through regulating the crosstalk of platelets with tumor cells. METHODS In order to explore anti-metastatic effects of G-Rb in vitro, HepG2 cell and platelets were co-cultured to mimic the interaction of platelets with tumor cells. Wound healing and Transwell assays were used to assess the effect of G-Rb on cell migration and invasion. The expression of epithelial-mesenchymal transition (EMT)-related markers was determined by RT-qPCR and western blot assays. The aggregation and activation of platelets were detected by flow cytometry. Moreover, a lung metastasis model of mice was established to evaluate inhibitory effects of G-Rb in vivo. Metastatic nodules on the lung surface were counted and sections of lung tissues were stained by H&E. RESULTS G-Rb effectively suppressed tumor metastasis in the co-culture of platelets with HepG2 cell. First, G-Rb treatment significantly inhibited the migration and invasion of HepG2 cells induced by platelets. Second, the expressions of EMT-related markers, including N-cadherin, Snail, and MMP9, were decreased by the treatment of G-Rb in the presence of platelets. Meanwhile, G-Rb also suppressed platelet hyperactivity by regulating the adhesion to tumor cells, activation, TCIPA, and TGF-β1 secretion of platelets in vitro. In addition, the results of in vivo experiments proved G-Rb administration not only significantly decreased lung metastasis but also attenuated platelets aberrant aggregation and activation in vivo. CONCLUSION Our findings showed that G-Rb inhibited tumor metastasis and platelet activation through mediating platelet-tumor cell interaction, indicating the potential values of G-Rb in tumor metastasis therapy.
Collapse
Affiliation(s)
- Longxing Miao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China
| | - Yijun Yang
- Department of Pharmacy, Shandong Medical College, Jinan, 250002, People's Republic of China
| | - Mengtao Cheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Lijing Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- The Second Affiliated Hospital of Shandong, University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
5
|
Xie L, Gan F, Hu Y, Zheng Y, Lan J, Liu Y, Zhou X, Zheng J, Zhou X, Lou J. From Blood to Therapy: The Revolutionary Application of Platelets in Cancer-Targeted Drug Delivery. J Funct Biomater 2025; 16:15. [PMID: 39852571 PMCID: PMC11766108 DOI: 10.3390/jfb16010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Biomimetic nanodrug delivery systems based on cell membranes have emerged as a promising approach for targeted cancer therapy due to their biocompatibility and low immunogenicity. Among them, platelet-mediated systems are particularly noteworthy for their innate tumor-homing and cancer cell interaction capabilities. These systems utilize nanoparticles shielded and directed by platelet membrane coatings for efficient drug delivery. This review highlights the role of platelets in cancer therapy, summarizes the advancements in platelet-based drug delivery systems, and discusses their integration with other cancer treatments. Additionally, it addresses the limitations and challenges of platelet-mediated drug delivery, offering insights into future developments in this innovative field.
Collapse
Affiliation(s)
- Lijuan Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (L.X.); (F.G.); (Y.H.); (Y.Z.); (J.L.); (Y.L.); (X.Z.); (J.Z.)
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Fengxu Gan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (L.X.); (F.G.); (Y.H.); (Y.Z.); (J.L.); (Y.L.); (X.Z.); (J.Z.)
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yun Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (L.X.); (F.G.); (Y.H.); (Y.Z.); (J.L.); (Y.L.); (X.Z.); (J.Z.)
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yibin Zheng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (L.X.); (F.G.); (Y.H.); (Y.Z.); (J.L.); (Y.L.); (X.Z.); (J.Z.)
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Junshan Lan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (L.X.); (F.G.); (Y.H.); (Y.Z.); (J.L.); (Y.L.); (X.Z.); (J.Z.)
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yuting Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (L.X.); (F.G.); (Y.H.); (Y.Z.); (J.L.); (Y.L.); (X.Z.); (J.Z.)
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Xiaofang Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (L.X.); (F.G.); (Y.H.); (Y.Z.); (J.L.); (Y.L.); (X.Z.); (J.Z.)
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jianyu Zheng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (L.X.); (F.G.); (Y.H.); (Y.Z.); (J.L.); (Y.L.); (X.Z.); (J.Z.)
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming 650500, China
| | - Jie Lou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (L.X.); (F.G.); (Y.H.); (Y.Z.); (J.L.); (Y.L.); (X.Z.); (J.Z.)
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
6
|
Tavukcuoglu Z, Butt U, de Faria AVS, Oesterreicher J, Holnthoner W, Laitinen S, Palviainen M, Siljander PRM. Platelet-derived extracellular vesicles induced through different activation pathways drive melanoma progression by functional and transcriptional changes. Cell Commun Signal 2024; 22:601. [PMID: 39695652 DOI: 10.1186/s12964-024-01973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Beyond their conventional roles in hemostasis and wound healing, platelets have been shown to facilitate hematogenous metastasis by interacting with cancer cells. Depending on the activation route, platelets also generate different platelet-derived extracellular vesicles (PEVs) that may educate cancer cells in the circulation or within the tumor microenvironment. We engaged different platelet-activating receptors, including glycoprotein VI and C-type lectin-like receptor 2, to generate a spectrum of PEV types. This allowed us to investigate the differential capacity of PEVs to alter cancer hallmark functions such as proliferation, invasion, and pro-angiogenic potential using melanoma as a model. Additionally, we analyzed changes in the cell transcriptomes and cancer EV profiles. METHODS Two human melanoma cell lines (MV3 and A2058) with differential metastatic potential were studied in the 3D spheroid cultures. Human platelets were activated with collagen related peptide (CRP), fucoidan from Fucus vesiculosus (FFV), thrombin & collagen co-stimulus and Ca2+ ionophore, and PEVs were isolated by size-exclusion chromatography followed by ultrafiltration. Spheroids or cells were treated with PEVs and used in functional assays of proliferation, invasion, and endothelial tube formation as well as for the analysis of cancer EV production and their tetraspanin profiles. Differentially expressed genes and enriched signaling pathways in the PEV-treated spheroids were analyzed at 6 h and 24 h by RNA sequencing. RESULTS Among the studied PEVs, those generated by CRP and FFV exhibited the most pronounced effects on altering cancer hallmark functions. Specifically, CRP and FFV PEVs increased proliferation in both MV3 and A2058 spheroids. Distinct tetraspanin signatures of melanoma EVs were induced by all PEV types. While the PI3K-Akt and MAPK signaling pathways were activated by both CRP and FFV PEVs, they differently upregulated the immunomodulatory TGF-β and type-I interferon signaling pathways, respectively. CONCLUSIONS Our study revealed both shared and distinct, cancer-promoting functions of PEVs, which contributed to the transcriptome and metastatic capabilities of the melanoma spheroids. Inhibiting the platelet receptors that modulate the PEVs' cancer-promoting properties may open up new strategies for identifying promising treatment targets for cancer therapy.
Collapse
Affiliation(s)
- Zeynep Tavukcuoglu
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Umar Butt
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Alessandra V Sousa de Faria
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Wolfgang Holnthoner
- AUVA Research Centre, Ludwig Boltzmann Institute for Traumatology, Vienna, Austria
| | - Saara Laitinen
- Finnish Red Cross Blood Service (FRCBS), Helsinki, Finland
| | - Mari Palviainen
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
- EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pia R-M Siljander
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland.
- EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Bacalbasa N, Petrea S, Gaspar B, Pop L, Varlas V, Hasegan A, Gorecki G, Martac C, Stoian M, Zgura A, Ciulcu A, Balescu I. Is There a Correlation Between Platelet Count, Mesenteric Lymph Node Involvement, and Hematogenous Metastases in Advanced Stage Ovarian Cancer? In Vivo 2024; 38:2945-2954. [PMID: 39477394 PMCID: PMC11535961 DOI: 10.21873/invivo.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND/AIM Ovarian cancer remains a major cause of death in women worldwide, mainly due to late diagnosis and the lack of a reliable screening test for early detection of the disease. In this context, attention has been focused on the identification of other prognostic factors that might allow a better identification of cases with worse long-term outcome. PATIENTS AND METHODS Data of patients who underwent cytoreductive surgery between 2014-2019 were retrospectively reviewed and 57 patients were considered eligible for this study. These cases were further classified according to preoperative platelet count, with a cut-off value of 335,000/μl as a positive predictive value for long-term survival. RESULTS According to this value, there were 27 cases with a preoperative platelet count lower than 335,000/μl and 30 cases with a preoperative platelet count higher than 335,000/μl. Cases in the second group had a significantly higher peritoneal carcinomatosis index (p=0.002), a higher proportion of digestive serosa involvement (p<0.001), and a higher proportion of mesenteric lymph node involvement and hematogenous metastases (p=0.005 and p=0.001, respectively). When analyzing long-term outcomes, all these factors had a significant impact on overall survival. CONCLUSION Preoperative thrombocytosis appears to be positively associated with gastrointestinal serosa involvement, mesenteric lymph node invasion, and the presence of hematogenous metastases, thus significantly influencing the long-term outcome of patients with advanced ovarian cancer.
Collapse
Affiliation(s)
- Nicolae Bacalbasa
- Department of Visceral Surgery, Center of Excellence in Translational Medicine "Fundeni" Clinical Institute, Bucharest, Romania
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Sorin Petrea
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Surgery, "Ion Cantacuzino" Clinical Hospital, Bucharest, Romania
| | - Bogdan Gaspar
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Visceral Surgery, "Floreasca" Clinical Emergency Hospital, Bucharest, Romania
| | - Lucian Pop
- Department of Obstetrics and Gynecology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Obstetrics and Gynecology, National Institute of Mother and Child Care Alessandrescu-Rusescu, Bucharest, Romania
| | - Valentin Varlas
- Department of Obstetrics and Gynecology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Obstetrics and Gynecology "Filantropia" Clinical Hospital, Bucharest, Romania
| | - Adrian Hasegan
- Department of Urology, Sibiu Emergency Hospital, Faculty of Medicine, University of Sibiu, Sibiu, Romania
| | - Gabriel Gorecki
- Department of Anesthesia and Intensive Care, CF 2 Clinical Hospital, Bucharest, Romania
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Cristina Martac
- Department of Anesthesiology, Fundeni Clinical Hospital, Bucharest, Romania
| | - Marilena Stoian
- Department of Internal Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Internal Medicine and Nephrology, "Ion Cantacuzino" Hospital, Bucharest, Romania
| | - Anca Zgura
- Department of Medical Oncology, Oncological Institute Prof. Dr. Al. Trestioreanu, Bucharest, Romania
- Department of Medical Oncology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Alexandru Ciulcu
- Department of Obstetrics and Gynecology, "Ion Cantacuzino" Clinical Hospital, Bucharest, Romania;
| | - Irina Balescu
- Ph.D. Student at "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
8
|
Dompé C, Chojnowska A, Ramlau R, Nowicki M, Alix-Panabières C, Budna-Tukan J. Unveiling the dynamics of circulating tumor cells in colorectal cancer: from biology to clinical applications. Front Cell Dev Biol 2024; 12:1498032. [PMID: 39539964 PMCID: PMC11557528 DOI: 10.3389/fcell.2024.1498032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
This review delves into the pivotal role of circulating tumor cells (CTCs) in colorectal cancer (CRC) metastasis, focusing on their biological properties, interactions with the immune system, advanced detection techniques, and clinical implications. We explored how metastasis-competent CTCs evade immune surveillance and proliferate, utilizing cutting-edge detection and isolation technologies, such as microfluidic devices and immunological assays, to enhance sensitivity and specificity. The review highlights the significant impact of CTC interactions with immune cells on tumor progression and patient outcomes. It discusses the application of these findings in clinical settings, including non-invasive liquid biopsies for early diagnosis, prognosis, and treatment monitoring. Despite advancements, challenges remain, such as the need for standardized methods to consistently capture and analyze CTCs. Addressing these challenges through further molecular and cellular research on CTCs could lead to improved interventions and outcomes for CRC patients, underscoring the importance of unraveling the complex dynamics of CTCs in cancer progression.
Collapse
Affiliation(s)
- Claudia Dompé
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells and Liquid Biopsy (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- Centre de Recherche en Ecologie et Evolution du Cancer, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche Pour le Dévelopement, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zielona Gora, Poland
| |
Collapse
|
9
|
Song MY, Zhao L, Huang WJ, Cui MM, Liu YX, Wang RT, Zhang X. Preoperative platelet distribution width predicts bone metastasis in patients with breast cancer. BMC Cancer 2024; 24:1066. [PMID: 39210343 PMCID: PMC11360324 DOI: 10.1186/s12885-024-12837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE Bone metastases occur in 50-70% of patients with breast cancer (BC) and result in high mortality. Platelet distribution width (PDW), a commonly used parameter of activated platelets, has been associated with a poor prognosis in BC. We aim to investigate the prognostic role of PDW for bone metastasis in BC patients. METHODS 515 patients who received BC surgery in the Harbin Medical University Cancer Hospital from July 1, 2016, to December 31, 2017, were reviewed. Patients' characteristics and platelet indices upon enrollment in this study were collected. The Kaplan-Meier method was used to estimate the 5-year bone metastasis incidence. The univariate and multivariate Cox regression analyses were utilized to identify risk factors associated with bone metastasis. RESULTS The patients with bone metastases exhibited lower PDW levels than the patients without bone metastases. Moreover, decreased PDW was significantly correlated with histologic type, multifocal disease, and lymph node status. In addition, the patients with reduced PDW levels were more likely to develop bone metastasis. Multivariate analysis showed that PDW was an independent predictor for bone metastasis. CONCLUSION PDW is an independent predictor of bone metastasis in BC. Further research is warranted.
Collapse
Affiliation(s)
- Mei-Yue Song
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Lin Zhao
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Wen-Juan Huang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Ming-Ming Cui
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Yu-Xi Liu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Rui-Tao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China.
| | - Xin Zhang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
10
|
Mahasa KJ, Ouifki R, de Pillis L, Eladdadi A. A Role of Effector CD 8 + T Cells Against Circulating Tumor Cells Cloaked with Platelets: Insights from a Mathematical Model. Bull Math Biol 2024; 86:89. [PMID: 38884815 DOI: 10.1007/s11538-024-01323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Cancer metastasis accounts for a majority of cancer-related deaths worldwide. Metastasis occurs when the primary tumor sheds cells into the blood and lymphatic circulation, thereby becoming circulating tumor cells (CTCs) that transverse through the circulatory system, extravasate the circulation and establish a secondary distant tumor. Accumulating evidence suggests that circulating effector CD 8 + T cells are able to recognize and attack arrested or extravasating CTCs, but this important antitumoral effect remains largely undefined. Recent studies highlighted the supporting role of activated platelets in CTCs's extravasation from the bloodstream, contributing to metastatic progression. In this work, a simple mathematical model describes how the primary tumor, CTCs, activated platelets and effector CD 8 + T cells participate in metastasis. The stability analysis reveals that for early dissemination of CTCs, effector CD 8 + T cells can present or keep secondary metastatic tumor burden at low equilibrium state. In contrast, for late dissemination of CTCs, effector CD 8 + T cells are unlikely to inhibit secondary tumor growth. Moreover, global sensitivity analysis demonstrates that the rate of the primary tumor growth, intravascular CTC proliferation, as well as the CD 8 + T cell proliferation, strongly affects the number of the secondary tumor cells. Additionally, model simulations indicate that an increase in CTC proliferation greatly contributes to tumor metastasis. Our simulations further illustrate that the higher the number of activated platelets on CTCs, the higher the probability of secondary tumor establishment. Intriguingly, from a mathematical immunology perspective, our simulations indicate that if the rate of effector CD 8 + T cell proliferation is high, then the secondary tumor formation can be considerably delayed, providing a window for adjuvant tumor control strategies. Collectively, our results suggest that the earlier the effector CD 8 + T cell response is enhanced the higher is the probability of preventing or delaying secondary tumor metastases.
Collapse
Affiliation(s)
- Khaphetsi Joseph Mahasa
- Department of Mathematics and Computer Science, National University of Lesotho, Roma, Maseru, Lesotho.
| | - Rachid Ouifki
- Department of Mathematics and Applied Mathematics, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | | | - Amina Eladdadi
- Division of Mathematical Sciences, The National Science Foundation, Alexandria, VA, USA
| |
Collapse
|
11
|
Acharya SS, Kundu CN. Havoc in harmony: Unravelling the intricacies of angiogenesis orchestrated by the tumor microenvironment. Cancer Treat Rev 2024; 127:102749. [PMID: 38714074 DOI: 10.1016/j.ctrv.2024.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Cancer cells merely exist in isolation; rather, they exist in an intricate microenvironment composed of blood vessels, signalling molecules, immune cells, stroma, fibroblasts, and the ECM. The TME provides a setting that is favourable for the successful growth and survivance of tumors. Angiogenesis is a multifaceted process that is essential for the growth, invasion, and metastasis of tumors. TME can be visualized as a "concert hall," where various cellular and non-cellular factors perform in a "symphony" to orchestrate tumor angiogenesis and create "Havoc" instead of "Harmony". In this review, we comprehensively summarized the involvement of TME in regulating tumor angiogenesis. Especially, we have focused on immune cells and their secreted factors, inflammatory cytokines and chemokines, and their role in altering the TME. We have also deciphered the crosstalk among various cell types that further aids the process of tumor angiogenesis. Additionally, we have highlighted the limitations of existing anti-angiogenic therapy and discussed various potential strategies that could be used to overcome these challenges and improve the efficacy of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Sushree Subhadra Acharya
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University (Institute of Eminence), Campus-11, Patia, Bhubaneswar, Odisha Pin-751024, India.
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University (Institute of Eminence), Campus-11, Patia, Bhubaneswar, Odisha Pin-751024, India.
| |
Collapse
|
12
|
Rath B, Stickler S, Hochmair MJ, Hamilton G. Expression of cytokines in pleural effusions and corresponding cell lines of small cell lung cancer. Transl Lung Cancer Res 2024; 13:5-15. [PMID: 38405004 PMCID: PMC10891412 DOI: 10.21037/tlcr-23-569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
Background Small cell lung cancer (SCLC) is a neuroendocrine aggressive tumor with a dismal prognosis due to the lack of curative therapeutic modalities. Approximately 11% of these patients show a malignant pleural effusion (MPE) that increase in frequency with progression of the disease. In MPE, fluid accumulates due to leaky vessels and mesothelial surfaces as well as impaired removal of fluid due to impaired drainage. Methods For this investigation, three SCLC MPE samples and supernatants of the corresponding isolated cell lines were analyzed for the content of 105 cytokines, chemokines, and growth factors. Overexpressed pathways including these cytokines were identified using Reactome analysis tools. Results A large range of cytokines, including vascular endothelial growth factor A (VEGFA), were found to be expressed in the MPEs and conditioned media of the corresponding cell line. These mediators are involved in pathways such as interleukin (IL) signaling, growth factor stimulation, modulation of cell adhesion molecules and proliferative cell signaling. Cytokine expression by the corresponding SCLC cell lines revealed the specific contributions of the tumor cells and included high expression of VEGFA, tumor-promoting factors and mediators exerting immunosuppressive and protumor effects. MPEs used here showed marked stimulation of the proliferation of four permanent SCLC cell lines. Conclusions MPEs comprise a large number of cytokines with mixed activities on tumor cells and the invading SCLC cells release a number of protumor mediators and induce an immunosuppressive pleural environment.
Collapse
Affiliation(s)
- Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maximilian J. Hochmair
- Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Cereceda L, Cardenas JC, Khoury M, Silva-Pavez E, Hidalgo Y. Impact of platelet-derived mitochondria transfer in the metabolic profiling and progression of metastatic MDA-MB-231 human triple-negative breast cancer cells. Front Cell Dev Biol 2024; 11:1324158. [PMID: 38283990 PMCID: PMC10811077 DOI: 10.3389/fcell.2023.1324158] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: An active role of platelets in the progression of triple-negative breast cancer (TNBC) cells has been described. Even the role of platelet-derived extracellular vesicles on the migration of MDA-MB-231 cells has been reported. Interestingly, upon activation, platelets release functional mitochondria into the extracellular environment. However, the impact of these platelet-derived mitochondria on the metabolic properties of MDA-MB-231 cells remains unclear. Methods: MDA-MB-231 and MDA-MB-231-Rho-0 cells were co-cultured with platelets, which were isolated from donor blood. Mitochondrial transfer was assessed through confocal microscopy and flow cytometry, while metabolic analyses were conducted using a Seahorse XF HS Mini Analyzer. The mito-chondrial DNA (mtDNA) copy number was determined via quantitative PCR (qPCR) following platelet co-culture. Finally, cell proliferation and colony formation assay were performed using crystal violet staining. Results and Discussion: We have shown that platelet-derived mitochondria are internalized by MDA-MB-231 cells in co-culture with platelets, increasing ATP production, oxygen (O2) consumption rate (OCR), cell proliferation, and metabolic adaptability. Additionally, we observed that MDA-MB-231 cells depleted from mtDNA restore cell proliferation in uridine/pyruvate-free cell culture medium and mitochondrial O2 consumption after co-culture with platelets, indicating a reconstitution of mtDNA facilitated by platelet-derived mitochondria. In conclusion, our study provides new insights into the role of platelet-derived mitochondria in the metabolic adaptability and progression of metastatic MDA-MB-231 TNBC cells.
Collapse
Affiliation(s)
- Lucas Cereceda
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - J. Cesar Cardenas
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Maroun Khoury
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Eduardo Silva-Pavez
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista, Santiago, Chile
| | - Yessia Hidalgo
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
14
|
Ghosh LD, Jain A. The prospects of microphysiological systems in modeling platelet pathophysiology in cancer. Platelets 2023; 34:2247489. [PMID: 37610007 PMCID: PMC10578702 DOI: 10.1080/09537104.2023.2247489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023]
Abstract
The contribution of platelets is well recognized in thrombosis and hemostasis. However, platelets also promote tumor progression and metastasis through their crosstalk with various cells of the tumor microenvironment (TME). For example, several cancer models continue to show that platelet functions are readily altered by cancer cells upon activation leading to the formation of platelet-tumor aggregates, triggering release of soluble factors from platelet granules and altering platelet turnover. Further, activated platelets protect tumor cells from shear forces in circulation and assault of cytotoxic natural killer (NK) cells. Platelet-secreted factors promote proliferation of malignant cells, metastasis, and chemoresistance. Much of our knowledge of platelet biology in cancer has been achieved with animal models, particularly murine. However, this preclinical understanding of the complex pathophysiology is yet to be fully realized and translated to clinical trials in terms of new approaches to treat cancer via controlling the platelet function. In this review, we summarize the current state of knowledge of platelet physiology obtained through existing in vivo and in vitro cancer models, the complex interactions of platelets with cancer cells in TME and the pathways by which platelets may confer chemoresistance. Since the FDA Modernization Act recently passed by the US government has made animal models optional in drug approvals, we critically examine the existing and futuristic value of employing bioengineered microphysiological systems and organ-chips to understand the mechanistic role of platelets in cancer metastasis and exploring novel therapeutic targets for cancer prevention and treatment.
Collapse
Affiliation(s)
- Lopamudra D. Ghosh
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, Bryan, Texas, USA
- Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, Texas, USA
| |
Collapse
|
15
|
Krüger-Genge A, Köhler S, Laube M, Haileka V, Lemm S, Majchrzak K, Kammerer S, Schulz C, Storsberg J, Pietzsch J, Küpper JH, Jung F. Anti-Cancer Prodrug Cyclophosphamide Exerts Thrombogenic Effects on Human Venous Endothelial Cells Independent of CYP450 Activation-Relevance to Thrombosis. Cells 2023; 12:1965. [PMID: 37566045 PMCID: PMC10416884 DOI: 10.3390/cells12151965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/09/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Cancer patients are at a very high risk of serious thrombotic events, often fatal. The causes discussed include the detachment of thrombogenic particles from tumor cells or the adverse effects of chemotherapeutic agents. Cytostatic agents can either act directly on their targets or, in the case of a prodrug approach, require metabolization for their action. Cyclophosphamide (CPA) is a widely used cytostatic drug that requires prodrug activation by cytochrome P450 enzymes (CYP) in the liver. We hypothesize that CPA could induce thrombosis in one of the following ways: (1) damage to endothelial cells (EC) after intra-endothelial metabolization; or (2) direct damage to EC without prior metabolization. In order to investigate this hypothesis, endothelial cells (HUVEC) were treated with CPA in clinically relevant concentrations for up to 8 days. HUVECs were chosen as a model representing the first place of action after intravenous CPA administration. No expression of CYP2B6, CYP3A4, CYP2C9 and CYP2C19 was found in HUVEC, but a weak expression of CYP2C18 was observed. CPA treatment of HUVEC induced DNA damage and a reduced formation of an EC monolayer and caused an increased release of prostacyclin (PGI2) and thromboxane (TXA) associated with a shift of the PGI2/TXA balance to a prothrombotic state. In an in vivo scenario, such processes would promote the risk of thrombus formation.
Collapse
Affiliation(s)
- Anne Krüger-Genge
- Department of Healthcare, Biomaterials and Cosmeceuticals, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam, Germany
| | - Susanne Köhler
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Vanessa Haileka
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Sandy Lemm
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Karolina Majchrzak
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Sarah Kammerer
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Christian Schulz
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Brandenburg University of Technology Cottbus-Senftenberg, Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), 14476 Potsdam, Germany
| | - Joachim Storsberg
- Department of Healthcare, Biomaterials and Cosmeceuticals, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam, Germany
- Faculty of Medicine, Private University in the Principality of Liechtenstein (UFL), 9495 Triesen, Liechtenstein
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| |
Collapse
|
16
|
Wiyarta E, Nugraha DA, Ramadani MI, Gustya GF, Ammar MF, Edwar HD, Kheirizzad N, Mukhlisah MN, Burhan E, Syahruddin E. Clinical utility and diagnostic value of tumor-educated platelets in lung cancer: a systematic review and meta-analysis. Front Oncol 2023; 13:1201713. [PMID: 37564936 PMCID: PMC10410284 DOI: 10.3389/fonc.2023.1201713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Background The review addresses the knowledge gap concerning the diagnostic value and clinical utility of tumor-educated platelets (TEPs) in adult patients with lung cancer. Methods We searched twelve databases: PubMed, CENTRAL, EMBASE, CINAHL, MEDLINE, Scopus, ProQuest, MedRxiv, BioRxiv, SSRN, Clinicaltrials.gov, and CNKI up to 24 March 2023, to include any diagnostic study regarding TEPs and LC. TEPs diagnostic value was evaluated from pooled sensitivity and specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and the area under the curve (AUC). QUADAS 2 was used to assess the risk of bias. Heterogeneity analysis was assessed using the receiver operating characteristic (ROC) plane, Galbraith plot, bivariate boxplot, sensitivity analysis, and meta-regression. TEPs clinical utility was evaluated from Fagan's nomogram. Results 44 reports from 10 studies, including 7,858 events and 6,632 controls, were analyzed. The pooled sensitivity, specificity, PLR, NLR, and DOR were 0.80 (95% CI 0.79-0.80), 0.69 (95% CI 0.69-0.70), 2.92 (95% CI 2.50-3.41), 0.26 (95% CI 0.21-0.32), and 12.1 (95% CI 8.61-16.76), respectively. In addition, the AUC of the Summary ROC curve was 0.85 (95% CI: 0.81-0.88). The overall risk of bias was low. Heterogeneity may result from cancer stage, cancer control, measuring equipment, and RNA types across studies. There was no apparent publication bias (p=0.29) with significant positive (79%) and negative (22%) post-test probability, according to Deeks funnel plot asymmetry test and Fagan's nomogram. Conclusion TEPs could be a moderately effective candidate biomarker for LC diagnosis.
Collapse
Affiliation(s)
- Elvan Wiyarta
- Respiratory and Tuberculosis Research and Training Center (SATURATE), Faculty of Medicine, Persahabatan National Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Darrin Ananda Nugraha
- Respiratory and Tuberculosis Research and Training Center (SATURATE), Faculty of Medicine, Persahabatan National Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Muhammad Indera Ramadani
- Respiratory and Tuberculosis Research and Training Center (SATURATE), Faculty of Medicine, Persahabatan National Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Gita Fajri Gustya
- Respiratory and Tuberculosis Research and Training Center (SATURATE), Faculty of Medicine, Persahabatan National Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Muhammad Farrasy Ammar
- Respiratory and Tuberculosis Research and Training Center (SATURATE), Faculty of Medicine, Persahabatan National Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Hana Dzakira Edwar
- Respiratory and Tuberculosis Research and Training Center (SATURATE), Faculty of Medicine, Persahabatan National Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Nildza Kheirizzad
- Respiratory and Tuberculosis Research and Training Center (SATURATE), Faculty of Medicine, Persahabatan National Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Mutiah Nurul Mukhlisah
- Respiratory and Tuberculosis Research and Training Center (SATURATE), Faculty of Medicine, Persahabatan National Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Erlina Burhan
- Infection Division, Department of Pulmonology, Faculty of Medicine, Universitas Indonesia, Persahabatan National Hospital, Jakarta, Indonesia
| | - Elisna Syahruddin
- Oncology Division, Department of Pulmonology, Faculty of Medicine, Universitas Indonesia, Persahabatan National Hospital, Jakarta, Indonesia
| |
Collapse
|
17
|
Menna G, Piaser Guerrato G, Bilgin L, Ceccarelli GM, Olivi A, Della Pepa GM. Is There a Role for Machine Learning in Liquid Biopsy for Brain Tumors? A Systematic Review. Int J Mol Sci 2023; 24:9723. [PMID: 37298673 PMCID: PMC10253654 DOI: 10.3390/ijms24119723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The paucity of studies available in the literature on brain tumors demonstrates that liquid biopsy (LB) is not currently applied for central nervous system (CNS) cancers. The purpose of this systematic review focused on the application of machine learning (ML) to LB for brain tumors to provide practical guidance for neurosurgeons to understand the state-of-the-art practices and open challenges. The herein presented study was conducted in accordance with the PRISMA-P (preferred reporting items for systematic review and meta-analysis protocols) guidelines. An online literature search was launched on PubMed/Medline, Scopus, and Web of Science databases using the following query: "((Liquid biopsy) AND (Glioblastoma OR Brain tumor) AND (Machine learning OR Artificial Intelligence))". The last database search was conducted in April 2023. Upon the full-text review, 14 articles were included in the study. These were then divided into two subgroups: those dealing with applications of machine learning to liquid biopsy in the field of brain tumors, which is the main aim of this review (n = 8); and those dealing with applications of machine learning to liquid biopsy in the diagnosis of other tumors (n = 6). Although studies on the application of ML to LB in the field of brain tumors are still in their infancy, the rapid development of new techniques, as evidenced by the increase in publications on the subject in the past two years, may in the future allow for rapid, accurate, and noninvasive analysis of tumor data. Thus making it possible to identify key features in the LB samples that are associated with the presence of a brain tumor. These features could then be used by doctors for disease monitoring and treatment planning.
Collapse
|
18
|
Zhang X, Yu S, Li X, Wen X, Liu S, Zu R, Ren H, Li T, Yang C, Luo H. Research progress on the interaction between oxidative stress and platelets: Another avenue for cancer? Pharmacol Res 2023; 191:106777. [PMID: 37080257 DOI: 10.1016/j.phrs.2023.106777] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
Oxidative stress (OS) is a chemical imbalance between an oxidant and an antioxidant, causing damage to redox signaling and control or causing molecular damage. Unbalanced oxidative metabolism can produce excessive reactive oxygen species (ROS). These excess ROS can cause drastic changes in platelet metabolism and further affect platelet function. It will also lead to an increase in platelet procoagulant phenotype and cell apoptosis, which will increase the risk of thrombosis. The creation of ROS and subsequent platelet activation, adhesion, and recruitment are then further encouraged in an auto-amplifying loop by ROS produced from platelets. Meanwhile, cancer cells produce a higher concentration of ROS due to their fast metabolism and high proliferation rate. However, excessive ROS can result in damage to and modification of cellular macromolecules. The formation of cancer and its progression is strongly associated with oxidative stress and the resulting oxidative damage. In addition, platelets are an important part of the tumor microenvironment, and there is a significant cross-communication between platelets and cancer cells. Cancer cells alter the activation status of platelets, their RNA spectrum, proteome, and other properties. The "cloaking" of cancer cells by platelets providing physical protection,avoiding destruction from shear stress and the attack of immune cells, promoting tumor cell invasion.We explored the vicious circle interaction between ROS, platelets, and cancer in this review, and we believe that ROS can play a stimulative role in tumor growth and metastasis through platelets.
Collapse
Affiliation(s)
- Xingmei Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041 China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China
| | - Sisi Yu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041 China
| | - Xiaobo Li
- Molecular Diagnostic Laboratory of Department of Microbiology and Immunology, 3201 Hospital Affiliated to Medical College of Xi'an Jiaotong University, Hanzhong 723099, China
| | - Xiaoxia Wen
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China
| | - Shan Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China
| | - Ruiling Zu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041 China
| | - Hanxiao Ren
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Chaoguo Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China.
| | - Huaichao Luo
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041 China.
| |
Collapse
|
19
|
Kurashina R, Ando K, Inoue M, Maruyama R, Mitani K, Takenobu H, Haruta M, Onuki R, Matsuoka Y, Kamijo T, Kageyama Y. Pretreatment Hemoglobin Levels and Platelet-to-Lymphocyte Ratio Predict Survival Benefit from Pembrolizumab in Advanced Urothelial Carcinoma. CANCER DIAGNOSIS & PROGNOSIS 2023; 3:230-235. [PMID: 36875313 PMCID: PMC9949547 DOI: 10.21873/cdp.10206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 03/07/2023]
Abstract
BACKGROUND/AIM Several prognostic risk factors have been recognized when using cisplatin-based conventional chemotherapy for the treatment of advanced urothelial carcinoma (UC); these include performance status (PS), liver metastasis, hemoglobin (Hb) levels, time from prior chemotherapy (TFPC), and other systemic inflammation scores including neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR). However, the benefit of these indicators for predicting outcome of immune checkpoint inhibitors is not fully understood. Here, we investigated the predictive value of the indicators in patients who received pembrolizumab for the treatment of advanced UC. PATIENTS AND METHODS Seventy-five patients who received pembrolizumab treatment for advanced UC were included. The Karnofsky PS, liver metastasis, hemoglobin levels, TFPC, NLR, and PLR were analyzed, and their relationship with overall survival (OS) was determined. RESULTS All factors were highlighted as significant prognostic indicators for OS in the univariate proportional regression analysis (p<0.05 for each). Multivariate analysis revealed that Karnofsky PS and liver metastasis were independent prognostic indicators for OS (p<0.01) but were applicable only for a small number of patients. Notably, the combined analysis with low Hb levels and high PLR was significantly associated with OS in patients who could gain less benefit from pembrolizumab at a median of 6.6 [95% confidence interval (CI)=4.2-9.0] versus 15.1 (95% CI=12.4-17.8) months (p=0.002). CONCLUSION The combination of Hb levels and PLR may be a broadly applicable indicator for the outcome of pembrolizumab as second-line chemotherapy in patients with advanced UC.
Collapse
Affiliation(s)
- Ryo Kurashina
- Department of Urology, Saitama Cancer Center, Saitama, Japan
| | - Kiyohiro Ando
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Masaharu Inoue
- Department of Urology, Saitama Cancer Center, Saitama, Japan
| | - Riko Maruyama
- Department of Urology, Saitama Cancer Center, Saitama, Japan
| | - Kouki Mitani
- Department of Urology, Saitama Cancer Center, Saitama, Japan
| | - Hisanori Takenobu
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Masayuki Haruta
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Ritsuko Onuki
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Yoh Matsuoka
- Department of Urology, Saitama Cancer Center, Saitama, Japan
| | - Takehiko Kamijo
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Yukio Kageyama
- Department of Urology, Saitama Cancer Center, Saitama, Japan
| |
Collapse
|
20
|
Janicic A, Petrovic M, Zekovic M, Vasilic N, Coric V, Milojevic B, Zivkovic M, Bumbasirevic U. Prognostic Significance of Systemic Inflammation Markers in Testicular and Penile Cancer: A Narrative Review of Current Literature. Life (Basel) 2023; 13:600. [PMID: 36983756 PMCID: PMC10054741 DOI: 10.3390/life13030600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
In contemporary clinical practice, biomarkers are indispensable in the assessment and management of oncological patients. Although established serum tumor markers (beta human chorionic gonadotropin (bHCG), alpha fetoprotein (AFP), and lactate dehydrogenase (LDH)) have an indisputably important role in the management of patients with testicular cancer (TC), the application of these tumor markers may be accompanied with certain limitations, implying the need for additional biomarkers. Contrary to TC, there is a lack of established serological biomarkers for penile cancer (PC) and the management of this urological malignancy is based on multiple clinicopathological parameters. Therefore, the identification and rigorous analytical and clinical validation of reliable biomarkers are considered pivotal for improving PC management. Inflammation may be associated with all stages of oncogenesis, from initial neoplastic transformation to angiogenesis, tissue invasion, and metastasis. Accordingly, an array of inflammation-related indices have gained increasing attention as emerging predictors of oncological outcomes. The clinical usefulness of systemic inflammation markers was reported in many urological and non-urological malignancies. The aim of this narrative review is to summarize current scientific data regarding the prognostic and predictive significance of systemic inflammation markers in TC and PC patients.
Collapse
Affiliation(s)
- Aleksandar Janicic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milos Petrovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Milica Zekovic
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Nenad Vasilic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Vesna Coric
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Bogomir Milojevic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marko Zivkovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Uros Bumbasirevic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
21
|
Shi Q, Ji T, Tang X, Guo W. The role of tumor-platelet interplay and micro tumor thrombi during hematogenous tumor metastasis. Cell Oncol (Dordr) 2023; 46:521-532. [PMID: 36652166 DOI: 10.1007/s13402-023-00773-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In addition to their pivotal roles in coagulation and thrombosis, platelets are crucial in tumor progression, with plenty of clinical and experimental data demonstrating that the interplay of platelets and tumor cells is essential for hematogenous tumor metastasis. After detach from primary sites, tumor cells intravasate into the blood circulation becoming circulating tumor cells and induce platelet activation, aggregation and encasement around tumor cells to form micro tumor thrombi, which create a permissive tumor microenvironment for metastasis. Platelets in micro tumor thrombi protect tumor cells from immune surveillance and anoikis (detachment-triggered apoptosis) through various pathways, which are significant for tumor cell survival in the bloodstream. Moreover, platelets can facilitate tumor metastasis by expediting epithelial-mesenchymal transition (EMT), adhesion to the endothelium, angiogenesis, tumor proliferation processes and platelet-derived microvesicle (PMV) formation. CONCLUSIONS Here, we provide a synopsis of the current understanding of the formation of micro tumor thrombi and the role of micro tumor thrombi in tumor hematogenous metastasis based on the tumor-platelet interplay. We also highlight potential therapeutic strategies targeting platelets for tumor treatment, including cancer-associated platelet-targeted nanomedicines.
Collapse
Affiliation(s)
- Qianyu Shi
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Tao Ji
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China.
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China.
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China
| | - Wei Guo
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| |
Collapse
|
22
|
Yang S, Tang X, Wang L, Ni C, Wu Y, Zhou L, Zeng Y, Zhao C, Wu A, Wang Q, Xu X, Wang Y, Chen R, Zhang X, Zou L, Huang X, Wu J. Targeting TLR2/Rac1/cdc42/JNK Pathway to Reveal That Ruxolitinib Promotes Thrombocytopoiesis. Int J Mol Sci 2022; 23:16137. [PMID: 36555781 PMCID: PMC9787584 DOI: 10.3390/ijms232416137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Thrombocytopenia has long been considered an important complication of chemotherapy and radiotherapy, which severely limits the effectiveness of cancer treatment and the overall survival of patients. However, clinical treatment options are extremely limited so far. Ruxolitinib is a potential candidate. METHODS The impact of ruxolitinib on the differentiation and maturation of K562 and Meg-01 cells megakaryocytes (MKs) was examined by flow cytometry, Giemsa and Phalloidin staining. A mouse model of radiation-injured thrombocytopenia (RIT) was employed to evaluate the action of ruxolitinib on thrombocytopoiesis. Network pharmacology, molecular docking, drug affinity responsive target stability assay (DARTS), RNA sequencing, protein blotting and immunofluorescence analysis were applied to explore the targets and mechanisms of action of ruxolitinib. RESULTS Ruxolitinib can stimulate MK differentiation and maturation in a dose-dependent manner and accelerates recovery of MKs and thrombocytopoiesis in RIT mice. Biological targeting analysis showed that ruxolitinib binds directly to Toll Like Receptor 2 (TLR2) to activate Rac1/cdc42/JNK, and this action was shown to be blocked by C29, a specific inhibitor of TLR2. CONCLUSIONS Ruxolitinib was first identified to facilitate MK differentiation and thrombocytopoiesis, which may alleviate RIT. The potential mechanism of ruxolitinib was to promote MK differentiation via activating the Rac1/cdc42/JNK pathway through binding to TLR2.
Collapse
Affiliation(s)
- Shuo Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiaoqin Tang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Chengyang Ni
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yuesong Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ling Zhou
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yueying Zeng
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Chunling Zhao
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qiaozhi Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xiyan Xu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yiwei Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Rong Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xiao Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lile Zou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xinwu Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
23
|
Chen M, Hou L, Hu L, Tan C, Wang X, Bao P, Ran Q, Chen L, Li Z. Platelet detection as a new liquid biopsy tool for human cancers. Front Oncol 2022; 12:983724. [PMID: 36185270 PMCID: PMC9515491 DOI: 10.3389/fonc.2022.983724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/09/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is still a leading cause of death worldwide and liquid biopsy is a powerful tool that can be applied to different stages of cancer screening and treatment. However, as the second most abundant cell type in the bloodstream, platelets are isolated through well-established and fast methods in clinic but their value as a BioSource of cancer biomarkers is relatively recent. Many studies demonstrated the bidirectional interaction between cancer cells and platelets. Platelets transfer various proteins (e.g., growth factors, cytokine, chemokines) and RNAs (e.g., mRNA, lncRNA, miRNA, circRNA) into the tumor cells and microenvironment, leading the stimulation of tumor growth and metastasis. In turn, the platelet clinical characteristics (e.g., count and volume) and contents (e.g., RNA and protein) are altered by the interactions with cancer cells and this enables the early cancer detection using these features of platelets. In addition, platelet-derived microparticles also demonstrate the prediction power of being cancer biomarkers. In this review, we focus on the clinical applications of platelet detection using the platelet count, mean platelet volume, platelet RNA and protein profiles for human cancers and discuss the gap in bringing these implementations into the clinic.
Collapse
Affiliation(s)
- Maoshan Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- *Correspondence: Maoshan Chen, ; Li Chen, ; Zhongjun Li,
| | - Lijia Hou
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Lanyue Hu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Chengning Tan
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaojie Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Peipei Bao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qian Ran
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Li Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- *Correspondence: Maoshan Chen, ; Li Chen, ; Zhongjun Li,
| | - Zhongjun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injuries, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- *Correspondence: Maoshan Chen, ; Li Chen, ; Zhongjun Li,
| |
Collapse
|
24
|
Xu J, Yang Y, Zhong Q, Hou L, Ma H, Zhang Y, Feng L, He S, Lian M, Fang J, Wang R. A Study of Peripheral Blood Parameters to Predict Response to Induction Chemotherapy and Overall Survival in Advanced Laryngeal Squamous Cell Carcinoma. Curr Oncol 2022; 29:6472-6484. [PMID: 36135078 PMCID: PMC9497498 DOI: 10.3390/curroncol29090509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Purpose: the purpose of this study was to screen peripheral blood parameters and construct models predicting the prognosis and induction chemotherapy (IC) response in locally advanced laryngeal squamous cell carcinoma (LSCC) patients. Methods: A total of 128 stage III/IVa LSCC patients (who required a total laryngectomy) were enrolled in a retrospective study from January 2013 to September 2020 at Beijing Tongren Hospital of Capital Medical University. Among them, 62 patients received IC (IC group), and 66 patients immediately underwent a total laryngectomy (TL) after diagnosis (surgery group). Demographic information and peripheral blood parameters were collected for further analysis. The overall survival (OS), progression-free survival (PFS), and disease-specific survival (DSS) were compared between the two groups. The prognosis and survival were also compared between patients with laryngeal function preservation (LFP) and those with TL. Results: The Receiver Operating Characteristic (ROC) curve for IC response in the IC group showed that the AUC of the blood model based on the four peripheral blood parameters of fibrinogen (FIB), platelet (PLT), high-density lipoprotein cholesterol (HDL), and albumin (ALB) was significantly higher than the TNM stage model’s AUC (0.7932 vs. 0.6568). We constructed a nomogram blood model to predict IC response (C-Index = 0.793). Regarding the OS of all patients, an ROC analysis for overall survival, the Kaplan–Meier (K-M) method with a log-rank test, and multivariate analysis indicated age, clinical stage, FIB, and hemoglobin (HGB) were independent prognostic factors for the OS of LSCC patients. The blood–clinical logistic model (AUC = 0.7979) was constructed based on the four prognosis factors, which were superior to the blood (AUC = 0.6867) or clinical models (AUC = 0.7145) alone to predict OS. We constructed a nomogram model based on age, clinical stage, FIB, and HGB to predict OS for LSCC patients (C-Index = 0.792). Besides this, there were no significant differences in OS, PFS, and DSS between IC and surgery groups or LFP and TL groups. Conclusion: Peripheral blood parameters help predict IC response and overall survival. Furthermore, induction chemotherapy significantly improves laryngeal function preservation without lowering the survival prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ru Wang
- Correspondence: (J.F.); (R.W.)
| |
Collapse
|
25
|
Huh S, Kang C, Park JE, Nam D, Kim SI, Seol A, Choi K, Hwang D, Yu MH, Chung HH, Lee SW, Kang UB. Novel Diagnostic Biomarkers for High-Grade Serous Ovarian Cancer Uncovered by Data-Independent Acquisition Mass Spectrometry. J Proteome Res 2022; 21:2146-2159. [PMID: 35939567 DOI: 10.1021/acs.jproteome.2c00218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) represents the major histological type of ovarian cancer, and the lack of effective screening tools and early detection methods significantly contributes to the poor prognosis of HGSOC. Currently, there are no reliable diagnostic biomarkers for HGSOC. In this study, we performed liquid chromatography data-independent acquisition tandem mass spectrometry (MS) on depleted serum samples from 26 HGSOC cases and 24 healthy controls (HCs) to discover potential HGSOC diagnostic biomarkers. A total of 1,847 proteins were identified across all samples, among which 116 proteins showed differential expressions between HGSOC patients and HCs. Network modeling showed activations of coagulation and complement cascades, platelet activation and aggregation, neutrophil extracellular trap formation, toll-like receptor 4, insulin-like growth factor, and transforming growth factor β signaling, as well as suppression of lipoprotein assembly and Fc gamma receptor activation in HGSOC. Based on the network model, we prioritized 28 biomarker candidates and validated 18 of them using targeted MS assays in an independent cohort. Predictive modeling showed a sensitivity of 1 and a specificity of 0.91 in the validation cohort. Finally, in vitro functional assays on four potential biomarkers (FGA, VWF, ARHGDIB, and SERPINF2) suggested that they may play an important role in cancer cell proliferation and migration in HGSOC. All raw data were deposited in PRIDE (PXD033169).
Collapse
Affiliation(s)
- Sunghyun Huh
- Bertis R&D Division, Bertis Inc., Seongnam-si, Gyeonggi-do 13605, Republic of Korea
| | - Chaewon Kang
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul 136-701, Republic of Korea
| | - Ji Eun Park
- Bertis R&D Division, Bertis Inc., Seongnam-si, Gyeonggi-do 13605, Republic of Korea
| | - Dowoon Nam
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul 136-701, Republic of Korea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Aeran Seol
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Obstetrics and Gynecology, Korea University Medical Center, Seoul 02843, Republic of Korea
| | - Kyerim Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Bioinformatics Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Myeong-Hee Yu
- Bertis R&D Division, Bertis Inc., Seongnam-si, Gyeonggi-do 13605, Republic of Korea
| | - Hyun Hoon Chung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang-Won Lee
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul 136-701, Republic of Korea
| | - Un-Beom Kang
- Bertis R&D Division, Bertis Inc., Seongnam-si, Gyeonggi-do 13605, Republic of Korea
| |
Collapse
|
26
|
Desai C, Koupenova M, Machlus KR, Sen Gupta A. Beyond the thrombus: Platelet-inspired nanomedicine approaches in inflammation, immune response, and cancer. J Thromb Haemost 2022; 20:1523-1534. [PMID: 35441793 PMCID: PMC9321119 DOI: 10.1111/jth.15733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/03/2022]
Abstract
The traditional role of platelets is in the formation of blood clots for physiologic (e.g., in hemostasis) or pathologic (e.g., in thrombosis) functions. The cellular and subcellular mechanisms and signaling in platelets involved in these functions have been extensively elucidated and new knowledge continues to emerge, resulting in various therapeutic developments in this area for the management of hemorrhagic or thrombotic events. Nanomedicine, a field involving design of nanoparticles with unique biointeractive surface modifications and payload encapsulation for disease-targeted drug delivery, has become an important component of such therapeutic development. Beyond their traditional role in blood clotting, platelets have been implicated to play crucial mechanistic roles in other diseases including inflammation, immune response, and cancer, via direct cellular interactions, as well as secretion of soluble factors that aid in the disease microenvironment. To date, the development of nanomedicine systems that leverage these broader roles of platelets has been limited. Additionally, another exciting area of research that has emerged in recent years is that of platelet-derived extracellular vesicles (PEVs) that can directly and indirectly influence physiological and pathological processes. This makes PEVs a unique paradigm for platelet-inspired therapeutic design. This review aims to provide mechanistic insight into the involvement of platelets and PEVs beyond hemostasis and thrombosis, and to discuss the current state of the art in the development of platelet-inspired therapeutic technologies in these areas, with an emphasis on future opportunities.
Collapse
Affiliation(s)
- Cian Desai
- Department of PharmacologyCase Western Reserve UniversityClevelandOhioUSA
| | - Milka Koupenova
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Kellie R. Machlus
- Department of SurgeryVascular Biology ProgramBoston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Anirban Sen Gupta
- Department of PharmacologyCase Western Reserve UniversityClevelandOhioUSA
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
27
|
Cho U, Sung YE, Kim MS, Lee YS. Prognostic Role of Systemic Inflammatory Markers in Patients Undergoing Surgical Resection for Oral Squamous Cell Carcinoma. Biomedicines 2022; 10:biomedicines10061268. [PMID: 35740290 PMCID: PMC9220324 DOI: 10.3390/biomedicines10061268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Background: A high platelet−lymphocyte ratio (PLR) is a marker of systemic inflammation and, together with the neutrophil−lymphocyte ratio (NLR), is associated with poor outcomes in several cancers. We investigated the prognostic value of PLR and other systemic inflammatory markers, such as NLR, systemic immune-inflammation index (SII), and systemic inflammation response index (SIRI), in oral squamous cell carcinoma (OSCC) patients undergoing surgical resection. Methods: We derived PLR, NLR, SII, and SIRI from a retrospective chart review of 269 consecutive OSCC patients. The complete blood count examined in the immediate preoperative period was used to compute PLR, NLR, SII, and SIRI. We analyzed the relationship between these systemic inflammatory markers and the clinicopathologic characteristics, disease-specific survival (DSS), and progression-free survival (PFS) of patients. Results: In the univariate analysis, high PLR and SII were significantly associated with worse DSS and PFS (all p < 0.05). In the multivariate analysis, PLR (HR 2.36, 95% CI 1.28−4.36 for DSS; HR 1.80, 95% CI 1.06−3.06 for PFS) was an independent predictor of survival outcomes. When PLR was analyzed as a continuous variable, the relationship between the outcome and preoperative PLR was not monotonically linear. In the subgroup analysis, PLR was more strongly associated with DSS and PFS in patients who were male, had stage III/IV OSCC, or had lymph node metastasis. Conclusion: Our data suggest that in OSCC patients, the pretreatment PLR is an independent predictor of DSS and PFS. The PLR is a readily available biomarker that will improve prognostication and risk stratification in OSCC.
Collapse
Affiliation(s)
- Uiju Cho
- Department of Hospital Pathology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Yeoun-Eun Sung
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Min-Sik Kim
- Department of Otorhinolaryngology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Youn-Soo Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Correspondence:
| |
Collapse
|
28
|
Tyagi T, Jain K, Gu SX, Qiu M, Gu VW, Melchinger H, Rinder H, Martin KA, Gardiner EE, Lee AI, Ho Tang W, Hwa J. A guide to molecular and functional investigations of platelets to bridge basic and clinical sciences. NATURE CARDIOVASCULAR RESEARCH 2022; 1:223-237. [PMID: 37502132 PMCID: PMC10373053 DOI: 10.1038/s44161-022-00021-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/17/2022] [Indexed: 07/29/2023]
Abstract
Platelets have been shown to be associated with pathophysiological process beyond thrombosis, demonstrating critical additional roles in homeostatic processes, such as immune regulation, and vascular remodeling. Platelets themselves can have multiple functional states and can communicate and regulate other cells including immune cells and vascular smooth muscle cells, to serve such diverse functions. Although traditional platelet functional assays are informative and reliable, they are limited in their ability to unravel platelet phenotypic heterogeneity and interactions. Developments in methods such as electron microscopy, flow cytometry, mass spectrometry, and 'omics' studies, have led to new insights. In this Review, we focus on advances in platelet biology and function, with an emphasis on current and promising methodologies. We also discuss technical and biological challenges in platelet investigations. Using coronavirus disease 2019 (COVID-19) as an example, we further describe the translational relevance of these approaches and the possible 'bench-to-bedside' utility in patient diagnosis and care.
Collapse
Affiliation(s)
- Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Sean X Gu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, Yale New Haven Hospital, New Haven, CT, USA
| | - Miaoyun Qiu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - Vivian W Gu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Hannah Melchinger
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Henry Rinder
- Department of Laboratory Medicine, Yale University School of Medicine, Yale New Haven Hospital, New Haven, CT, USA
| | - Kathleen A Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth E Gardiner
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Alfred I Lee
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Wai Ho Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|