1
|
Zhou J, Chng WJ. Unveiling novel insights in acute myeloid leukemia through single-cell RNA sequencing. Front Oncol 2024; 14:1365330. [PMID: 38711849 PMCID: PMC11070491 DOI: 10.3389/fonc.2024.1365330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
Acute myeloid leukemia (AML) is a complex and heterogeneous group of aggressive hematopoietic stem cell disease. The presence of diverse and functionally distinct populations of leukemia cells within the same patient's bone marrow or blood poses a significant challenge in diagnosing and treating AML. A substantial proportion of AML patients demonstrate resistance to induction chemotherapy and a grim prognosis upon relapse. The rapid advance in next generation sequencing technologies, such as single-cell RNA-sequencing (scRNA-seq), has revolutionized our understanding of AML pathogenesis by enabling high-resolution interrogation of the cellular heterogeneity in the AML ecosystem, and their transcriptional signatures at a single-cell level. New studies have successfully characterized the inextricably intertwined interactions among AML cells, immune cells and bone marrow microenvironment and their contributions to the AML development, therapeutic resistance and relapse. These findings have deepened and broadened our understanding the complexity and heterogeneity of AML, which are difficult to detect with bulk RNA-seq. This review encapsulates the burgeoning body of knowledge generated through scRNA-seq, providing the novel insights and discoveries it has unveiled in AML biology. Furthermore, we discuss the potential implications of scRNA-seq in therapeutic opportunities, focusing on immunotherapy. Finally, we highlight the current limitations and future direction of scRNA-seq in the field.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Center for Translational Medicine, Singapore, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Center for Translational Medicine, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore, Singapore
| |
Collapse
|
2
|
Karsten H, Matrisch L, Cichutek S, Fiedler W, Alsdorf W, Block A. Broadening the horizon: potential applications of CAR-T cells beyond current indications. Front Immunol 2023; 14:1285406. [PMID: 38090582 PMCID: PMC10711079 DOI: 10.3389/fimmu.2023.1285406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Engineering immune cells to treat hematological malignancies has been a major focus of research since the first resounding successes of CAR-T-cell therapies in B-ALL. Several diseases can now be treated in highly therapy-refractory or relapsed conditions. Currently, a number of CD19- or BCMA-specific CAR-T-cell therapies are approved for acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), multiple myeloma (MM), and follicular lymphoma (FL). The implementation of these therapies has significantly improved patient outcome and survival even in cases with previously very poor prognosis. In this comprehensive review, we present the current state of research, recent innovations, and the applications of CAR-T-cell therapy in a selected group of hematologic malignancies. We focus on B- and T-cell malignancies, including the entities of cutaneous and peripheral T-cell lymphoma (T-ALL, PTCL, CTCL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), classical Hodgkin-Lymphoma (HL), Burkitt-Lymphoma (BL), hairy cell leukemia (HCL), and Waldenström's macroglobulinemia (WM). While these diseases are highly heterogenous, we highlight several similarly used approaches (combination with established therapeutics, target depletion on healthy cells), targets used in multiple diseases (CD30, CD38, TRBC1/2), and unique features that require individualized approaches. Furthermore, we focus on current limitations of CAR-T-cell therapy in individual diseases and entities such as immunocompromising tumor microenvironment (TME), risk of on-target-off-tumor effects, and differences in the occurrence of adverse events. Finally, we present an outlook into novel innovations in CAR-T-cell engineering like the use of artificial intelligence and the future role of CAR-T cells in therapy regimens in everyday clinical practice.
Collapse
Affiliation(s)
- Hendrik Karsten
- Faculty of Medicine, University of Hamburg, Hamburg, Germany
| | - Ludwig Matrisch
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein, Lübeck, Germany
- Faculty of Medicine, University of Lübeck, Lübeck, Germany
| | - Sophia Cichutek
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Winfried Alsdorf
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Andreas Block
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Spillane DR, Assouline S. Immunotherapy for myelodysplastic syndrome and acute myeloid leukemia: where do we stand? Expert Rev Hematol 2023; 16:819-834. [PMID: 37819154 DOI: 10.1080/17474086.2023.2268273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are generally characterized by a poor prognosis with currently available therapies. Immunotherapies have already seen success in treating a variety of malignant disorders, and their role in managing myeloid cancers is evolving rapidly. AREAS COVERED This is a review of the immunotherapies tested in MDS and AML, including immune checkpoint inhibitors, bispecific antibodies, and cell therapies such as chimeric antigen receptor (CAR) T cell therapy, T cell receptor (TCR) engineered T cells, and natural killer (NK) cells, with a focus on clinical trials conducted to date and future directions. EXPERT OPINION Initial clinical trials exploring checkpoint inhibitors in MDS and AML have demonstrated high toxicity and disappointing efficacy. However, ongoing trials adding novel checkpoint inhibitors to standard therapy are more promising. Technological advances are improving the outlook for bispecific antibodies, and cellular therapies like adoptive NK cell infusion have favorable efficacy and tolerability in early trials. As our understanding of the immune microenvironment in MDS and AML improves, the role for immunotherapy in the treatment of these diseases will become clearer.
Collapse
Affiliation(s)
- David R Spillane
- Jewish General Hospital, McGill University, Montreal, Québec, Canada
| | - Sarit Assouline
- Jewish General Hospital, McGill University, Montreal, Québec, Canada
| |
Collapse
|
4
|
Kruchen A, Johann PD, Rekowski L, Müller I. Epigenetic Modification of Mesenchymal Stromal Cells Derived from Bone Marrow and Embryonal Tumors to Facilitate Immunotherapeutic Approaches in Pediatric Malignancies. Curr Issues Mol Biol 2023; 45:2121-2135. [PMID: 36975506 PMCID: PMC10047030 DOI: 10.3390/cimb45030136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Mesenchymal stromal cells (MSC) are part of the bone marrow architecture and contribute to the homeostasis of hematopoietic stem cells. Moreover, they are known to regulate immune effector cells. These properties of MSC are pivotal under physiologic conditions, and they may aberrantly also protect malignant cells. MSCs are also found in the leukemic stem cell niche of the bone marrow and as part of the tumor microenvironment. Here, they protect malignant cells from chemotherapeutic drugs and from immune effector cells in immunotherapeutic approaches. Modulation of these mechanisms may improve the efficacy of therapeutic regimens. We investigated the effect of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA, Vorinostat™) on the immunomodulatory effect and cytokine profile of MSC derived from bone marrow and pediatric tumors. The immune phenotype of MSC was not markedly affected. SAHA-treated MSC showed reduced immunomodulatory effects on T cell proliferation and NK cell cytotoxicity. This effect was accompanied by an altered cytokine profile of MSC. While untreated MSC inhibited the production of certain pro-inflammatory cytokines, SAHA treatment led to a partial increase in IFNγ and TNFα secretion. These alterations of the immunosuppressive milieu might be beneficial for immunotherapeutic approaches.
Collapse
Affiliation(s)
- Anne Kruchen
- Division of Pediatric Stem Cell Transplantation and Immunology, Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Pascal-David Johann
- Swabian Children’s Cancer Center, Children’s Hospital, Klinikum Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Laura Rekowski
- Division of Pediatric Stem Cell Transplantation and Immunology, Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Martinistr. 52, 20251 Hamburg, Germany
| | - Ingo Müller
- Division of Pediatric Stem Cell Transplantation and Immunology, Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Martinistr. 52, 20251 Hamburg, Germany
- Correspondence: ; Tel.: +49-40-7410-52720; Fax: +49-40-7410-40175
| |
Collapse
|
5
|
Chen YF, Li J, Xu LL, Găman MA, Zou ZY. Allogeneic stem cell transplantation in the treatment of acute myeloid leukemia: An overview of obstacles and opportunities. World J Clin Cases 2023; 11:268-291. [PMID: 36686358 PMCID: PMC9850970 DOI: 10.12998/wjcc.v11.i2.268] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
As an important treatment for acute myeloid leukemia, allogeneic hematopoietic stem cell transplantation (allo-HSCT) plays an important role in reducing relapse and improving long-term survival. With rapid advancements in basic research in molecular biology and immunology and with deepening understanding of the biological characteristics of hematopoietic stem cells, allo-HSCT has been widely applied in clinical practice. During allo-HSCT, preconditioning, the donor, and the source of stem cells can be tailored to the patient's conditions, greatly broadening the indications for HSCT, with clear survival benefits. However, the risks associated with allo-HSCT remain high, i.e. hematopoietic reconstitution failure, delayed immune reconstitution, graft-versus-host disease, and post-transplant relapse, which are bottlenecks for further improvements in allo-HSCT efficacy and have become hot topics in the field of HSCT. Other bottlenecks recognized in the current treatment of individuals diagnosed with acute myeloid leukemia and subjected to allo-HSCT include the selection of the most appropriate conditioning regimen and post-transplantation management. In this paper, we reviewed the progress of relevant research regarding these aspects.
Collapse
Affiliation(s)
- Yong-Feng Chen
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Ling-Long Xu
- Department of Hematology, Taizhou Central Hospital, Taizhou 318000, Zhejiang Province, China
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Zhen-You Zou
- Department of Scientific Research,Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou 545005, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
6
|
Zhang Q, Ma R, Chen H, Guo W, Li Z, Xu K, Chen W. CD86 Is Associated with Immune Infiltration and Immunotherapy Signatures in AML and Promotes Its Progression. JOURNAL OF ONCOLOGY 2023; 2023:9988405. [PMID: 37064861 PMCID: PMC10104747 DOI: 10.1155/2023/9988405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/21/2022] [Accepted: 07/25/2022] [Indexed: 04/18/2023]
Abstract
Background Cluster of differentiation 86 (CD86), also known as B7-2, is a molecule expressed on antigen-presenting cells that provides the costimulatory signals required for T cell activation and survival. CD86 binds to two ligands on the surface of T cells: the antigen CD28 and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). By binding to CD28, CD86-together with CD80-promotes the participation of T cells in the antigen presentation process. However, the interrelationships among CD86, immunotherapy, and immune infiltration in acute myeloid leukemia (AML) are unclear. Methods The immunological effects of CD86 in various cancers (including on chemokines, immunostimulators, MHC, and receptors) were evaluated through a pan-cancer analysis using TCGA and GEO databases. The relationship between CD86 expression and mononucleotide variation, gene copy number variation, methylation, immune checkpoint blockers (ICBs), and T-cell inflammation score in AML was subsequently examined. ESTIMATE and limma packages were used to identify genes at the intersection of CD86 with StromalScore and ImmuneScore. Subsequently, GO/KEGG and PPI network analyses were performed. The immune risk score (IRS) model was constructed, and the validation set was used for verification. The predictive value was compared with the TIDE score. Results CD86 was overexpressed in many cancers, and its overexpression was associated with a poor prognosis. CD86 expression was positively correlated with the expression of CTLA4, PDCD1LG2, IDO1, HAVCR2, and other genes and negatively correlated with CD86 methylation. The expression of CD86 in AML cell lines was detected by QRT-PCR and Western blot, and the results showed that CD86 was overexpressed in AML cell lines. Immune infiltration assays showed that CD86 expression was positively correlated with CD8 T cell, Dendritic cell, macrophage, NK cell, and Th1_cell and also with immune examination site, immune regulation, immunotherapy response, and TIICs. ssGSEA showed that CD86 was enriched in immune-related pathways, and CD86 expression was correlated with mutations in the genes RB1, ERBB2, and FANCC, which are associated with responses to radiotherapy and chemotherapy. The IRS score performed better than the TIDE website score. Conclusion CD86 appears to participate in immune invasion in AML and is an important player in the tumor microenvironment in this malignancy. At the same time, the IRS score developed by us has a good effect and may provide some support for the diagnosis of AML. Thus, CD86 may serve as a potential target for AML immunotherapy.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ruixue Ma
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huimin Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wentong Guo
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Wei Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
- Department of Hematology, The First People's Hospital of Suqian, Suqian, Jiangsu, China
| |
Collapse
|