1
|
An L, Huo Y, Xiao N, Su S, Wang K. SHP2 mediates the ROS/JNK/NFAT4 signaling pathway in gastric cancer cells prompting lncRNA SNHG18 to drive gastric cancer growth and metastasis via CAR-T cells. Heliyon 2024; 10:e34008. [PMID: 39130478 PMCID: PMC11315142 DOI: 10.1016/j.heliyon.2024.e34008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
OBJECTIVE In gastric cancer cells, the influence of CAR T cells can be produced in the process of inhibiting the progression of gastric cancer, and the role of tyrosine phosphatase SHP2 can be explored in this study, along with its molecular mechanisms. METHODS The research utilized subcutaneous tumor models in nude mice to assess gastric cancer progression. Protein expression was detected using Western blotting, while Q-PCR examined the expression levels of lncRNA SNHG18 and miR-211-5p in MGC-803 cells. The relationship between miR-211-5p and lncRNA SNHG18 can be analyzed by dual luciferase reporter genes. The migratory ability of MGC-803 cells was determined through wound healing and transwell experiments, and cell proliferation was evaluated using a CCK-8 assay. RESULTS SHP2 was found to inhibit the cytotoxic effects of CAR-T cells on MGC-803 cells, and it suppressed the expression of proteins related to the ROS/JNK/NFAT4 signaling pathway in MGC-803 cells and the miR-211-5p/BRD4 axis in CAR-T cells. In addition, the proliferation, invasion and migration of MGC-803 cells were promoted, and the expression of miR-211-5p could be inhibited specifically by ncRNA SNHG18, as shown below:SHP2 in gastric cancer cells mediates the ROS/JNK/NFAT4 signaling pathway and induces lncRNA SNHG18, which, through the miR-211-5p/BRD4 axis in CAR-T cells, promotes gastric cancer growth and metastasis.
Collapse
Affiliation(s)
| | | | - Na Xiao
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, Hebei, 071000, PR China
| | - Shenyong Su
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, Hebei, 071000, PR China
| | - Kunjie Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, Hebei, 071000, PR China
| |
Collapse
|
2
|
Runa F, Ortiz-Soto G, de Barros NR, Kelber JA. Targeting SMAD-Dependent Signaling: Considerations in Epithelial and Mesenchymal Solid Tumors. Pharmaceuticals (Basel) 2024; 17:326. [PMID: 38543112 PMCID: PMC10975212 DOI: 10.3390/ph17030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/01/2024] Open
Abstract
SMADs are the canonical intracellular effector proteins of the TGF-β (transforming growth factor-β). SMADs translocate from plasma membrane receptors to the nucleus regulated by many SMAD-interacting proteins through phosphorylation and other post-translational modifications that govern their nucleocytoplasmic shuttling and subsequent transcriptional activity. The signaling pathway of TGF-β/SMAD exhibits both tumor-suppressing and tumor-promoting phenotypes in epithelial-derived solid tumors. Collectively, the pleiotropic nature of TGF-β/SMAD signaling presents significant challenges for the development of effective cancer therapies. Here, we review preclinical studies that evaluate the efficacy of inhibitors targeting major SMAD-regulating and/or -interacting proteins, particularly enzymes that may play important roles in epithelial or mesenchymal compartments within solid tumors.
Collapse
Affiliation(s)
- Farhana Runa
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | | | | | - Jonathan A Kelber
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
- Department of Biology, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
3
|
Guo Z, Ashrafizadeh M, Zhang W, Zou R, Sethi G, Zhang X. Molecular profile of metastasis, cell plasticity and EMT in pancreatic cancer: a pre-clinical connection to aggressiveness and drug resistance. Cancer Metastasis Rev 2024; 43:29-53. [PMID: 37453022 DOI: 10.1007/s10555-023-10125-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The metastasis is a multistep process in which a small proportion of cancer cells are detached from the colony to enter into blood cells for obtaining a new place for metastasis and proliferation. The metastasis and cell plasticity are considered major causes of cancer-related deaths since they improve the malignancy of cancer cells and provide poor prognosis for patients. Furthermore, enhancement in the aggressiveness of cancer cells has been related to the development of drug resistance. Metastasis of pancreatic cancer (PC) cells has been considered one of the major causes of death in patients and their undesirable prognosis. PC is among the most malignant tumors of the gastrointestinal tract and in addition to lifestyle, smoking, and other factors, genomic changes play a key role in its progression. The stimulation of EMT in PC cells occurs as a result of changes in molecular interaction, and in addition to increasing metastasis, EMT participates in the development of chemoresistance. The epithelial, mesenchymal, and acinar cell plasticity can occur and determines the progression of PC. The major molecular pathways including STAT3, PTEN, PI3K/Akt, and Wnt participate in regulating the metastasis of PC cells. The communication in tumor microenvironment can provide by exosomes in determining PC metastasis. The components of tumor microenvironment including macrophages, neutrophils, and cancer-associated fibroblasts can modulate PC progression and the response of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Zhenli Guo
- Department of Oncology, First Affiliated Hospital, Gannan Medical University, 128 Jinling Road, Ganzhou City, Jiangxi Province, 341000, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
4
|
Ma Y, Zhang L, Gao X, Zhu D. GPX3 represses pancreatic cancer cell proliferation, migration and invasion, and improves their chemo‑sensitivity by regulating the JNK/c‑Jun signaling pathway. Exp Ther Med 2024; 27:118. [PMID: 38361519 PMCID: PMC10867734 DOI: 10.3892/etm.2024.12407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/22/2023] [Indexed: 02/17/2024] Open
Abstract
Pancreatic cancer (PC) is a deadly and aggressive disease, which is characterized by poor prognosis. It has been reported that glutathione peroxidase 3 (GPX3) is involved in the development of several types of cancer. The present study aimed to explore the regulatory role of GPX3 in PC and uncover its underlying mechanism. Bioinformatics analysis was initially carried out to predict the expression profile of GPX3 in PC and its association with prognosis. The expression levels of GPX3 were also detected in PC cells by reverse transcription-quantitative PCR and western blot analysis. Following transfection to induce GPX3 overexpression, the proliferation ability of PC cells was assessed by Cell Counting Kit-8, colony formation and 5-ethynyl-2'-deoxyuridine incorporation assays. In addition, wound healing and Transwell assays were performed to evaluate the migration and invasion abilities of PC cells. Cell apoptosis was assessed by flow cytometric analysis. The expression levels of epithelial-mesenchymal transition (EMT)-, apoptosis-, and JNK signaling-related proteins were detected by western blot analysis. Additionally, for rescue experiments, JNK signaling was activated following cell treatment with anisomycin. The results showed that GPX3 was downregulated in PC and its expression was associated with favorable prognosis. In addition, cell transfection-induced GPX3 overexpression markedly inhibited cell proliferation, migration and invasion, and inhibited EMT. In addition, GPX3 improved the chemo-sensitivity of PC and gemcitabine (GEM)-resistant PC cells to GEM. Furthermore, GPX3 significantly suppressed JNK/c-Jun signaling in PC, while anisomycin treatment reversed the inhibitory effects of GPX3 on the malignant behavior and chemo-resistance of PC cells. The results of the present study indicated that GPX3 could serve as a tumor suppressor in PC via inhibiting JNK/c-Jun signaling, thus providing novel insights into the treatment of PC.
Collapse
Affiliation(s)
- Ye Ma
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Lixing Zhang
- Medical Laboratory, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, P.R. China
| | - Xin Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Dongming Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|