1
|
Howard EL, Goens MM, Susta L, Patel A, Wootton SK. Anti-Drug Antibody Response to Therapeutic Antibodies and Potential Mitigation Strategies. Biomedicines 2025; 13:299. [PMID: 40002712 PMCID: PMC11853408 DOI: 10.3390/biomedicines13020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
The development of anti-drug antibodies (ADAs) against therapeutic monoclonal antibodies (mAbs) poses significant challenges in the efficacy and safety of these treatments. ADAs can lead to adverse immune reactions, reduced drug efficacy, and increased clearance of therapeutic antibodies. This paper reviews the formation and mechanisms of ADAs, explores factors contributing to their development, and discusses potential strategies to mitigate ADA responses. Current and emerging strategies to reduce ADA formation include in silico and in vitro prediction tools, deimmunization techniques, antibody engineering, and various drug delivery methods. Additionally, novel approaches such as tolerogenic nanoparticles, oral tolerance, and in vivo delivery of therapeutic proteins via viral vectors and synthetic mRNA or DNA are explored. These strategies have the potential to enhance clinical outcomes of mAb therapies by minimizing immunogenicity and improving patient safety. Further research and innovation in this field are critical to overcoming the ongoing challenges of ADA responses in therapeutic antibody development.
Collapse
Affiliation(s)
- Erin L. Howard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (E.L.H.)
| | - Melanie M. Goens
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (E.L.H.)
| | - Leonardo Susta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (E.L.H.)
| | - Ami Patel
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sarah K. Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (E.L.H.)
| |
Collapse
|
2
|
Maji D, Miguela V, Cameron AD, Campbell DA, Sasset L, Yao X, Thompson AT, Sussman C, Yang D, Miller R, Drozdz MM, Liberatore RA. Enhancing In Vivo Electroporation Efficiency through Hyaluronidase: Insights into Plasmid Distribution and Optimization Strategies. Pharmaceutics 2024; 16:547. [PMID: 38675208 PMCID: PMC11053992 DOI: 10.3390/pharmaceutics16040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Electroporation (EP) stands out as a promising non-viral plasmid delivery strategy, although achieving optimal transfection efficiency in vivo remains a challenge. A noteworthy advancement in the field of in vivo EP is the application of hyaluronidase, an enzyme with the capacity to degrade hyaluronic acid in the extracellular matrix, which thereby enhances DNA transfer efficiency by 2- to 3-fold. This paper focuses on elucidating the mechanism of hyaluronidase's impact on transfection efficiency. We demonstrate that hyaluronidase promotes a more uniform distribution of plasmid DNA (pDNA) within skeletal muscle. Additionally, our study investigates the effect of the timing of hyaluronidase pretreatment on EP efficiency by including time intervals of 0, 5, and 30 min between hyaluronidase treatment and the application of pulses. Serum levels of the pDNA-encoded transgene reveal a minimal influence of the hyaluronidase pretreatment time on the final serum protein levels following delivery in both mice and rabbit models. Leveraging bioimpedance measurements, we capture morphological changes in muscle induced by hyaluronidase treatment, which result in a varied pDNA distribution. Subsequently, these findings are employed to optimize EP electrical parameters following hyaluronidase treatment in animal models. This paper offers novel insights into the potential of hyaluronidase in enhancing the effectiveness of in vivo EP, as well as guides optimized electroporation strategies following hyaluronidase use.
Collapse
Affiliation(s)
- Debnath Maji
- RenBio Inc., Long Island City, New York, NY 11101, USA
| | - Verónica Miguela
- RenBio Inc., Long Island City, New York, NY 11101, USA
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas—Universidad Miguel Hernández de Elche, Sant Joan d’Alacant, 03550 Alicante, Spain
| | | | | | - Linda Sasset
- RenBio Inc., Long Island City, New York, NY 11101, USA
| | - Xin Yao
- RenBio Inc., Long Island City, New York, NY 11101, USA
| | | | | | - David Yang
- RenBio Inc., Long Island City, New York, NY 11101, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert Miller
- RenBio Inc., Long Island City, New York, NY 11101, USA
| | | | | |
Collapse
|
3
|
Sussman C, Liberatore RA, Drozdz MM. Delivery of DNA-Based Therapeutics for Treatment of Chronic Diseases. Pharmaceutics 2024; 16:535. [PMID: 38675196 PMCID: PMC11053842 DOI: 10.3390/pharmaceutics16040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Gene therapy and its role in the medical field have evolved drastically in recent decades. Studies aim to define DNA-based medicine as well as encourage innovation and the further development of novel approaches. Gene therapy has been established as an alternative approach to treat a variety of diseases. Its range of mechanistic applicability is wide; gene therapy has the capacity to address the symptoms of disease, the body's ability to fight disease, and in some cases has the ability to cure disease, making it a more attractive intervention than some traditional approaches to treatment (i.e., medicine and surgery). Such versatility also suggests gene therapy has the potential to address a greater number of indications than conventional treatments. Many DNA-based therapies have shown promise in clinical trials, and several have been approved for use in humans. Whereas current treatment regimens for chronic disease often require frequent dosing, DNA-based therapies can produce robust and durable expression of therapeutic genes with fewer treatments. This benefit encourages the application of DNA-based gene therapy to manage chronic diseases, an area where improving efficiency of current treatments is urgent. Here, we provide an overview of two DNA-based gene therapies as well as their delivery methods: adeno associated virus (AAV)-based gene therapy and plasmid DNA (pDNA)-based gene therapy. We will focus on how these therapies have already been utilized to improve treatment of chronic disease, as well as how current literature supports the expansion of these therapies to treat additional chronic indications in the future.
Collapse
|
4
|
Chung C, Kudchodkar SB, Chung CN, Park YK, Xu Z, Pardi N, Abdel-Mohsen M, Muthumani K. Expanding the Reach of Monoclonal Antibodies: A Review of Synthetic Nucleic Acid Delivery in Immunotherapy. Antibodies (Basel) 2023; 12:46. [PMID: 37489368 PMCID: PMC10366852 DOI: 10.3390/antib12030046] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
Harnessing the immune system to combat disease has revolutionized medical treatment. Monoclonal antibodies (mAbs), in particular, have emerged as important immunotherapeutic agents with clinical relevance in treating a wide range of diseases, including allergies, autoimmune diseases, neurodegenerative disorders, cancer, and infectious diseases. These mAbs are developed from naturally occurring antibodies and target specific epitopes of single molecules, minimizing off-target effects. Antibodies can also be designed to target particular pathogens or modulate immune function by activating or suppressing certain pathways. Despite their benefit for patients, the production and administration of monoclonal antibody therapeutics are laborious, costly, and time-consuming. Administration often requires inpatient stays and repeated dosing to maintain therapeutic levels, limiting their use in underserved populations and developing countries. Researchers are developing alternate methods to deliver monoclonal antibodies, including synthetic nucleic acid-based delivery, to overcome these limitations. These methods allow for in vivo production of monoclonal antibodies, which would significantly reduce costs and simplify administration logistics. This review explores new methods for monoclonal antibody delivery, including synthetic nucleic acids, and their potential to increase the accessibility and utility of life-saving treatments for several diseases.
Collapse
Affiliation(s)
| | | | - Curtis N Chung
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | - Young K Park
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | - Ziyang Xu
- Massachusetts General Hospital, Harvard University, Boston, MA 02114, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Kar Muthumani
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| |
Collapse
|
5
|
Joshi LR, Gálvez NM, Ghosh S, Weiner DB, Balazs AB. Delivery platforms for broadly neutralizing antibodies. Curr Opin HIV AIDS 2023; 18:191-208. [PMID: 37265268 PMCID: PMC10247185 DOI: 10.1097/coh.0000000000000803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PURPOSE OF REVIEW Passive administration of broadly neutralizing antibodies (bNAbs) is being evaluated as a therapeutic approach to prevent or treat HIV infections. However, a number of challenges face the widespread implementation of passive transfer for HIV. To reduce the need of recurrent administrations of bNAbs, gene-based delivery approaches have been developed which overcome the limitations of passive transfer. RECENT FINDINGS The use of DNA and mRNA for the delivery of bNAbs has made significant progress. DNA-encoded monoclonal antibodies (DMAbs) have shown great promise in animal models of disease and the underlying DNA-based technology is now being tested in vaccine trials for a variety of indications. The COVID-19 pandemic greatly accelerated the development of mRNA-based technology to induce protective immunity. These advances are now being successfully applied to the delivery of monoclonal antibodies using mRNA in animal models. Delivery of bNAbs using viral vectors, primarily adeno-associated virus (AAV), has shown great promise in preclinical animal models and more recently in human studies. Most recently, advances in genome editing techniques have led to engineering of monoclonal antibody expression from B cells. These efforts aim to turn B cells into a source of evolving antibodies that can improve through repeated exposure to the respective antigen. SUMMARY The use of these different platforms for antibody delivery has been demonstrated across a wide range of animal models and disease indications, including HIV. Although each approach has unique strengths and weaknesses, additional advances in efficiency of gene delivery and reduced immunogenicity will be necessary to drive widespread implementation of these technologies. Considering the mounting clinical evidence of the potential of bNAbs for HIV treatment and prevention, overcoming the remaining technical challenges for gene-based bNAb delivery represents a relatively straightforward path towards practical interventions against HIV infection.
Collapse
Affiliation(s)
- Lok R. Joshi
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Nicolás M.S. Gálvez
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Sukanya Ghosh
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, PA 19104, USA
| | - David B. Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, PA 19104, USA
| | - Alejandro B. Balazs
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Cuypers ML, Geukens N, Hollevoet K, Declerck P, Dewilde M. Exploring the Fate of Antibody-Encoding pDNA after Intramuscular Electroporation in Mice. Pharmaceutics 2023; 15:pharmaceutics15041160. [PMID: 37111645 PMCID: PMC10146361 DOI: 10.3390/pharmaceutics15041160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
DNA-based antibody therapy seeks to administer the encoding nucleotide sequence rather than the antibody protein. To further improve the in vivo monoclonal antibody (mAb) expression, a better understanding of what happens after the administration of the encoding plasmid DNA (pDNA) is required. This study reports the quantitative evaluation and localization of the administered pDNA over time and its association with corresponding mRNA levels and systemic protein concentrations. pDNA encoding the murine anti-HER2 4D5 mAb was administered to BALB/c mice via intramuscular injection followed by electroporation. Muscle biopsies and blood samples were taken at different time points (up to 3 months). In muscle, pDNA levels decreased 90% between 24 h and one week post treatment (p < 0.0001). In contrast, mRNA levels remained stable over time. The 4D5 antibody plasma concentrations reached peak levels at week two followed by a slow decrease (50% after 12 weeks, p < 0.0001). Evaluation of pDNA localization revealed that extranuclear pDNA was cleared fast, whereas the nuclear fraction remained relatively stable. This is in line with the observed mRNA and protein levels over time and indicates that only a minor fraction of the administered pDNA is ultimately responsible for the observed systemic mAb levels. In conclusion, this study demonstrates that durable expression is dependent on the nuclear uptake of the pDNA. Therefore, efforts to increase the protein levels upon pDNA-based gene therapy should focus on strategies to increase both cellular entry and migration of the pDNA into the nucleus. The currently applied methodology can be used to guide the design and evaluation of novel plasmid-based vectors or alternative delivery methods in order to achieve a robust and prolonged protein expression.
Collapse
Affiliation(s)
- Marie-Lynn Cuypers
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, O&N II Herestraat 49 Box 820, 3000 Leuven, Belgium
| | - Nick Geukens
- PharmAbs-The KU Leuven Antibody Center, KU Leuven-University of Leuven, O&N II Herestraat 49 Box 820, 3000 Leuven, Belgium
| | - Kevin Hollevoet
- PharmAbs-The KU Leuven Antibody Center, KU Leuven-University of Leuven, O&N II Herestraat 49 Box 820, 3000 Leuven, Belgium
| | - Paul Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, O&N II Herestraat 49 Box 820, 3000 Leuven, Belgium
- PharmAbs-The KU Leuven Antibody Center, KU Leuven-University of Leuven, O&N II Herestraat 49 Box 820, 3000 Leuven, Belgium
| | - Maarten Dewilde
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, O&N II Herestraat 49 Box 820, 3000 Leuven, Belgium
- PharmAbs-The KU Leuven Antibody Center, KU Leuven-University of Leuven, O&N II Herestraat 49 Box 820, 3000 Leuven, Belgium
| |
Collapse
|