1
|
Ibrahim JS, Hanafi N, Sliem MA, El-Tayeb TA. Enhanced Photothermal Tumor Ablation Using Polypyrrole-Gold Nanocomposites Activated by Polarized Polychromatic Low-Energy Light: An In Vivo Study. JOURNAL OF BIOPHOTONICS 2025; 18:e202400488. [PMID: 39915096 DOI: 10.1002/jbio.202400488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 04/08/2025]
Abstract
Photothermal therapy (PTT) offers a minimally invasive approach for cancer treatment, using light energy to selectively heat and destroy cancer cells. Success in PTT depends on efficient, stable, and biocompatible photothermal agents. This study investigates polypyrrole@gold nanocomposites (PPy@Au NCs) as photothermal agents combined with polarized polychromatic low-energy light (PPLEL) to target tumors and limit disease progression. In vivo experiments on Ehrlich carcinoma-bearing female Swiss albino mice demonstrated that PPy@Au NCs selectively accumulated in tumor tissue and, when activated by PPLEL, generated sufficient heat for effective tumor ablation. This approach enhanced treatment efficacy and presented a cost-effective solution due to the affordability of both the nanocomposite and light source. Histopathological analysis confirmed significant tumor reduction, suggesting that this synergistic combination offers a promising cancer treatment strategy. Findings support further research and potential clinical applications in photothermal cancer therapy.
Collapse
Affiliation(s)
- Jilan S Ibrahim
- Department of Laser Applications in Metrology, Photochemistry and Agriculture (LAMPA), National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
| | - Neamat Hanafi
- Department of Radiation Biology, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mahmoud A Sliem
- Department of Laser Applications in Metrology, Photochemistry and Agriculture (LAMPA), National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
- Department of Chemistry, Faculty of Science, Taibah University, Medina, Saudi Arabia
| | - Tarek A El-Tayeb
- Department of Laser Applications in Metrology, Photochemistry and Agriculture (LAMPA), National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Fu Q, Yang J, Jiang H, Ren Y, Huo L, Liu M. Pulsed Red Photobiomodulation Boosts the Inhibition of Oxytocin-Induced Primary Dysmenorrhea in Mice by Suppressing Oxidative Stress and Inflammation. JOURNAL OF BIOPHOTONICS 2025; 18:e202400398. [PMID: 39676335 DOI: 10.1002/jbio.202400398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/01/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Increasing evidence has underscored the pivotal role of red photobiomodulation (R-PBM) in analgesic and anti-inflammatory processes; nonetheless, research concerning the effects of pulsed wave on primary dysmenorrhea (PD) remains sparse. This study found that pulsed R-PBM significantly diminished pain responses and levels of PGF2α/PGE2, mitigated uterine swelling, augmented antioxidant capacity, and lowered MDA concentrations, which outperformed continuous wave at the same average irradiance. Furthermore, PW treatment substantially reduced ROS levels and enhanced cell viability in PGF2α induced HUSM cells. NOS levels, especially iNOS, were markedly diminished in the uteri of PD mice, accompanied by significant alterations in inflammation-related genes (Jun, Fos, IL1rn, IL17b) and protein levels, along with pronounced downregulation of calcium ion concentrations after pulsed R-PBM intervention. These findings indicated that pulsed R-PBM may mitigate pain by modulating ROS and NO/NOS, mediated oxidative stress and inflammatory responses. Consequently, pulsed R-PBM emerges as a promising therapeutic strategy for PD.
Collapse
Affiliation(s)
- Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yi Ren
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Longfei Huo
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
| |
Collapse
|
3
|
Ji L, Huang J, Yu L, Jin H, Hu X, Sun Y, Yin F, Cai Y. Recent advances in nanoagents delivery system-based phototherapy for osteosarcoma treatment. Int J Pharm 2024; 665:124633. [PMID: 39187032 DOI: 10.1016/j.ijpharm.2024.124633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Osteosarcoma (OS) is a prevalent and highly malignant bone tumor, characterized by its aggressive nature, invasiveness, and rapid progression, contributing to a high mortality rate, particularly among adolescents. Traditional treatment modalities, including surgical resection, radiotherapy, and chemotherapy, face significant challenges, especially in addressing chemotherapy resistance and managing postoperative recurrence and metastasis. Phototherapy (PT), encompassing photodynamic therapy (PDT) and photothermal therapy (PTT), offers unique advantages such as low toxicity, minimal drug resistance, selective destruction, and temporal control, making it a promising approach for the clinical treatment of various malignant tumors. Constructing multifunctional delivery systems presents an opportunity to effectively combine tumor PDT, PTT, and chemotherapy, creating a synergistic anti-tumor effect. This review aims to consolidate the progress in the application of novel delivery system-mediated phototherapy in osteosarcoma. By summarizing advancements in this field, the objective is to propose a rational combination therapy involving targeted delivery systems and phototherapy for tumors, thereby expanding treatment options and enhancing the prognosis for osteosarcoma patients. In conclusion, the integration of innovative delivery systems with phototherapy represents a promising avenue in osteosarcoma treatment, offering a comprehensive approach to overcome challenges associated with conventional treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Lichen Ji
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jiaqing Huang
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Hematology, Hangzhou First People's Hospital, Hangzhou 310003, China
| | - Liting Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huihui Jin
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xuanhan Hu
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yuan Sun
- College of Chemistry Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Yu Cai
- Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
4
|
Jiang H, Yang J, Fu Q, Li A, Qin H, Liu M. Induction of Endoplasmic Reticulum Stress and Aryl Hydrocarbon Receptor Pathway Expression by Blue LED Irradiation in Oral Squamous Cell Carcinoma. JOURNAL OF BIOPHOTONICS 2024; 17:e202400226. [PMID: 39209312 DOI: 10.1002/jbio.202400226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Photobiomodulation therapy, as an emerging treatment modality, has been widely used in dentistry. However, reports on blue light therapy for oral cancer are scarce. This study investigated the effects of 457 and 475 nm LED irradiation on SCC-25 cells and explored the potential mechanisms underlying the impact of blue light. Both wavelengths were found to inhibit cell viability, induce oxidative stress, and cause cell cycle arrest without leading to cell death. Notably, the inhibitory effect of 457 nm blue light on cell proliferation was more sustained. Transcriptome sequencing was performed to explore the underlying mechanisms, revealing that blue light induced endoplasmic reticulum stress in SCC-25 cells, with 457 nm light showing a more pronounced effect. Moreover, 457 nm blue light upregulated the expression of the aryl hydrocarbon receptor pathway, indicating potential therapeutic prospects for the combined use of blue light and pharmacological agents.
Collapse
Affiliation(s)
- Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Angze Li
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan DB-Light Technology Co., Ltd, Zhongshan City, Guangdong Province, China
| |
Collapse
|
5
|
Plavskii VY, Sobchuk AN, Mikulich AV, Dudinova ON, Plavskaya LG, Tretyakova AI, Nahorny RK, Ananich TS, Svechko AD, Yakimchuk SV, Leusenka IA. Identification by methods of steady-state and kinetic spectrofluorimetry of endogenous porphyrins and flavins sensitizing the formation of reactive oxygen species in cancer cells. Photochem Photobiol 2024; 100:1310-1327. [PMID: 38258972 DOI: 10.1111/php.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
The question about acceptor molecules of optical radiation that determine the effects of photobiomodulation in relation to various types of cells still remains the focus of attention of researchers. This issue is most relevant for cancer cells, since, depending on the parameters of optical radiation, light can either stimulate their growth or inhibit them and lead to death. This study shows that endogenous porphyrins, which have sensitizing properties, may play an important role in the implementation of the effects of photobiomodulation, along with flavins. For the first time, using steady-state and kinetic spectrofluorimetry, free-base porphyrins and their zinc complexes were discovered and identified in living human cervical epithelial carcinoma (HeLa) cells, as well as in their extracts. It has been shown that reliable detection of porphyrin fluorescence in cells is hampered by the intense fluorescence of flavins due to their high concentration (micromolar range) and higher (compared to tetrapyrroles) fluorescence quantum yield. Optimization of the spectral range of excitation and the use of extractants that provide multiple quenching of the flavin component while increasing the emission efficiency of tetrapyrroles makes it possible to weaken the contribution of the flavin component to the recorded fluorescence spectra.
Collapse
Affiliation(s)
- Vitaly Yu Plavskii
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Andrei N Sobchuk
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Aliaksandr V Mikulich
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Olga N Dudinova
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Ludmila G Plavskaya
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Antonina I Tretyakova
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Raman K Nahorny
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Tatsiana S Ananich
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Alexei D Svechko
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Sergey V Yakimchuk
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| | - Ihar A Leusenka
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Belarus
| |
Collapse
|
6
|
Jiang H, Fu Q, Yang J, Qin H, Li A, Liu S, Liu M. Blue light irradiation suppresses oral squamous cell carcinoma through induction of endoplasmic reticulum stress and mitochondrial dysfunction. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112963. [PMID: 38908147 DOI: 10.1016/j.jphotobiol.2024.112963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The therapeutic potential of blue light photobiomodulation in cancer treatment, particularly in inhibiting cell proliferation and promoting cell death, has attracted significant interest. Oral squamous cell carcinoma (OSCC) is a prevalent form of oral cancer, necessitating innovative treatment approaches to improve patient outcomes. In this study, we investigated the effects of 420 nm blue LED light on OSCC and explored the underlying mechanisms. Our results demonstrated that 420 nm blue light effectively reduced OSCC cell viability and migration, and induced G2/M arrest. Moreover, we observed that 420 nm blue light triggered endoplasmic reticulum (ER) stress and mitochondrial dysfunction in OSCC cells, leading to activation of the CHOP signal pathway and alterations in the levels of Bcl-2 and Bax proteins, ultimately promoting cell apoptosis. Additionally, blue light suppressed mitochondrial gene expression, likely due to its damage to mitochondrial DNA. This study highlights the distinct impact of 420 nm blue light on OSCC cells, providing valuable insights into its potential application as a clinical treatment for oral cancer.
Collapse
Affiliation(s)
- Hui Jiang
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Qiqi Fu
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200433, China
| | - Jiali Yang
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200433, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Angze Li
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200433, China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, China.
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200433, China; Zhongshan DB-light Technology Co., Ltd, 14th Floor, South Wing, Shumao Building, Torch Development Zone, Zhongshan City, Guangdong Province 528437, China.
| |
Collapse
|
7
|
Teng Y, Li Z, Liu J, Teng L, Li H. Synergistic Effect of Doxorubicin and Blue Light Irradiation on the Antitumor Treatment of HepG2 Cells in Liver Cancer. Molecules 2024; 29:3360. [PMID: 39064938 PMCID: PMC11279636 DOI: 10.3390/molecules29143360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Doxorubicin (DOX) has been an effective antitumor agent for human liver cancer cells; however, an overdose might lead to major side effects appearing in clinical applications. In this work, we present a strategy of combining DOX and blue light (BL) irradiation for the antitumor treatment of HepG2 cells (one typical human liver cancer cell line). It is demonstrated that synergetic DOX and BL can significantly reduce cell proliferation and increase the apoptotic rate of HepG2 cells in comparison to individual DOX treatment. The additional BL irradiation is further helpful for enhancing the inhibition of cell migration and invasion. Analyses of reactive oxygen species (ROS) level and Western blotting reveal that the strategy results in more ROS accumulation, mitochondrial damage, and the upregulation of proapoptotic protein (Bcl-2) and downregulation of antiapoptotic protein (Bax). In addition to the improved therapeutic effect, the non-contact BL irradiation is greatly helpful for reducing the dosage of DOX, and subsequently reduces the side effects caused by the DOX drug. These findings offer a novel perspective for the therapeutic approach toward liver cancer with high efficiency and reduced side effects.
Collapse
Affiliation(s)
- Yun Teng
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
| | - Zhige Li
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Junsong Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Hongdong Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
| |
Collapse
|
8
|
Nie F, Ji Y, Sun H, Lee Z, Zhang Y, Han W, Ding Y. Experimental study on the safety of photobiologic regulation therapy in the treatment of some non-epidermal tumors. Lasers Med Sci 2024; 39:180. [PMID: 39001934 DOI: 10.1007/s10103-024-04121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
This study investigates the impact of Photobiomodulation (PBM) at different wavelengths on non-superficial cancer cells. Utilizing three laser protocols (650 nm, 810 nm, and 915 nm), the research explores cytotoxic effects, ROS generation, and cell migration. Results reveal varied responses across cell lines, with 810 nm PBM inducing significant ROS levels and inhibiting PAN-1 cell migration. The study suggests potential therapeutic applications for PBM in non-superficial cancers, emphasizing the need for further exploration in clinical settings.
Collapse
Affiliation(s)
- Fang Nie
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yu Ji
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Hao Sun
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zeqian Lee
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wei Han
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - YuChuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, USA.
| |
Collapse
|
9
|
Zhang F, Chen J, Luo W, Wen C, Mao W, Yang Y, Liu C, Xu Y, Chen W, Wen L. Mitochondria targeted biomimetic platform for chemo/photodynamic combination therapy against osteosarcoma. Int J Pharm 2024; 652:123865. [PMID: 38286195 DOI: 10.1016/j.ijpharm.2024.123865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/13/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Clinical treatment for osteosarcoma (OS) is still lacking effective means, and no significant progress in OS treatment have been made in recent years. Single chemotherapy has serious side effects and can produce drug resistance easily, resulting poor therapeutic effect. As a modern and non-invasive treatment form, photodynamic therapy (PDT) is widely used to treat diverse cancers. Chemotherapy in combination with PDT is a particularly efficient antitumor method that could overcome the defects of monotherapies. Since mitochondria is a key subcellular organelle involved in cell apoptosis regulation, targeting tumor cells mitochondria for drug delivery has become an important entry point for anti-tumor therapy. Herein, we rationally designed a core-shell structured biomimetic nanoplatform, i.e., D@SLNP@OSM-IR780, to achieve tumor homologous targeting and mitochondria targeted drug release for chemotherapy combined with PDT against OS. Upon 808 nm laser irradiation, D@SLNP@OSM-IR780 exhibited excellent photo-cytotoxicity in vitro. The excellent targeting effect of D@SLNP@OSM-IR780 in tumor tissues produced a tumor inhibition rate of 98.9% in vivo. We further indicated that synergistic chemo-photodynamic effect induced by D@SLNP@OSM-IR780 could activate mitochondria-mediated apoptosis pathway, along with host immune response and potential photothermal effect. On the whole, D@SLNP@OSM-IR780 is revealed to be a promising platform for OS targeted combination therapeutics.
Collapse
Affiliation(s)
- Fengtian Zhang
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University Osteoporosis Research Institute of Soochow University, 1055 Sanxiang Road, Suzhou 215000, People's Republic of China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, University Park in Rongjiang New District, Ganzhou 341000, People's Republic of China; Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Jinling East Avenue, Zhanggong District, Ganzhou 341000, People's Republic of China
| | - Jiaoting Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, University Park in Rongjiang New District, Ganzhou 341000, People's Republic of China
| | - Weihong Luo
- College of Pharmacy, Gannan Medical University, University Park in Rongjiang New District, Ganzhou 341000, People's Republic of China
| | - Changlong Wen
- Department of Infectious Diseases, Ganzhou People's Hospital, 17 Hongqi Avenue, Zhanggong District, Ganzhou 341000, People's Republic of China
| | - Wei Mao
- College of Pharmacy, Gannan Medical University, University Park in Rongjiang New District, Ganzhou 341000, People's Republic of China
| | - Yutian Yang
- College of Pharmacy, Gannan Medical University, University Park in Rongjiang New District, Ganzhou 341000, People's Republic of China
| | - Chunting Liu
- People's Hospital of Shicheng County, Xihua Middle Road, Qinjiang Town, Ganzhou 342700, People's Republic of China
| | - Youjia Xu
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University Osteoporosis Research Institute of Soochow University, 1055 Sanxiang Road, Suzhou 215000, People's Republic of China.
| | - Weiliang Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, University Park in Rongjiang New District, Ganzhou 341000, People's Republic of China; College of Pharmacy, Gannan Medical University, University Park in Rongjiang New District, Ganzhou 341000, People's Republic of China.
| | - Lijuan Wen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, University Park in Rongjiang New District, Ganzhou 341000, People's Republic of China; College of Pharmacy, Gannan Medical University, University Park in Rongjiang New District, Ganzhou 341000, People's Republic of China.
| |
Collapse
|
10
|
Yang J, Jiang H, Fu Q, Qin H, Li Y, Liu M. Blue light photobiomodulation induced apoptosis by increasing ROS level and regulating SOCS3 and PTEN/PI3K/AKT pathway in osteosarcoma cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 249:112814. [PMID: 37956614 DOI: 10.1016/j.jphotobiol.2023.112814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Blue light photobiomodulation (PBM) has attracted great attention in diminishing proliferation and inducing death of cancer cells recently. Osteosarcoma (OS) primarily occurring in children and adolescents, the limitations of drug resistance and limb salvage make it urgent to develop and identify new adjuvant therapeutic strategies. In this work, we attempted to research the anticancer effects and biological mechanisms of blue light PBM in human OS MG63 cells. The effects of various blue light parameters on MG63 cells indicated that suppressed cell proliferation and cell migration, induced cell apoptosis which are experimentally assessed using multiple assays including CCK, LDH, wound healing assay and Hoechst staining. Concurrently, the increases of ROS level and the inhibition of PI3K and AKT expression were identified under high-dose blue light PBM in MG63 cells. Meanwhile, SOCS3 is a major inducible anti-tumor molecule, we also found that blue light LED substantially promoted its expression. Thus, this study proposed that bule light PBM may be a hopeful therapeutic approach in OS clinical treatment in the future.
Collapse
Affiliation(s)
- Jiali Yang
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Qiqi Fu
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Yinghua Li
- Shanghai Fifth People's Hospital, Fudan University, 801th Heqing Road, Shanghai 200240, China
| | - Muqing Liu
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 28403, China.
| |
Collapse
|
11
|
Liu J, Xia D, Wei M, Zhou S, Li J, Weng Y. Bibliometric Analysis to Global Research Status Quo on Photobiomodulation. Photobiomodul Photomed Laser Surg 2023; 41:683-693. [PMID: 38011736 DOI: 10.1089/photob.2023.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Background: Photobiomodulation (PBM) becomes a remedial technology with growing popularity. The primary goal of this article is to conduct a PBM literature review, providing an overall systematic understanding of current and future trends. Methods: A dataset was made with topic retrieval, concerning PBM research retrieved from the Web of Science Core Collection. We analyzed to forecast research frontiers in this field using the softwares: VOSviewer, CiteSpace, and Biblioshiny. Results: Four thousand five hundred thirty pieces of literature were retrieved from our database. Current trends were characterized by keywords of "light," "spinal cord injury," "skeletal muscle," and so on. Future trends were characterized probably by six cutting-edge terms: "wound healing," "pain," "oral mucositis," "Alzheimer's disease," "Parkinson's disease," and "orthodontics." Conclusions: This study finds that the inadequacy of in-depth reliable interpretation of current clinical data calls for molecular biological mechanisms together with well-designed, large-sample, multicenter clinical trials. The study of oral, wound, and neural-related mechanisms and the exploration of therapeutic effects may be the popular trend at present and in the next few years.
Collapse
Affiliation(s)
- Jing Liu
- Wound Care Unit, Nanjing Drum Tower Hospital, Nanjing, PR China
| | - Dongyun Xia
- Wound Care Unit, Nanjing Drum Tower Hospital, Nanjing, PR China
| | - Min Wei
- Wound Care Unit, Nanjing Drum Tower Hospital, Nanjing, PR China
| | - Shaojing Zhou
- Wound Care Unit, Nanjing Drum Tower Hospital, Nanjing, PR China
| | - Jian Li
- Wound Care Unit, Nanjing Drum Tower Hospital, Nanjing, PR China
| | - Yajuan Weng
- Nursing Department, Nanjing Drum Tower Hospital, Nanjing, PR China
| |
Collapse
|
12
|
Jiang H, Qin H, Sun M, Lin S, Yang J, Liu M. Effect of blue light on the cell viability of A549 lung cancer cells and investigations into its possible mechanism. JOURNAL OF BIOPHOTONICS 2023; 16:e202300047. [PMID: 37265005 DOI: 10.1002/jbio.202300047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Blue light has attracted extensive attention as a new potential cancer therapy. Recent studies have indicated that blue light has a significant inhibition effect on A459 cells. However, the effect of light parameters on the treatment of A549 cells and the mechanism of how blue light made the effect was still unclear. This study aimed to investigate A549 cells responses to blue light with varying irradiance and dose-dense, and tried to find out the mechanism of the effects blue light made. The results suggested that the responses of A549 cells to blue light with different irradiance and dose-dense were different and the decrease of cell viability reached saturation when the irradiance reached 3 mW/cm2 and the dose-dense reached 3.6 J/cm2 . It was assumed that blue light suppressed PI3K/AKT pathway and promoted the expression of JNK and p53 to affect the proliferation of A549 cells.
Collapse
Affiliation(s)
- Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Miao Sun
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Shangfei Lin
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
| | - Jiali Yang
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Muqing Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
| |
Collapse
|
13
|
Carroll JD. Photobiomodulation Literature Watch October 2022. Photobiomodul Photomed Laser Surg 2023; 41:140-143. [PMID: 36927051 DOI: 10.1089/photob.2023.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|