1
|
Ki J, Lee JM, Lee W, Kim JH, Jin H, Jung S, Lee J. Dual-encoder architecture for metal artifact reduction for kV-cone-beam CT images in head and neck cancer radiotherapy. Sci Rep 2024; 14:27907. [PMID: 39537735 PMCID: PMC11561079 DOI: 10.1038/s41598-024-79305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
During a radiotherapy (RT) course, geometrical variations of target volumes, organs at risk, weight changes (loss/gain), tumor regression and/or progression can significantly affect the treatment outcome. Adaptive RT has become the effective methods along with technical advancements in imaging modalities including cone-beam computed tomography (CBCT). Planning CT (pCT) can be modified via deformable image registration (DIR), which is applied to the pair of pCT and CBCT. However, the artifact existed in both pCT and CBCT is a vulnerable factor in DIR. The dose calculation on CBCT is also suggested. Missing information due to the artifacts hinders the accurate dose calculation on CBCT. In this study, we aim to develop a deep learning-based metal artifact reduction (MAR) model to reduce the metal artifacts in CBCT for head and neck cancer RT. To train the proposed MAR model, we synthesized the kV-CBCT images including metallic implants, with and without metal artifacts (simulated image data pairs) through sinogram image handling process. We propose the deep learning architecture which focuses on both artifact removal and reconstruction of anatomic structure using a dual-encoder architecture. We designed four single-encoder models and three dual-encoder models based on UNet (for an artifact removal) and FusionNet (for a tissue restoration). Each single-encoder model contains either UNet or FusionNet, while the dual-encoder models have both UNet and FusionNet architectures. In the dual-encoder models, we implemented different feature fusion methods, including simple addition, spatial attention, and spatial/channel wise attention. Among the models, a dual-encoder model with spatial/channel wise attention showed the highest scores in terms of peak signal-to-noise ratio, mean squared error, structural similarity index, and Pearson correlation coefficient. CBCT images from 34 head and neck cancer patients were used to test the developed models. The dual-encoder model with spatial/channel wise attention showed the best results in terms of artifact index. By using the proposed model to CBCT, one can achieve more accurate synthetic pCT for head and neck patients as well as better tissue recognition and structure delineation for CBCT image itself.
Collapse
Affiliation(s)
- Juhyeong Ki
- Department of Nuclear Engineering, Ulsan National Institute of Science & Technology, Ulsan, 44919, Republic of Korea
| | - Jung Mok Lee
- Department of Computer Science and Engineering, Ulsan National Institute of Science & Technology, Ulsan, 44919, Republic of Korea
| | - Wonjin Lee
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Ho Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hyeongmin Jin
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Seongmoon Jung
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
- Ionizing Radiation Group, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea.
| | - Jimin Lee
- Department of Nuclear Engineering, Ulsan National Institute of Science & Technology, Ulsan, 44919, Republic of Korea.
- Graduate School of Artificial Intelligence, Ulsan National Institute of Science & Technology, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
2
|
Baroudi H, Chen X, Cao W, El Basha MD, Gay S, Gronberg MP, Hernandez S, Huang K, Kaffey Z, Melancon AD, Mumme RP, Sjogreen C, Tsai JY, Yu C, Court LE, Pino R, Zhao Y. Synthetic Megavoltage Cone Beam Computed Tomography Image Generation for Improved Contouring Accuracy of Cardiac Pacemakers. J Imaging 2023; 9:245. [PMID: 37998092 PMCID: PMC10672228 DOI: 10.3390/jimaging9110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
In this study, we aimed to enhance the contouring accuracy of cardiac pacemakers by improving their visualization using deep learning models to predict MV CBCT images based on kV CT or CBCT images. Ten pacemakers and four thorax phantoms were included, creating a total of 35 combinations. Each combination was imaged on a Varian Halcyon (kV/MV CBCT images) and Siemens SOMATOM CT scanner (kV CT images). Two generative adversarial network (GAN)-based models, cycleGAN and conditional GAN (cGAN), were trained to generate synthetic MV (sMV) CBCT images from kV CT/CBCT images using twenty-eight datasets (80%). The pacemakers in the sMV CBCT images and original MV CBCT images were manually delineated and reviewed by three users. The Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and mean surface distance (MSD) were used to compare contour accuracy. Visual inspection showed the improved visualization of pacemakers on sMV CBCT images compared to original kV CT/CBCT images. Moreover, cGAN demonstrated superior performance in enhancing pacemaker visualization compared to cycleGAN. The mean DSC, HD95, and MSD for contours on sMV CBCT images generated from kV CT/CBCT images were 0.91 ± 0.02/0.92 ± 0.01, 1.38 ± 0.31 mm/1.18 ± 0.20 mm, and 0.42 ± 0.07 mm/0.36 ± 0.06 mm using the cGAN model. Deep learning-based methods, specifically cycleGAN and cGAN, can effectively enhance the visualization of pacemakers in thorax kV CT/CBCT images, therefore improving the contouring precision of these devices.
Collapse
Affiliation(s)
- Hana Baroudi
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xinru Chen
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wenhua Cao
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mohammad D. El Basha
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Skylar Gay
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mary Peters Gronberg
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Soleil Hernandez
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kai Huang
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zaphanlene Kaffey
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Adam D. Melancon
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Raymond P. Mumme
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carlos Sjogreen
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - January Y. Tsai
- Department of Anesthesiology and Perioperative Medicine, Division of Anesthesiology, Critical Care Medicine and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cenji Yu
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Laurence E. Court
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ramiro Pino
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Yao Zhao
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Cao Z, Gao X, Liu G, Pei Y. Effect of metal implants and metal artifacts on back-projected two-dimensional entrance fluence determined by EPID dosimetry. J Appl Clin Med Phys 2023; 24:e14115. [PMID: 37573570 PMCID: PMC10647983 DOI: 10.1002/acm2.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
PURPOSE To evaluate the errors caused by metal implants and metal artifacts in the two-dimensional entrance fluences reconstructed using the back-projection algorithm based on electronic portal imaging device (EPID) images. METHODS The EPID in the Varian VitalBeam accelerator was used to acquire portal dose images (PDIs), and then commercial EPID dosimetry software was employed to reconstruct the two-dimensional entrance fluences based on computed tomography (CT) images of the head phantoms containing interchangeable metal-free/titanium/aluminum round bars. The metal-induced errors in the two-dimensional entrance fluences were evaluated by comparing the γ results and the pixel value errors in the metal-affected regions. We obtained metal-artifact-free CT images by replacing the voxel values of non-metal inserts with those of metal inserts in metal-free CT images to evaluate the metal-artifact-induced errors. RESULTS The γ passing rates (versus PDIs obtained without a phantom in the beam field (PDIair ), 2%/2 mm) for the back-projected two-dimensional entrance fluences of phantoms containing titanium or aluminum (BPTi /BPAl ) were reduced from 92.4% to 90.5% and 90.6%, respectively, relative to the metal-free phantom (BPmetal-free ). Titanium causes more severe metal artifacts in CT images than aluminum, and its removal resulted in a 0.0022 CU (median) reduction in the pixel value of BPTi artifact-free relative to BPTi in the metal-affected region. Moreover, the mean absolute error (MAE) and root mean square error (RMSE) decreased from 0.0050 CU and 0.0063 CU to 0.0034 CU and 0.0040 CU, respectively (vs. BPmetal-free ). CONCLUSION Metal implants increase the errors in back-projected two-dimensional entrance fluences, and metals with higher electron densities cause more errors. For high-electron-density metal implants that produce severe metal artifacts (e.g., titanium), removing metal artifacts from the CT images can improve the accuracy of the two-dimensional entrance fluences reconstructed by back-projection algorithms.
Collapse
Affiliation(s)
- Zheng Cao
- National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiChina
- Hematology & Oncology DepartmentHefei First People's HospitalHefeiChina
| | - Xiang Gao
- Hematology & Oncology DepartmentHefei First People's HospitalHefeiChina
| | - Gongfa Liu
- National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiChina
| | - Yuanji Pei
- National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
4
|
Cao Z, Gao X, Chang Y, Liu G, Pei Y. Improving synthetic CT accuracy by combining the benefits of multiple normalized preprocesses. J Appl Clin Med Phys 2023:e14004. [PMID: 37092739 PMCID: PMC10402686 DOI: 10.1002/acm2.14004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/13/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
PURPOSE To investigate the effect of different normalization preprocesses in deep learning on the accuracy of different tissues in synthetic computed tomography (sCT) and to combine their advantages to improve the accuracy of all tissues. METHODS The cycle-consistent adversarial network (CycleGAN) model was used to generate sCT images from megavolt cone-beam CT (MVCBCT) images. In this study, 2639 head MVCBCT and CT image pairs from 203 patients were collected as a training set, and 249 image pairs from 29 patients were collected as a test set. We normalized the voxel values in images to 0 to 1 or -1 to 1, using two linear and five nonlinear normalization preprocessing methods to obtain seven data sets and compared the accuracy of different tissues in different sCT obtained from training these data. Finally, to combine the advantages of different normalization preprocessing methods, we obtained sCT_Blur by cropping, stitching, and smoothing (OpenCV's cv2.medianBlur, kernel size 5) each group of sCTs and evaluated its image quality and accuracy of OARs. RESULTS Different normalization preprocesses made sCT more accurate in different tissues. The proposed sCT_Blur took advantage of multiple normalization preprocessing methods, and all tissues are more accurate than the sCT obtained using a single conventional normalization method. Compared with other sCT images, the structural similarity of sCT_Blur versus CT was improved to 0.906 ± 0.019. The mean absolute errors of the CT numbers were reduced to 15.7 ± 4.1 HU, 23.2 ± 7.1 HU, 11.5 ± 4.1 HU, 212.8 ± 104.6 HU, 219.4 ± 35.1 HU, and 268.8 ± 88.8 HU for the oral cavity, parotid, spinal cord, cavity, mandible, and teeth, respectively. CONCLUSION The proposed approach combined the advantages of several normalization preprocessing methods to improve the accuracy of all tissues in sCT images, which is promising for improving the accuracy of dose calculations based on CBCT images in adaptive radiotherapy.
Collapse
Affiliation(s)
- Zheng Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
- Hematology & Oncology Department, Hefei First People's Hospital, Hefei, China
| | - Xiang Gao
- Hematology & Oncology Department, Hefei First People's Hospital, Hefei, China
| | - Yankui Chang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Gongfa Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Yuanji Pei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| |
Collapse
|