1
|
Lin Y, Cheng M, Wu C, Huang Y, Zhu T, Li J, Gao H, Wang K. MRI-based artificial intelligence models for post-neoadjuvant surgery personalization in breast cancer: a narrative review of evidence from Western Pacific. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2025; 57:101254. [PMID: 40443543 PMCID: PMC12121432 DOI: 10.1016/j.lanwpc.2024.101254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 06/02/2025]
Abstract
Breast magnetic resonance imaging (MRI) is the most sensitive imaging method for diagnosing breast cancer and assessing treatment response. Artificial intelligence (AI) and radiomics offer new opportunities to identify patterns in imaging data, supporting personalized post-neoadjuvant surgical decisions. This paper reviewed breast MRI-based AI models for predicting outcomes after neoadjuvant therapy, with a focus on evidence from the Western Pacific region, to evaluate the quality of existing models, discuss their inherent limitations, and outline potential future directions. A literature search in MEDLINE, EMBASE, and Web of Science identified 51 relevant studies in the region, with the majority conducted in China, followed by South Korea and Japan. Most studies focused on predicting pathologic complete response (pCR), with a median sample size of 152 and largely retrospective single-center designs. Model performance was commonly assessed using validation sets, with pooled sensitivity and specificity for pCR prediction showing promising results. Models incorporating multitemporal MRI features were associated with improved accuracy. While MRI-based AI models show potential for guiding surgical planning, improved methodological quality and algorithmic explainability are needed to facilitate clinical translation.
Collapse
Affiliation(s)
- Yingyi Lin
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
- Department of Breast Cancer, Cancer Centre, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Minyi Cheng
- Department of Breast Cancer, Cancer Centre, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
- Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Cangui Wu
- Department of Breast Cancer, Cancer Centre, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
- Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Yuhong Huang
- Department of Breast Cancer, Cancer Centre, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Teng Zhu
- Department of Breast Cancer, Cancer Centre, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Jieqing Li
- Department of Breast Cancer, Cancer Centre, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Hongfei Gao
- Department of Breast Cancer, Cancer Centre, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Kun Wang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
- Department of Breast Cancer, Cancer Centre, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
2
|
Feng X, Shi Y, Wu M, Cui G, Du Y, Yang J, Xu Y, Wang W, Liu F. Predicting the efficacy of neoadjuvant chemotherapy in breast cancer patients based on ultrasound longitudinal temporal depth network fusion model. Breast Cancer Res 2025; 27:30. [PMID: 40016785 PMCID: PMC11869678 DOI: 10.1186/s13058-025-01971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025] Open
Abstract
OBJECTIVE The aim of this study was to develop and validate a deep learning radiomics (DLR) model based on longitudinal ultrasound data and clinical features to predict pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer patients. METHODS Between January 2018 and June 2023, 312 patients with histologically confirmed breast cancer were enrolled and randomly assigned to a training cohort (n = 219) and a test cohort (n = 93) in a 7:3 ratio. Next, pre-NAC and post-treatment 2-cycle ultrasound images were collected, and radiomics and deep learning features were extracted from NAC pre-treatment (Pre), post-treatment 2 cycle (Post), and Delta (pre-NAC-NAC 2 cycle) images. In the training cohort, to filter features, the intraclass correlation coefficient test, the Boruta algorithm, and the least absolute shrinkage and selection operator (LASSO) logistic regression were used. Single-modality models (Pre, Post, and Delta) were constructed based on five machine-learning classifiers. Finally, based on the classifier with the optimal predictive performance, the DLR model was constructed by combining Pre, Post, and Delta ultrasound features and was subsequently combined with clinical features to develop a combined model (Integrated). The discriminative power, predictive performance, and clinical utility of the models were further evaluated in the test cohort. Furthermore, patients were assigned into three subgroups, including the HR+/HER2-, HER2+, and TNBC subgroups, according to molecular typing to validate the predictability of the model across the different subgroups. RESULTS After feature screening, 16, 13, and 10 features were selected to construct the Pre model, Post model, and Delta model based on the five machine learning classifiers, respectively. The three single-modality models based on the XGBoost classifier displayed optimal predictive performance. Meanwhile, the DLR model (AUC of 0.827) was superior to the single-modality model (Pre, Post, and Delta AUCs of 0.726, 0.776, and 0.710, respectively) in terms of prediction performance. Moreover, multivariate logistic regression analysis identified Her-2 status and histological grade as independent risk factors for NAC response in breast cancer. In both the training and test cohorts, the Integrated model, which included Pre, Post, and Delta ultrasound features and clinical features, exhibited the highest predictive ability, with AUC values of 0.924 and 0.875, respectively. Likewise, the Integrated model displayed the highest predictive performance across the different subgroups. CONCLUSION The Integrated model, which incorporated pre-NAC treatment and early treatment ultrasound data and clinical features, accurately predicted pCR after NAC in breast cancer patients and provided valuable insights for personalized treatment strategies, allowing for timely adjustment of chemotherapy regimens.
Collapse
Affiliation(s)
- Xiaodan Feng
- Department of Ultrasound, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Yan Shi
- Department of Ultrasonography, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, China
| | - Meng Wu
- Department of Ultrasound, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Guanghe Cui
- Department of Ultrasound, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Yao Du
- Department of Ultrasound, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Jie Yang
- Department of Ultrasound, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Yuyuan Xu
- Department of Ultrasound, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Wenjuan Wang
- Department of Ultrasound, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Feifei Liu
- Department of Ultrasound, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China.
| |
Collapse
|
3
|
Lv M, Zhao B, Mao Y, Wang Y, Su X, Zhang Z, Wu J, Gao X, Wang Q. Deep learning model for the early prediction of pathologic response following neoadjuvant chemotherapy in breast cancer patients using dynamic contrast-enhanced MRI. Front Oncol 2025; 15:1491843. [PMID: 40071096 PMCID: PMC11893424 DOI: 10.3389/fonc.2025.1491843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Purpose This study aims to investigate the diagnostic accuracy of various deep learning methods on DCE-MRI, in order to provide a simple and accessible tool for predicting pathologic response of NAC in breast cancer patients. Methods In this study, we enrolled 313 breast cancer patients who had complete DCE-MRI data and underwent NAC followed by breast surgery. According to Miller-Payne criteria, the efficacy of NAC was categorized into two groups: the patients achieved grade 1-3 of Miller-Payne criteria were classified as the non-responders, while patients achieved grade 4-5 of Miller-Payne criteria were classified as responders. Multiple deep learning frameworks, including ViT, VGG16, ShuffleNet_v2, ResNet18, MobileNet_v2, MnasNet-0.5, GoogleNet, DenseNet121, and AlexNet, were used for transfer learning of the classification model. The deep learning features were obtained from the final fully connected layer of the deep learning models, with 256 features extracted based on DCE-MRI data for each patient of each deep learning model. Various machine-learning techniques, including support vector machine (SVM), K-nearest neighbor (KNN), RandomForest, ExtraTrees, XGBoost, LightGBM, and multiple-layer perceptron (MLP), were employed to construct classification models. Results We utilized various deep learning models to extract features and subsequently constructed machine learning models. Based on the performance of different machine learning models' AUC values, we selected the classifiers with the best performance. ResNet18 exhibited superior performance, with an AUC of 0.87 (95% CI: 0.82 - 0.91) and 0.87 (95% CI: 0.78 - 0.96) in the train and test cohorts, respectively. Conclusions Using pre-treatment DCE-MRI images, our study trained multiple deep models and developed the best-performing DLR model for predicting pathologic response of NAC in breast cancer patients. This prognostic tool provides a dependable and impartial basis for effectively identifying breast cancer patients who are most likely to benefit from NAC before its initiation. At the same time, it can also identify those patients who are insensitive to NAC, allowing them to proceed directly to surgical treatment and prevent the risk of losing the opportunity for surgery due to disease progression after NAC.
Collapse
Affiliation(s)
- Meng Lv
- Breast Disease Diagnosis and Treatment Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - BinXin Zhao
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan Mao
- Breast Disease Diagnosis and Treatment Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yongmei Wang
- Breast Disease Diagnosis and Treatment Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaohui Su
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zaixian Zhang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jie Wu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xueqiang Gao
- Breast Disease Diagnosis and Treatment Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qi Wang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Liu J, Li X, Wang G, Zeng W, Zeng H, Wen C, Xu W, He Z, Qin G, Chen W. Time-Series MR Images Identifying Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using a Deep Learning Approach. J Magn Reson Imaging 2025; 61:184-197. [PMID: 38850180 DOI: 10.1002/jmri.29405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Pathological complete response (pCR) is an essential criterion for adjusting follow-up treatment plans for patients with breast cancer (BC). The value of the visual geometry group and long short-term memory (VGG-LSTM) network using time-series dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for pCR identification in BC is unclear. PURPOSE To identify pCR to neoadjuvant chemotherapy (NAC) using deep learning (DL) models based on the VGG-LSTM network. STUDY TYPE Retrospective. POPULATION Center A: 235 patients (47.7 ± 10.0 years) were divided 7:3 into training (n = 164) and validation set (n = 71). Center B: 150 patients (48.5 ± 10.4 years) were used as test set. FIELD STRENGTH/SEQUENCE 3-T, T2-weighted spin-echo sequence imaging, and gradient echo DCE sequence imaging. ASSESSMENT Patients underwent MRI examinations at three sequential time points: pretreatment, after three cycles of treatment, and prior to surgery, with tumor regions of interest manually delineated. Histopathology was the gold standard. We used VGG-LSTM network to establish seven DL models using time-series DCE-MR images: pre-NAC images (t0 model), early NAC images (t1 model), post-NAC images (t2 model), pre-NAC and early NAC images (t0 + t1 model), pre-NAC and post-NAC images (t0 + t2 model), pre-NAC, early NAC and post-NAC images (t0 + t1 + t2 model), and the optimal model combined with the clinical features and imaging features (combined model). The models were trained and optimized on the training and validation set, and tested on the test set. STATISTICAL TESTS The DeLong, Student's t-test, Mann-Whitney U, Chi-squared, Fisher's exact, Hosmer-Lemeshow tests, decision curve analysis, and receiver operating characteristics analysis were performed. P < 0.05 was considered significant. RESULTS Compared with the other six models, the combined model achieved the best performance in the test set yielding an AUC of 0.927. DATA CONCLUSION The combined model that used time-series DCE-MR images, clinical features and imaging features shows promise for identifying pCR in BC. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY Stage 4.
Collapse
Affiliation(s)
- Jialing Liu
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xu Li
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Gang Wang
- Department of Radiology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong Province, China
| | - Weixiong Zeng
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hui Zeng
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chanjuan Wen
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Weimin Xu
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zilong He
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Genggeng Qin
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Weiguo Chen
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Comes MC, Fanizzi A, Bove S, Boldrini L, Latorre A, Guven DC, Iacovelli S, Talienti T, Rizzo A, Zito FA, Massafra R. Monitoring Over Time of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Patients Through an Ensemble Vision Transformers-Based Model. Cancer Med 2024; 13:e70482. [PMID: 39692281 DOI: 10.1002/cam4.70482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Morphological and vascular characteristics of breast cancer can change during neoadjuvant chemotherapy (NAC). Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)-acquired pre- and mid-treatment quantitatively capture information about tumor heterogeneity as potential earlier indicators of pathological complete response (pCR) to NAC in breast cancer. AIMS This study aimed to develop an ensemble deep learning-based model, exploiting a Vision Transformer (ViT) architecture, which merges features automatically extracted from five segmented slices of both pre- and mid-treatment exams containing the maximum tumor area, to predict and monitor pCR to NAC. MATERIALS AND METHODS Imaging data analyzed in this study referred to a cohort of 86 breast cancer patients, randomly split into training and test sets at a ratio of 8:2, who underwent NAC and for which information regarding the pCR status was available (37.2% of patients achieved pCR). We further validated our model using a subset of 20 patients selected from the publicly available I-SPY2 trial dataset (independent test). RESULTS The performances of the proposed model were assessed using standard evaluation metrics, and promising results were achieved: area under the curve (AUC) value of 91.4%, accuracy value of 82.4%, a specificity value of 80.0%, a sensitivity value of 85.7%, precision value of 75.0%, F-score value of 80.0%, and G-mean value of 82.8%. The results obtained from the independent test show an AUC of 81.3%, an accuracy of 80.0%, a specificity value of 76.9%, a sensitivity of 85.0%, a precision of 66.7%, an F-score of 75.0%, and a G-mean of 81.2%. DISCUSSION As far as we know, our research is the first proposal using ViTs on DCE-MRI exams to monitor pCR over time during NAC. CONCLUSION Finally, the changes in DCE-MRI at pre- and mid-treatment could affect the accuracy of pCR prediction to NAC.
Collapse
Affiliation(s)
- Maria Colomba Comes
- Laboratorio di Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Annarita Fanizzi
- Laboratorio di Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Samantha Bove
- Laboratorio di Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Luca Boldrini
- Unità Operativa Complessa di Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli I.R.C.C.S, Rome, Italy
| | - Agnese Latorre
- Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II"Bari, Bari, Italy
| | - Deniz Can Guven
- Department of Medical Oncology, Hacettepe University, Cancer Institute, Ankara, Turkey
| | - Serena Iacovelli
- Trial Office, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II" Bari, Bari, Italy
| | - Tiziana Talienti
- Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II"Bari, Bari, Italy
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico "Don Tonino Bello", I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Francesco Alfredo Zito
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Raffaella Massafra
- Laboratorio di Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
6
|
Yan L, Chen Y, He J. Leveraging MRI radiomics signature for predicting the diagnosis of CXCL9 in breast cancer. Heliyon 2024; 10:e38640. [PMID: 39430466 PMCID: PMC11490775 DOI: 10.1016/j.heliyon.2024.e38640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
Objective A non-invasive predictive model was developed using radiomic features to forecast CXCL9 expression level in breast cancer patients. Methods CXCL9 expression data and MRI images of breast cancer patients were obtained from The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA) databases, respectively. Local tissue samples from 20 breast cancer patients were collected to measure CXCL9 expression levels. Radiomic features were extracted from MRI images using 3DSlicer, and the minimum Redundancy Maximum Relevance and Recursive Feature Elimination (mRMR_RFE) method was employed to select the most pertinent radiomic features associated with CXCL9 expression levels. Support vector machine (SVM) and Logistic Regression (LR) models were utilized to construct the predictive model, and the area under the receiver operating characteristic curve (AUC) was calculated for performance evaluation. Results CXCL9 was found to be upregulated in breast cancer patients and linked to breast cancer prognosis. Nine radiomic features were ultimately selected using the mRMR_RFE method, and SVM and LR models were trained and validated. The SVM model achieved AUC values of 0.748 and 0.711 in the training and validation sets, respectively. The LR model obtained AUC values of 0.771 and 0.724 in the training and validation sets, respectively. Conclusion The utilization of MRI radiomic features for predicting CXCL9 expression level provides a novel non-invasive approach for breast cancer Prognostic research.
Collapse
Affiliation(s)
- Liping Yan
- Department of Breast Surgery, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, China
- Department of Surgery, the First Affiliated Hospital of Guangxi Medical University, China
| | - Yuexia Chen
- Department of Pathology, The Third Hospital of Nanchang, Nanchang, China
| | - Jianxin He
- Department of Ultrasound Medicine, The First Affiliated Hospital of Nanchang University, China
| |
Collapse
|
7
|
Gao Y, Yang X, Li H, Ding DW. A knowledge-enhanced interpretable network for early recurrence prediction of hepatocellular carcinoma via multi-phase CT imaging. Int J Med Inform 2024; 189:105509. [PMID: 38851131 DOI: 10.1016/j.ijmedinf.2024.105509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Predicting early recurrence (ER) of hepatocellular carcinoma (HCC) accurately can guide treatment decisions and further enhance survival. Computed tomography (CT) imaging, analyzed by deep learning (DL) models combining domain knowledge, has been employed for the prediction. However, these DL models utilized late fusion, restricting the interaction between domain knowledge and images during feature extraction, thereby limiting the prediction performance and compromising decision-making interpretability. METHODS We propose a novel Vision Transformer (ViT)-based DL network, referred to as Dual-Style ViT (DSViT), to augment the interaction between domain knowledge and images and the effective fusion among multi-phase CT images for improving both predictive performance and interpretability. We apply the DSViT to develop pre-/post-operative models for predicting ER. Within DSViT, to balance the utilization between domain knowledge and images within DSViT, we propose an adaptive self-attention mechanism. Moreover, we present an attention-guided supervised learning module for balancing the contributions of multi-phase CT images to prediction and a domain knowledge self-supervision module for enhancing the fusion between domain knowledge and images, thereby further improving predictive performance. Finally, we provide the interpretability of the DSViT decision-making. RESULTS Experiments on our multi-phase data demonstrate that DSViTs surpass the existing models across multiple performance metrics and provide the decision-making interpretability. Additional validation on a publicly available dataset underscores the generalizability of DSViT. CONCLUSIONS The proposed DSViT can significantly improve the performance and interpretability of ER prediction, thereby fortifying the trustworthiness of artificial intelligence tool for HCC ER prediction in clinical settings.
Collapse
Affiliation(s)
- Yu Gao
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Knowledge Automation for Industrial Processes, Ministry of Education, Beijing 100083, China
| | - Xue Yang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Da-Wei Ding
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Knowledge Automation for Industrial Processes, Ministry of Education, Beijing 100083, China.
| |
Collapse
|
8
|
Petrillo A, Fusco R, Petrosino T, Vallone P, Granata V, Rubulotta MR, Pariante P, Raiano N, Scognamiglio G, Fanizzi A, Massafra R, Lafranceschina M, La Forgia D, Greco L, Ferranti FR, De Soccio V, Vidiri A, Botta F, Dominelli V, Cassano E, Sorgente E, Pecori B, Cerciello V, Boldrini L. A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer. LA RADIOLOGIA MEDICA 2024; 129:864-878. [PMID: 38755477 DOI: 10.1007/s11547-024-01817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE To evaluate the performance of radiomic analysis on contrast-enhanced mammography images to identify different histotypes of breast cancer mainly in order to predict grading, to identify hormone receptors, to discriminate human epidermal growth factor receptor 2 (HER2) and to identify luminal histotype of the breast cancer. METHODS From four Italian centers were recruited 180 malignant lesions and 68 benign lesions. However, only the malignant lesions were considered for the analysis. All patients underwent contrast-enhanced mammography in cranium caudal (CC) and medium lateral oblique (MLO) view. Considering histological findings as the ground truth, four outcomes were considered: (1) G1 + G2 vs. G3; (2) HER2 + vs. HER2 - ; (3) HR + vs. HR - ; and (4) non-luminal vs. luminal A or HR + /HER2- and luminal B or HR + /HER2 + . For multivariate analysis feature selection, balancing techniques and patter recognition approaches were considered. RESULTS The univariate findings showed that the diagnostic performance is low for each outcome, while the results of the multivariate analysis showed that better performances can be obtained. In the HER2 + detection, the best performance (73% of accuracy and AUC = 0.77) was obtained using a linear regression model (LRM) with 12 features extracted by MLO view. In the HR + detection, the best performance (77% of accuracy and AUC = 0.80) was obtained using a LRM with 14 features extracted by MLO view. In grading classification, the best performance was obtained by a decision tree trained with three predictors extracted by MLO view reaching an accuracy of 82% on validation set. In the luminal versus non-luminal histotype classification, the best performance was obtained by a bagged tree trained with 15 predictors extracted by CC view reaching an accuracy of 94% on validation set. CONCLUSIONS The results suggest that radiomics analysis can be effectively applied to design a tool to support physician decision making in breast cancer classification. In particular, the classification of luminal versus non-luminal histotypes can be performed with high accuracy.
Collapse
Affiliation(s)
- Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy.
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013, Naples, Italy
| | - Teresa Petrosino
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Paolo Vallone
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Maria Rosaria Rubulotta
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Paolo Pariante
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Nicola Raiano
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Giosuè Scognamiglio
- Pathology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Annarita Fanizzi
- Direzione Scientifica, IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124, Bari, Italy
| | - Raffaella Massafra
- SSD Fisica Sanitaria, IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124, Bari, Italy
| | - Miria Lafranceschina
- Struttura Semplice Dipartimentale Di Radiodiagnostica Senologica, IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124, Bari, Italy
| | - Daniele La Forgia
- Struttura Semplice Dipartimentale Di Radiodiagnostica Senologica, IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124, Bari, Italy
| | - Laura Greco
- Radiology and Diagnostic Imaging, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Romana Ferranti
- Radiology and Diagnostic Imaging, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Valeria De Soccio
- Radiology and Diagnostic Imaging, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Antonello Vidiri
- Radiology and Diagnostic Imaging, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Botta
- Breast Imaging Division, IEO Istituto Europeo Di Oncologia, 20141, Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, IEO Istituto Europeo Di Oncologia, 20141, Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO Istituto Europeo Di Oncologia, 20141, Milan, Italy
| | - Eugenio Sorgente
- Radiation Protection and Innovative Technology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Biagio Pecori
- Radiation Protection and Innovative Technology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Vincenzo Cerciello
- Medical Physics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Luca Boldrini
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
9
|
Shi S, Lin C, Zhou J, Wei L, chen M, Zhang J, Cao K, Fan Y, Huang B, Luo Y, Feng ST. Development and validation of a deep learning radiomics model with clinical-radiological characteristics for the identification of occult peritoneal metastases in patients with pancreatic ductal adenocarcinoma. Int J Surg 2024; 110:2669-2678. [PMID: 38445459 PMCID: PMC11093493 DOI: 10.1097/js9.0000000000001213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Occult peritoneal metastases (OPM) in patients with pancreatic ductal adenocarcinoma (PDAC) are frequently overlooked during imaging. The authors aimed to develop and validate a computed tomography (CT)-based deep learning-based radiomics (DLR) model to identify OPM in PDAC before treatment. METHODS This retrospective, bicentric study included 302 patients with PDAC (training: n =167, OPM-positive, n =22; internal test: n =72, OPM-positive, n =9: external test, n =63, OPM-positive, n =9) who had undergone baseline CT examinations between January 2012 and October 2022. Handcrafted radiomics (HCR) and DLR features of the tumor and HCR features of peritoneum were extracted from CT images. Mutual information and least absolute shrinkage and selection operator algorithms were used for feature selection. A combined model, which incorporated the selected clinical-radiological, HCR, and DLR features, was developed using a logistic regression classifier using data from the training cohort and validated in the test cohorts. RESULTS Three clinical-radiological characteristics (carcinoembryonic antigen 19-9 and CT-based T and N stages), nine HCR features of the tumor, 14 DLR features of the tumor, and three HCR features of the peritoneum were retained after feature selection. The combined model yielded satisfactory predictive performance, with an area under the curve (AUC) of 0.853 (95% CI: 0.790-0.903), 0.845 (95% CI: 0.740-0.919), and 0.852 (95% CI: 0.740-0.929) in the training, internal test, and external test cohorts, respectively (all P <0.05). The combined model showed better discrimination than the clinical-radiological model in the training (AUC=0.853 vs. 0.612, P <0.001) and the total test (AUC=0.842 vs. 0.638, P <0.05) cohorts. The decision curves revealed that the combined model had greater clinical applicability than the clinical-radiological model. CONCLUSIONS The model combining CT-based DLR and clinical-radiological features showed satisfactory performance for predicting OPM in patients with PDAC.
Collapse
Affiliation(s)
- Siya Shi
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| | - Chuxuan Lin
- Medical AI Lab, School of Biomedical Engineering
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
| | - Jian Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou
- South China Hospital, Medical School, Shenzhen University
| | - Luyong Wei
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| | - Mingjie chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| | - Jian Zhang
- Shenzhen University Medical School
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, People’s Republic of China
| | - Kangyang Cao
- Medical AI Lab, School of Biomedical Engineering
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
| | - Yaheng Fan
- Medical AI Lab, School of Biomedical Engineering
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, People’s Republic of China
| | - Yanji Luo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| |
Collapse
|
10
|
Zhong F, He K, Ji M, Chen J, Gao T, Li S, Zhang J, Li C. Optimizing vitiligo diagnosis with ResNet and Swin transformer deep learning models: a study on performance and interpretability. Sci Rep 2024; 14:9127. [PMID: 38644396 PMCID: PMC11033269 DOI: 10.1038/s41598-024-59436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/10/2024] [Indexed: 04/23/2024] Open
Abstract
Vitiligo is a hypopigmented skin disease characterized by the loss of melanin. The progressive nature and widespread incidence of vitiligo necessitate timely and accurate detection. Usually, a single diagnostic test often falls short of providing definitive confirmation of the condition, necessitating the assessment by dermatologists who specialize in vitiligo. However, the current scarcity of such specialized medical professionals presents a significant challenge. To mitigate this issue and enhance diagnostic accuracy, it is essential to build deep learning models that can support and expedite the detection process. This study endeavors to establish a deep learning framework to enhance the diagnostic accuracy of vitiligo. To this end, a comparative analysis of five models including ResNet (ResNet34, ResNet50, and ResNet101 models) and Swin Transformer series (Swin Transformer Base, and Swin Transformer Large models), were conducted under the uniform condition to identify the model with superior classification capabilities. Moreover, the study sought to augment the interpretability of these models by selecting one that not only provides accurate diagnostic outcomes but also offers visual cues highlighting the regions pertinent to vitiligo. The empirical findings reveal that the Swin Transformer Large model achieved the best performance in classification, whose AUC, accuracy, sensitivity, and specificity are 0.94, 93.82%, 94.02%, and 93.5%, respectively. In terms of interpretability, the highlighted regions in the class activation map correspond to the lesion regions of the vitiligo images, which shows that it effectively indicates the specific category regions associated with the decision-making of dermatological diagnosis. Additionally, the visualization of feature maps generated in the middle layer of the deep learning model provides insights into the internal mechanisms of the model, which is valuable for improving the interpretability of the model, tuning performance, and enhancing clinical applicability. The outcomes of this study underscore the significant potential of deep learning models to revolutionize medical diagnosis by improving diagnostic accuracy and operational efficiency. The research highlights the necessity for ongoing exploration in this domain to fully leverage the capabilities of deep learning technologies in medical diagnostics.
Collapse
Affiliation(s)
- Fan Zhong
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Kaiqiao He
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mengqi Ji
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Junpeng Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
11
|
Carriero A, Groenhoff L, Vologina E, Basile P, Albera M. Deep Learning in Breast Cancer Imaging: State of the Art and Recent Advancements in Early 2024. Diagnostics (Basel) 2024; 14:848. [PMID: 38667493 PMCID: PMC11048882 DOI: 10.3390/diagnostics14080848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The rapid advancement of artificial intelligence (AI) has significantly impacted various aspects of healthcare, particularly in the medical imaging field. This review focuses on recent developments in the application of deep learning (DL) techniques to breast cancer imaging. DL models, a subset of AI algorithms inspired by human brain architecture, have demonstrated remarkable success in analyzing complex medical images, enhancing diagnostic precision, and streamlining workflows. DL models have been applied to breast cancer diagnosis via mammography, ultrasonography, and magnetic resonance imaging. Furthermore, DL-based radiomic approaches may play a role in breast cancer risk assessment, prognosis prediction, and therapeutic response monitoring. Nevertheless, several challenges have limited the widespread adoption of AI techniques in clinical practice, emphasizing the importance of rigorous validation, interpretability, and technical considerations when implementing DL solutions. By examining fundamental concepts in DL techniques applied to medical imaging and synthesizing the latest advancements and trends, this narrative review aims to provide valuable and up-to-date insights for radiologists seeking to harness the power of AI in breast cancer care.
Collapse
Affiliation(s)
| | - Léon Groenhoff
- Radiology Department, Maggiore della Carità Hospital, 28100 Novara, Italy; (A.C.); (E.V.); (P.B.); (M.A.)
| | | | | | | |
Collapse
|
12
|
Liu W, Chen W, Xia J, Lu Z, Fu Y, Li Y, Tan Z. Lymph node metastasis prediction and biological pathway associations underlying DCE-MRI deep learning radiomics in invasive breast cancer. BMC Med Imaging 2024; 24:91. [PMID: 38627678 PMCID: PMC11020672 DOI: 10.1186/s12880-024-01255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The relationship between the biological pathways related to deep learning radiomics (DLR) and lymph node metastasis (LNM) of breast cancer is still poorly understood. This study explored the value of DLR based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in LNM of invasive breast cancer. It also analyzed the biological significance of DLR phenotype based on genomics. METHODS Two cohorts from the Cancer Imaging Archive project were used, one as the training cohort (TCGA-Breast, n = 88) and one as the validation cohort (Breast-MRI-NACT Pilot, n = 57). Radiomics and deep learning features were extracted from preoperative DCE-MRI. After dual selection by principal components analysis (PCA) and relief methods, radiomics and deep learning models for predicting LNM were constructed by the random forest (RF) method. A post-fusion strategy was used to construct the DLR nomograms (DLRNs) for predicting LNM. The performance of the models was evaluated using the receiver operating characteristic (ROC) curve and Delong test. In the training cohort, transcriptome data were downloaded from the UCSC Xena online database, and biological pathways related to the DLR phenotypes were identified. Finally, hub genes were identified to obtain DLR gene expression (RadDeepGene) scores. RESULTS DLRNs were based on area under curve (AUC) evaluation (training cohort, AUC = 0.98; validation cohort, AUC = 0.87), which were higher than single radiomics models or GoogLeNet models. The Delong test (radiomics model, P = 0.04; GoogLeNet model, P = 0.01) also validated the above results in the training cohorts, but they were not statistically significant in the validation cohort. The GoogLeNet phenotypes were related to multiple classical tumor signaling pathways, characterizing the biological significance of immune response, signal transduction, and cell death. In all, 20 genes related to GoogLeNet phenotypes were identified, and the RadDeepGene score represented a high risk of LNM (odd ratio = 164.00, P < 0.001). CONCLUSIONS DLRNs combining radiomics and deep learning features of DCE-MRI images improved the preoperative prediction of LNM in breast cancer, and the potential biological characteristics of DLRN were identified through genomics.
Collapse
Affiliation(s)
- Wenci Liu
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P. R. China
| | - Wubiao Chen
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P. R. China
| | - Jun Xia
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P. R. China
| | - Zhendong Lu
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P. R. China
| | - Youwen Fu
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P. R. China
| | - Yuange Li
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P. R. China
| | - Zhi Tan
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P. R. China.
| |
Collapse
|
13
|
Petrillo A, Fusco R, Barretta ML, Granata V, Mattace Raso M, Porto A, Sorgente E, Fanizzi A, Massafra R, Lafranceschina M, La Forgia D, Trombadori CML, Belli P, Trecate G, Tenconi C, De Santis MC, Greco L, Ferranti FR, De Soccio V, Vidiri A, Botta F, Dominelli V, Cassano E, Boldrini L. Radiomics and artificial intelligence analysis by T2-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging to predict Breast Cancer Histological Outcome. LA RADIOLOGIA MEDICA 2023; 128:1347-1371. [PMID: 37801198 DOI: 10.1007/s11547-023-01718-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE The objective of the study was to evaluate the accuracy of radiomics features obtained by MR images to predict Breast Cancer Histological Outcome. METHODS A total of 217 patients with malignant lesions were analysed underwent MRI examinations. Considering histological findings as the ground truth, four different types of findings were used in both univariate and multivariate analyses: (1) G1 + G2 vs G3 classification; (2) presence of human epidermal growth factor receptor 2 (HER2 + vs HER2 -); (3) presence of the hormone receptor (HR + vs HR -); and (4) presence of luminal subtypes of breast cancer. RESULTS The best accuracy for discriminating HER2 + versus HER2 - breast cancers was obtained considering nine predictors by early phase T1-weighted subtraction images and a decision tree (accuracy of 88% on validation set). The best accuracy for discriminating HR + versus HR - breast cancers was obtained considering nine predictors by T2-weighted subtraction images and a decision tree (accuracy of 90% on validation set). The best accuracy for discriminating G1 + G2 versus G3 breast cancers was obtained considering 16 predictors by early phase T1-weighted subtraction images in a linear regression model with an accuracy of 75%. The best accuracy for discriminating luminal versus non-luminal breast cancers was obtained considering 27 predictors by early phase T1-weighted subtraction images and a decision tree (accuracy of 94% on validation set). CONCLUSIONS The combination of radiomics analysis and artificial intelligence techniques could be used to support physician decision-making in prediction of Breast Cancer Histological Outcome.
Collapse
Affiliation(s)
- Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy.
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013, Naples, Italy
| | - Maria Luisa Barretta
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Mauro Mattace Raso
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Annamaria Porto
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Eugenio Sorgente
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Annarita Fanizzi
- Direzione Scientifica-IRCCS, Istituto Tumori Giovanni Paolo II-Via Orazio Flacco 65, 70124, Bari, Italy
| | - Raffaella Massafra
- SSD Fisica Sanitaria-IRCCS Istituto Tumori Giovanni Paolo II-Via Orazio Flacco 65, 70124, Bari, Italy
| | - Miria Lafranceschina
- Struttura Semplice Dipartimentale di Radiodiagnostica Senologica-IRCCS Istituto Tumori Giovanni Paolo II-Via Orazio Flacco 65, 70124, Bari, Italy
| | - Daniele La Forgia
- Struttura Semplice Dipartimentale di Radiodiagnostica Senologica-IRCCS Istituto Tumori Giovanni Paolo II-Via Orazio Flacco 65, 70124, Bari, Italy
| | | | - Paolo Belli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Giovanna Trecate
- Department of Radiodiagnostic and Magnetic Resonance, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Chiara Tenconi
- Department of Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Maria Carmen De Santis
- De Santis Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Laura Greco
- Radiology and Diagnostic Imaging, Istituto di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Romana Ferranti
- Radiology and Diagnostic Imaging, Istituto di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Valeria De Soccio
- Radiology and Diagnostic Imaging, Istituto di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Antonello Vidiri
- Radiology and Diagnostic Imaging, Istituto di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Botta
- Breast Imaging Division, IEO Istituto Europeo di Oncologia, 20141, Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, IEO Istituto Europeo di Oncologia, 20141, Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO Istituto Europeo di Oncologia, 20141, Milan, Italy
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
14
|
Jiang W, Deng X, Zhu T, Fang J, Li J. ABVS-Based Radiomics for Early Predicting the Efficacy of Neoadjuvant Chemotherapy in Patients with Breast Cancers. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:625-636. [PMID: 37600669 PMCID: PMC10439736 DOI: 10.2147/bctt.s418376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Background Neoadjuvant chemotherapy (NAC) plays a significant role in breast cancer (BC) management; however, its efficacy varies among patients. Current evaluation methods may lead to delayed treatment alterations, and traditional imaging modalities often yield inaccurate results. Radiomics, an emerging field in medical imaging, offers potential for improved tumor characterization and personalized medicine. Nevertheless, its application in early and accurately predicting NAC response remains underinvestigated. Objective This study aims to develop an automated breast volume scanner (ABVS)-based radiomics model to facilitate early detection of suboptimal NAC response, ultimately promoting personalized therapeutic approaches for BC patients. Methods This retrospective study involved 248 BC patients receiving NAC. Standard guidelines were followed, and patients were classified as responders or non-responders based on treatment outcomes. ABVS images were obtained before and during NAC, and radiomics features were extracted using the PyRadiomics toolkit. Inter-observer consistency and hierarchical feature selection were assessed. Three machine learning classifiers, logistic regression, support vector machine, and random forest, were trained and validated using a five-fold cross-validation with three repetitions. Model performance was comprehensively evaluated based on discrimination, calibration, and clinical utility. Results Of the 248 BC patients, 157 (63.3%) were responders, and 91 (36.7%) were non-responders. Radiomics feature selection revealed 7 pre-NAC and 6 post-NAC ABVS features, with higher weights for post-NAC features (min >0.05) than pre-NAC (max <0.03). The three post-NAC classifiers demonstrated AUCs of approximately 0.9, indicating excellent discrimination. DCA curves revealed a substantial net benefit when the threshold probability exceeded 40%. Conversely, the three pre-NAC classifiers had AUCs between 0.7 and 0.8, suggesting moderate discrimination and limited clinical utility based on their DCA curves. Conclusion The ABVS-based radiomics model effectively predicted suboptimal NAC responses in BC patients, with early post-NAC classifiers outperforming pre-NAC classifiers in discrimination and clinical utility. It could enhance personalized treatment and improve patient outcomes in BC management.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| | - Xiaofei Deng
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| | - Ting Zhu
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| | - Jing Fang
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| | - Jinyao Li
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| |
Collapse
|
15
|
Shao Y, Dang Y, Cheng Y, Gui Y, Chen X, Chen T, Zeng Y, Tan L, Zhang J, Xiao M, Yan X, Lv K, Zhou Z. Predicting the Efficacy of Neoadjuvant Chemotherapy for Pancreatic Cancer Using Deep Learning of Contrast-Enhanced Ultrasound Videos. Diagnostics (Basel) 2023; 13:2183. [PMID: 37443577 DOI: 10.3390/diagnostics13132183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Contrast-enhanced ultrasound (CEUS) is a promising imaging modality in predicting the efficacy of neoadjuvant chemotherapy for pancreatic cancer, a tumor with high mortality. In this study, we proposed a deep-learning-based strategy for analyzing CEUS videos to predict the prognosis of pancreatic cancer neoadjuvant chemotherapy. Pre-trained convolutional neural network (CNN) models were used for binary classification of the chemotherapy as effective or ineffective, with CEUS videos collected before chemotherapy as the model input, and with the efficacy after chemotherapy as the reference standard. We proposed two deep learning models. The first CNN model used videos of ultrasound (US) and CEUS (US+CEUS), while the second CNN model only used videos of selected regions of interest (ROIs) within CEUS (CEUS-ROI). A total of 38 patients with strict restriction of clinical factors were enrolled, with 76 original CEUS videos collected. After data augmentation, 760 and 720 videos were included for the two CNN models, respectively. Seventy-six-fold and 72-fold cross-validations were performed to validate the classification performance of the two CNN models. The areas under the curve were 0.892 and 0.908 for the two models. The accuracy, recall, precision and F1 score were 0.829, 0.759, 0.786, and 0.772 for the first model. Those were 0.864, 0.930, 0.866, and 0.897 for the second model. A total of 38.2% and 40.3% of the original videos could be clearly distinguished by the deep learning models when the naked eye made an inaccurate classification. This study is the first to demonstrate the feasibility and potential of deep learning models based on pre-chemotherapy CEUS videos in predicting the efficacy of neoadjuvant chemotherapy for pancreas cancer.
Collapse
Affiliation(s)
- Yuming Shao
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yingnan Dang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yuejuan Cheng
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yang Gui
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xueqi Chen
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tianjiao Chen
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yan Zeng
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Li Tan
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jing Zhang
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mengsu Xiao
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoyi Yan
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ke Lv
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhuhuang Zhou
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|