1
|
Chang YH, Head ST, Harrison T, Yu Y, Huff CD, Pasaniuc B, Lindström S, Bhattacharya A. Isoform-level analyses of 6 cancers uncover extensive genetic risk mechanisms undetected at the gene-level. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.29.24316388. [PMID: 39574839 PMCID: PMC11581093 DOI: 10.1101/2024.10.29.24316388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Integrating genome-wide association study (GWAS) and transcriptomic datasets can help identify potential mediators for germline genetic risk of cancer. However, traditional methods have been largely unsuccessful because of an overreliance on total gene expression. These approaches overlook alternative splicing, which can produce multiple isoforms from the same gene, each with potentially different effects on cancer risk. Here, we integrate genetic and multi-tissue isoform-level gene expression data from the Genotype Tissue-Expression Project (GTEx, N = 108-574) with publicly available European-ancestry GWAS summary statistics (all N > 20,000 cases) to identify both isoform- and gene-level risk associations with six cancers (breast, endometrial, colorectal, lung, ovarian, prostate) and six related cancer subtype classifications (N = 12 total). Compared to traditional methods leveraging total gene expression, directly modeling isoform expression through transcriptome-wide association studies (isoTWAS) substantially increases discovery of transcriptomic mechanisms underlying genetic associations. Using the same RNA-seq datasets, isoTWAS identified 164% more significant unique gene associations compared to TWAS (6,163 and 2,336, respectively), with isoTWAS-prioritized genes enriched 4-fold for evolutionarily-constrained genes (P = 6.1 × 10-13). isoTWAS tags transcriptomic associations at 52% more independent GWAS loci compared to TWAS across the six cancers. Additionally, isoform expression mediates an estimated 63% greater proportion of cancer risk SNP heritability compared to gene expression when evaluating cis-genetic influence on isoform expression. We highlight several notable isoTWAS associations that demonstrate GWAS colocalization at the isoform level but not at the gene level, including, CLPTM1L (lung cancer), LAMC1 (colorectal), and BABAM1 (breast). These results underscore the critical importance of modeling isoform-level expression to maximize discovery of genetic risk mechanisms for cancers.
Collapse
Affiliation(s)
- Yung-Han Chang
- Quantitative Sciences Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - S. Taylor Head
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tabitha Harrison
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chad D. Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bogdan Pasaniuc
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Lindström
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Arjun Bhattacharya
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Data Science in Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Peng Z, Ahsan N, Yang Z. Proteomics Analysis of Interactions between Drug-Resistant and Drug-Sensitive Cancer Cells: Comparative Studies of Monoculture and Coculture Cell Systems. J Proteome Res 2024; 23:2608-2618. [PMID: 38907724 PMCID: PMC11425778 DOI: 10.1021/acs.jproteome.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Cell-cell interactions, which allow cells to communicate with each other through molecules in their microenvironment, are critical for the growth, health, and functions of cells. Previous studies show that drug-resistant cells can interact with drug-sensitive cells to elevate their drug resistance level, which is partially responsible for cancer recurrence. Studying protein targets and pathways involved in cell-cell communication provides essential information for fundamental cell biology studies and therapeutics of human diseases. In the current studies, we performed direct coculture and indirect coculture of drug-resistant and drug-sensitive cell lines, aiming to investigate intracellular proteins responsible for cell communication. Comparative studies were carried out using monoculture cells. Shotgun bottom-up proteomics results indicate that the P53 signaling pathway has a strong association with drug resistance mechanisms, and multiple TP53-related proteins were upregulated in both direct and indirect coculture systems. In addition, cell-cell communication pathways, including the phagosome and the HIF-signaling pathway, contribute to both direct and indirect coculture systems. Consequently, AK3 and H3-3A proteins were identified as potential targets for cell-cell interactions that are relevant to drug resistance mechanisms. We propose that the P53 signaling pathway, in which mitochondrial proteins play an important role, is responsible for inducing drug resistance through communication between drug-resistant and drug-sensitive cancer cells.
Collapse
Affiliation(s)
- Zongkai Peng
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
3
|
Sun R, Shao X, Akter F, Zahid KR, Yao S, Ma L, Xu G. PRIM2: A Marker of MYC-driven Hyper-proliferation, Disease Progression, Tumor Aggressiveness and Poor Survival in Glioma Patients. Cancer Genomics Proteomics 2024; 21:186-202. [PMID: 38423596 PMCID: PMC10905270 DOI: 10.21873/cgp.20440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND/AIM Gliomas are the most prevalent brain tumors with metabolic alterations playing a pivotal role in disease progression. However, the precise coordination of metabolic alterations with tumor-promoting cellular mechanisms, leading to tumor initiation, progression, and aggressiveness, resulting in poor outcomes, remains poorly understood in gliomas. MATERIALS AND METHODS We conducted a metabolism-targeted differential gene expression analysis using glioma patients' expression profiling data from The Cancer Genome Atlas (TCGA) database. In addition, pathway enrichment analysis, gene set enrichment analysis (GSEA), transcription factor prediction, network construction, and correlation analyses were performed. Survival analyses were performed in R. All results were validated using independent GEO expression datasets. RESULTS Metabolism-targeted analysis identified 5 hits involved in diverse metabolic processes linking them to disease aggressiveness in gliomas. Subsequently, we established that cell cycle progression and hyper-proliferation are key drivers of tumor progression and aggressiveness in gliomas. One of the identified metabolic hits, DNA primase 2 (PRIM2), a gene involved in DNA replication was found directly associated with cell cycle progression in gliomas. Furthermore, our analysis indicated that PRIM2, along with other cell cycle-related genes, is under the control of and regulated by the oncogenic MYC transcription factor in gliomas. In addition, PRIM2 expression alone is enough to predict MYC-driven cell cycle progression and is associated with tumor progression, aggressive disease state, and poor survival in glioma patients. CONCLUSION Our findings highlight PRIM2 as a marker of MYC-driven cell cycle progression and hyper-proliferation, disease onset and progression, tumor aggressiveness, and poor survival in glioma patients.
Collapse
Affiliation(s)
- Ronghui Sun
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, P.R. China
| | - Xiaodong Shao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Farhana Akter
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, U.S.A
| | - Kashif Rafiq Zahid
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lianting Ma
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, P.R. China
| | - Guozheng Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China;
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, P.R. China
| |
Collapse
|
4
|
Zhu J, Xu F, Lai H, Yuan H, Li XY, Hu J, Li W, Liu L, Wang C. ACO2 deficiency increases vulnerability to Parkinson's disease via dysregulating mitochondrial function and histone acetylation-mediated transcription of autophagy genes. Commun Biol 2023; 6:1201. [PMID: 38007539 PMCID: PMC10676364 DOI: 10.1038/s42003-023-05570-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023] Open
Abstract
Parkinson's disease (PD) is characterized by α-synuclein aggregation in dopaminergic (DA) neurons, which are sensitive to oxidative stress. Mitochondria aconitase 2 (ACO2) is an essential enzyme in the tricarboxylic acid cycle that orchestrates mitochondrial and autophagic functions to energy metabolism. Though widely linked to diseases, its relation to PD has not been fully clarified. Here we revealed that the peripheral ACO2 activity was significantly decreased in PD patients and associated with their onset age and disease durations. The knock-in mouse and Drosophila models with the A252T variant displayed aggravated motor deficits and DA neuron degeneration after 6-OHDA and rotenone-induction, and the ACO2 knockdown or blockade cells showed features of mitochondrial and autophagic dysfunction. Moreover, the transcription of autophagy-related genes LC3 and Atg5 was significantly downregulated via inhibited histone acetylation at the H3K9 and H4K5 sites. These data provided multi-dimensional evidences supporting the essential roles of ACO2, and as a potential early biomarker to be used in clinical trials for assessing the effects of antioxidants in PD. Moreover, ameliorating energy metabolism by targeting ACO2 could be considered as a potential therapeutic strategy for PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Junge Zhu
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Fanxi Xu
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Hong Lai
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Huiyao Yuan
- Department of Biochemistry and Molecular Biology, Capital Medical University; School of Basic Medicine, Beijing, 100069, China
| | - Xu-Ying Li
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Junya Hu
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Wei Li
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
- Department of Stroke Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| | - Lei Liu
- Department of Biochemistry and Molecular Biology, Capital Medical University; School of Basic Medicine, Beijing, 100069, China.
| | - Chaodong Wang
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| |
Collapse
|
5
|
Mahé M, Rios-Fuller TJ, Karolin A, Schneider RJ. Genetics of enzymatic dysfunctions in metabolic disorders and cancer. Front Oncol 2023; 13:1230934. [PMID: 37601653 PMCID: PMC10433910 DOI: 10.3389/fonc.2023.1230934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Inherited metabolic disorders arise from mutations in genes involved in the biogenesis, assembly, or activity of metabolic enzymes, leading to enzymatic deficiency and severe metabolic impairments. Metabolic enzymes are essential for the normal functioning of cells and are involved in the production of amino acids, fatty acids and nucleotides, which are essential for cell growth, division and survival. When the activity of metabolic enzymes is disrupted due to mutations or changes in expression levels, it can result in various metabolic disorders that have also been linked to cancer development. However, there remains much to learn regarding the relationship between the dysregulation of metabolic enzymes and metabolic adaptations in cancer cells. In this review, we explore how dysregulated metabolism due to the alteration or change of metabolic enzymes in cancer cells plays a crucial role in tumor development, progression, metastasis and drug resistance. In addition, these changes in metabolism provide cancer cells with a number of advantages, including increased proliferation, resistance to apoptosis and the ability to evade the immune system. The tumor microenvironment, genetic context, and different signaling pathways further influence this interplay between cancer and metabolism. This review aims to explore how the dysregulation of metabolic enzymes in specific pathways, including the urea cycle, glycogen storage, lysosome storage, fatty acid oxidation, and mitochondrial respiration, contributes to the development of metabolic disorders and cancer. Additionally, the review seeks to shed light on why these enzymes represent crucial potential therapeutic targets and biomarkers in various cancer types.
Collapse
Affiliation(s)
| | | | | | - Robert J. Schneider
- Department of Microbiology, Grossman NYU School of Medicine, New York, NY, United States
| |
Collapse
|
6
|
Wang H, Zhu Y, Li M, Pan J, Li D, Guo WP, Xie G, Du L. Transcriptome profiling of A549 non-small cell lung cancer cells in response to Trichinella spiralis muscle larvae excretory/secretory products. Front Vet Sci 2023; 10:1208538. [PMID: 37601754 PMCID: PMC10433203 DOI: 10.3389/fvets.2023.1208538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Trichinella spiralis (T. spiralis) muscle-larva excretory/secretory products (ML-ESPs) is a complex array of proteins with antitumor activity. We previously demonstrated that ML-ESPs inhibit the proliferation of A549 non-small cell lung cancer (NSCLC) cell line. However, the mechanism of ML-ESPs against A549 cells, especially on the transcriptional level, remains unknow. In this study, we systematically investigated a global profile bioinformatics analysis of transcriptional response of A549 cells treated with ML-ESPs. And then, we further explored the transcriptional regulation of genes related to glucose metabolism in A549 cells by ML-ESPs. The results showed that ML-ESPs altered the expression of 2,860 genes (1,634 upregulated and 1,226 downregulated). GO and KEGG analysis demonstrated that differentially expressed genes (DEGs) were mainly associated with pathway in cancer and metabolic process. The downregulated genes interaction network of metabolic process is mainly associated with glucose metabolism. Furthermore, the expression of phosphofructokinase muscle (PFKM), phosphofructokinase liver (PFKL), enolase 2 (ENO2), lactate dehydrogenase B (LDHB), 6-phosphogluconolactonase (6PGL), ribulose-phosphate-3-epimerase (PRE), transketolase (TKT), transaldolase 1 (TALDO1), which genes mainly regulate glycolysis and pentose phosphate pathway (PPP), were suppressed by ML-ESPs. Interestingly, tricarboxylic acid cycle (TCA)-related genes, such as pyruvate dehydrogenase phosphatase 1 (PDP1), PDP2, aconitate hydratase 1 (ACO1) and oxoglutarate dehydrogenase (OGDH) were upregulated by ML-ESPs. In summary, the transcriptome profiling of A549 cells were significantly altered by ML-ESPs. And we also provide new insight into how ML-ESPs induced a transcriptional reprogramming of glucose metabolism-related genes in A549 cells.
Collapse
Affiliation(s)
- Haoxuan Wang
- Department of Pathogenic Biology, Chengde Medical University, Chengde, Hebei, China
| | - Yingying Zhu
- Department of Pathogenic Biology, Chengde Medical University, Chengde, Hebei, China
| | - Meichen Li
- Department of Clinical Laboratory, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Jingdan Pan
- Department of Laboratory, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Dan Li
- Department of Pathogenic Biology, Chengde Medical University, Chengde, Hebei, China
| | - Wen-Ping Guo
- Department of Pathogenic Biology, Chengde Medical University, Chengde, Hebei, China
| | - Guangcheng Xie
- Department of Pathogenic Biology, Chengde Medical University, Chengde, Hebei, China
| | - Luanying Du
- Department of Pathogenic Biology, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|