1
|
Tian R, Hou F, Zhang H, Yu G, Yang P, Li J, Yuan T, Chen X, Chen Y, Hao Y, Yao Y, Zhao H, Yu P, Fang H, Song L, Li A, Liu Z, Lv H, Yu D, Cheng H, Mao N, Song X. Multimodal fusion model for prognostic prediction and radiotherapy response assessment in head and neck squamous cell carcinoma. NPJ Digit Med 2025; 8:302. [PMID: 40410262 PMCID: PMC12102330 DOI: 10.1038/s41746-025-01712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 05/10/2025] [Indexed: 05/25/2025] Open
Abstract
Accurate prediction of prognosis and postoperative radiotherapy response is critical for personalized treatment in head and neck squamous cell carcinoma (HNSCC). We developed a multimodal deep learning model (MDLM) integrating computed tomography, whole-slide images, and clinical features from 1087 HNSCC patients across multiple centers. The MDLM exhibited good performance in predicting overall survival (OS) and disease-free survival in external test cohorts. Additionally, the MDLM outperformed unimodal models. Patients with a high-risk score who underwent postoperative radiotherapy exhibited prolonged OS compared to those who did not (P = 0.016), whereas no significant improvement in OS was observed among patients with a low-risk score (P = 0.898). Biological exploration indicated that the model may be related to changes in the cytochrome P450 metabolic pathway, tumor microenvironment, and myeloid-derived cell subpopulations. Overall, the MDLM effectively predicts prognosis and postoperative radiotherapy response, offering a promising tool for personalized HNSCC therapy.
Collapse
Affiliation(s)
- Ruxian Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Feng Hou
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haicheng Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Guohua Yu
- Department of Pathology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ping Yang
- Department of Pathology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Jiaxuan Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ting Yuan
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xi Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ying Chen
- The Second School of Clinical Medicine of Binzhou Medical University, Yantai, China
| | - Yan Hao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yisong Yao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Hongfei Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Pengyi Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Han Fang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Liling Song
- The Second School of Clinical Medicine of Binzhou Medical University, Yantai, China
| | - Anning Li
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhonglu Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Huaiqing Lv
- Linyi People's Hospital Affiliated to Shandong Second Medical University, Linyi, China.
| | - Dexin Yu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Hongxia Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Ning Mao
- Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China.
| |
Collapse
|
2
|
Zhang J, Wang Q, Guo TH, Gao W, Yu YM, Wang RF, Yu HL, Chen JJ, Sun LL, Zhang BY, Wang HJ. Computed tomography-based radiomic model for the prediction of neoadjuvant immunochemotherapy response in patients with advanced gastric cancer. World J Gastrointest Oncol 2024; 16:4115-4128. [DOI: 10.4251/wjgo.v16.i10.4115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Neoadjuvant immunochemotherapy (nICT) has emerged as a popular treatment approach for advanced gastric cancer (AGC) in clinical practice worldwide. However, the response of AGC patients to nICT displays significant heterogeneity, and no existing radiomic model utilizes baseline computed tomography to predict treatment outcomes.
AIM To establish a radiomic model to predict the response of AGC patients to nICT.
METHODS Patients with AGC who received nICT (n = 60) were randomly assigned to a training cohort (n = 42) or a test cohort (n = 18). Various machine learning models were developed using selected radiomic features and clinical risk factors to predict the response of AGC patients to nICT. An individual radiomic nomogram was established based on the chosen radiomic signature and clinical signature. The performance of all the models was assessed through receiver operating characteristic curve analysis, decision curve analysis (DCA) and the Hosmer-Lemeshow goodness-of-fit test.
RESULTS The radiomic nomogram could accurately predict the response of AGC patients to nICT. In the test cohort, the area under curve was 0.893, with a 95% confidence interval of 0.803-0.991. DCA indicated that the clinical application of the radiomic nomogram yielded greater net benefit than alternative models.
CONCLUSION A nomogram combining a radiomic signature and a clinical signature was designed to predict the efficacy of nICT in patients with AGC. This tool can assist clinicians in treatment-related decision-making.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Qi Wang
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Tian-Hui Guo
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Wen Gao
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Yi-Miao Yu
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Rui-Feng Wang
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Hua-Long Yu
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Jing-Jing Chen
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Ling-Ling Sun
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Bi-Yuan Zhang
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Hai-Ji Wang
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| |
Collapse
|
3
|
Chen Z, Chen Y, Sun Y, Tang L, Zhang L, Hu Y, He M, Li Z, Cheng S, Yuan J, Wang Z, Wang Y, Zhao J, Gong J, Zhao L, Cao B, Li G, Zhang X, Dong B, Shen L. Predicting gastric cancer response to anti-HER2 therapy or anti-HER2 combined immunotherapy based on multi-modal data. Signal Transduct Target Ther 2024; 9:222. [PMID: 39183247 PMCID: PMC11345439 DOI: 10.1038/s41392-024-01932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
The sole use of single modality data often fails to capture the complex heterogeneity among patients, including the variability in resistance to anti-HER2 therapy and outcomes of combined treatment regimens, for the treatment of HER2-positive gastric cancer (GC). This modality deficit has not been fully considered in many studies. Furthermore, the application of artificial intelligence in predicting the treatment response, particularly in complex diseases such as GC, is still in its infancy. Therefore, this study aimed to use a comprehensive analytic approach to accurately predict treatment responses to anti-HER2 therapy or anti-HER2 combined immunotherapy in patients with HER2-positive GC. We collected multi-modal data, comprising radiology, pathology, and clinical information from a cohort of 429 patients: 310 treated with anti-HER2 therapy and 119 treated with a combination of anti-HER2 and anti-PD-1/PD-L1 inhibitors immunotherapy. We introduced a deep learning model, called the Multi-Modal model (MuMo), that integrates these data to make precise treatment response predictions. MuMo achieved an area under the curve score of 0.821 for anti-HER2 therapy and 0.914 for combined immunotherapy. Moreover, patients classified as low-risk by MuMo exhibited significantly prolonged progression-free survival and overall survival (log-rank test, P < 0.05). These findings not only highlight the significance of multi-modal data analysis in enhancing treatment evaluation and personalized medicine for HER2-positive gastric cancer, but also the potential and clinical value of our model.
Collapse
Affiliation(s)
- Zifan Chen
- Center for Data Science, Peking University, Beijing, China
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yu Sun
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lei Tang
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Li Zhang
- Center for Data Science, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
| | - Yajie Hu
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Meng He
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhiwei Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China
| | - Siyuan Cheng
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | - Jiajia Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yakun Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jie Zhao
- National Engineering Laboratory for Big Data Analysis and Applications, Peking University, Beijing, China
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Liying Zhao
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China
| | - Baoshan Cao
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China.
| | - Bin Dong
- National Biomedical Imaging Center, Peking University, Beijing, China.
- Beijing International Center for Mathematical Research (BICMR), Peking University, Beijing, China.
- Center for Machine Learning Research, Peking University, Beijing, China.
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
4
|
Nardone V, Reginelli A, Rubini D, Gagliardi F, Del Tufo S, Belfiore MP, Boldrini L, Desideri I, Cappabianca S. Delta radiomics: an updated systematic review. LA RADIOLOGIA MEDICA 2024; 129:1197-1214. [PMID: 39017760 PMCID: PMC11322237 DOI: 10.1007/s11547-024-01853-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Radiomics can provide quantitative features from medical imaging that can be correlated with various biological features and diverse clinical endpoints. Delta radiomics, on the other hand, consists in the analysis of feature variation at different acquisition time points, usually before and after therapy. The aim of this study was to provide a systematic review of the different delta radiomics approaches. METHODS Eligible articles were searched in Embase, Pubmed, and ScienceDirect using a search string that included free text and/or Medical Subject Headings (MeSH) with 3 key search terms: 'radiomics,' 'texture,' and 'delta.' Studies were analyzed using QUADAS-2 and the RQS tool. RESULTS Forty-eight studies were finally included. The studies were divided into preclinical/methodological (5 studies, 10.4%); rectal cancer (6 studies, 12.5%); lung cancer (12 studies, 25%); sarcoma (5 studies, 10.4%); prostate cancer (3 studies, 6.3%), head and neck cancer (6 studies, 12.5%); gastrointestinal malignancies excluding rectum (7 studies, 14.6%) and other disease sites (4 studies, 8.3%). The median RQS of all studies was 25% (mean 21% ± 12%), with 13 studies (30.2%) achieving a quality score < 10% and 22 studies (51.2%) < 25%. CONCLUSIONS Delta radiomics shows potential benefit for several clinical endpoints in oncology, such asdifferential diagnosis, prognosis and prediction of treatment response, evaluation of side effects. Nevertheless, the studies included in this systematic review suffer from the bias of overall low methodological rigor, so that the conclusions are currently heterogeneous, not robust and hardly replicable. Further research with prospective and multicenter studies is needed for the clinical validation of delta radiomics approaches.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy.
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Dino Rubini
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Federico Gagliardi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Sara Del Tufo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Maria Paola Belfiore
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Isacco Desideri
- Department of Biomedical, Experimental and Clinical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
5
|
Fan L, Yang Z, Chang M, Chen Z, Wen Q. CT-based delta-radiomics nomogram to predict pathological complete response after neoadjuvant chemoradiotherapy in esophageal squamous cell carcinoma patients. J Transl Med 2024; 22:579. [PMID: 38890720 PMCID: PMC11186275 DOI: 10.1186/s12967-024-05392-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND This study developed a nomogram model using CT-based delta-radiomics features and clinical factors to predict pathological complete response (pCR) in esophageal squamous cell carcinoma (ESCC) patients receiving neoadjuvant chemoradiotherapy (nCRT). METHODS The study retrospectively analyzed 232 ESCC patients who underwent pretreatment and post-treatment CT scans. Patients were divided into training (n = 186) and validation (n = 46) sets through fivefold cross-validation. 837 radiomics features were extracted from regions of interest (ROIs) delineations on CT images before and after nCRT to calculate delta values. The LASSO algorithm selected delta-radiomics features (DRF) based on classification performance. Logistic regression constructed a nomogram incorporating DRFs and clinical factors. Receiver operating characteristic (ROC) and area under the curve (AUC) analyses evaluated nomogram performance for predicting pCR. RESULTS No significant differences existed between the training and validation datasets. The 4-feature delta-radiomics signature (DRS) demonstrated good predictive accuracy for pCR, with α-binormal-based and empirical AUCs of 0.871 and 0.869. T-stage (p = 0.001) and differentiation degree (p = 0.018) were independent predictors of pCR. The nomogram combined the DRS and clinical factors improved the classification performance in the training dataset (AUCαbin = 0.933 and AUCemp = 0.941). The validation set showed similar performance with AUCs of 0.958 and 0.962. CONCLUSIONS The CT-based delta-radiomics nomogram model with clinical factors provided high predictive accuracy for pCR in ESCC patients after nCRT.
Collapse
Affiliation(s)
- Liyuan Fan
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Zhe Yang
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Minghui Chang
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Zheng Chen
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Qiang Wen
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
6
|
Zhu Z, Gong H, Gu J, Dai Y, Yang C, Mao M, Song A, Feng F. Development and validation of a preoperative CT-based risk scoring system for predicting recurrence-free survival in patients undergoing curative surgery for gastric cancer. Eur J Radiol 2024; 171:111303. [PMID: 38215532 DOI: 10.1016/j.ejrad.2024.111303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
PURPOSE The objective of this study was to establish and validate a preoperative risk scoring system that incorporated both clinical and computed tomography(CT) variables to predict recurrence-free survival (RFS) in gastric cancer(GC) patients who underwent curative resection. METHOD We retrospectively included consecutive patients with surgically confirmed GC who underwent preoperative CT scans between October 2017 and January 2022. Multivariate Cox regression analysis was employed in the derivation set to identify clinical and CT variables associated with RFS and to construct a risk score. This risk score was subsequently validated in an independent test set. RESULTS A total of 346 patients were included in the study, with 213 in the derivation set and 133 in the test set. Five variables, namely ctEMVI, ctBorrmann, visceral obesity, sarcopenia, and NLR, were independently associated with RFS. In the test set, the preoperative risk score exhibited a c-index of 0.741, which outperformed the predictive accuracy of pathological tumor staging (c-index of 0.673, p = 0.021) at various time points. The preoperative risk score effectively stratified patients into low and high-risk groups. CONCLUSION The developed preoperative risk scoring system demonstrated the ability to predict RFS following curative resection in GC patients.
Collapse
Affiliation(s)
- Zhengqi Zhu
- Radiology Department, Jiangsu Province Nantong City Cancer Hospital, Nantong 226300, Jiangsu Province, China
| | - Haipeng Gong
- Radiology Department, Jiangsu Province Nantong City Cancer Hospital, Nantong 226300, Jiangsu Province, China
| | - Jianan Gu
- Radiology Department, Jiangsu Province Nantong City Cancer Hospital, Nantong 226300, Jiangsu Province, China
| | - Yongfeng Dai
- Radiology Department, Jiangsu Province Nantong City Cancer Hospital, Nantong 226300, Jiangsu Province, China
| | - Chunyan Yang
- Radiology Department, Jiangsu Province Nantong City Cancer Hospital, Nantong 226300, Jiangsu Province, China
| | - Mimi Mao
- Radiology Department, Jiangsu Province Nantong City Cancer Hospital, Nantong 226300, Jiangsu Province, China
| | - Anyi Song
- Radiology Department, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Feng Feng
- Radiology Department, Jiangsu Province Nantong City Cancer Hospital, Nantong 226300, Jiangsu Province, China.
| |
Collapse
|
7
|
Abbas E, Fanni SC, Bandini C, Francischello R, Febi M, Aghakhanyan G, Ambrosini I, Faggioni L, Cioni D, Lencioni RA, Neri E. Delta-radiomics in cancer immunotherapy response prediction: A systematic review. Eur J Radiol Open 2023; 11:100511. [PMID: 37520768 PMCID: PMC10371799 DOI: 10.1016/j.ejro.2023.100511] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Background The new immunotherapies have not only changed the oncological therapeutic approach but have also made it necessary to develop new imaging methods for assessing the response to treatment. Delta radiomics consists of the analysis of radiomic features variation between different medical images, usually before and after therapy. Purpose This review aims to evaluate the role of delta radiomics in the immunotherapy response assessment. Methods A systematic search was performed in PubMed, Scopus, and Web Of Science using "delta radiomics AND immunotherapy" as search terms. The included articles' methodological quality was measured using the Radiomics Quality Score (RQS) tool. Results Thirteen articles were finally included in the systematic review. Overall, the RQS of the included studies ranged from 4 to 17, with a mean RQS total of 11,15 ± 4,18 with a corresponding percentage of 30.98 ± 11.61 %. Eleven articles out of 13 performed imaging at multiple time points. All the included articles performed feature reduction. No study carried out prospective validation, decision curve analysis, or cost-effectiveness analysis. Conclusions Delta radiomics has been demonstrated useful in evaluating the response in oncologic patients undergoing immunotherapy. The overall quality was found law, due to the lack of prospective design and external validation. Thus, further efforts are needed to bring delta radiomics a step closer to clinical implementation.
Collapse
Affiliation(s)
- Engy Abbas
- The Joint Department of Medical Imaging, University of Toronto, University Health Network, Sinai Health System, Women’s College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9
| | | | - Claudio Bandini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Roberto Francischello
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Maria Febi
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Gayane Aghakhanyan
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Ilaria Ambrosini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Lorenzo Faggioni
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Dania Cioni
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | | | - Emanuele Neri
- The Joint Department of Medical Imaging, University of Toronto, University Health Network, Sinai Health System, Women’s College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| |
Collapse
|