1
|
She W, Su J, Ma W, Ma G, Li J, Zhang H, Qiu C, Li X. Natural products protect against spinal cord injury by inhibiting ferroptosis: a literature review. Front Pharmacol 2025; 16:1557133. [PMID: 40248093 PMCID: PMC12003294 DOI: 10.3389/fphar.2025.1557133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/10/2025] [Indexed: 04/19/2025] Open
Abstract
Spinal cord injury (SCI) is a severe traumatic condition that frequently results in various neurological disabilities, including significant sensory, motor, and autonomic dysfunctions. Ferroptosis, a recently identified non-apoptotic form of cell death, is characterized by the accumulation of reactive oxygen species (ROS), intracellular iron overload, and lipid peroxidation, ultimately culminating in cell death. Recent studies have demonstrated that ferroptosis plays a critical role in the pathophysiology of SCI, contributing significantly to neural cell demise. Three key cellular enzymatic antioxidants such as glutathione peroxidase 4 (GPX4), ferroptosis suppressor protein 1 (FSP1), and dihydroorotate dehydrogenase (DHODH), have been elucidated as crucial components in the defense against ferroptosis. Natural products, which are bioactive compounds mostly derived from plants, have garnered considerable attention for their potential therapeutic effects. Numerous studies have reported that several natural products can effectively mitigate neural cell death and alleviate SCI symptoms. This review summarizes fifteen natural products containing (-)-Epigallocatechin-3-gallate (EGCG), Proanthocyanidin, Carnosic acid, Astragaloside IV, Trehalose, 8-gingerol, Quercetin, Resveratrol, Albiflorin, Alpha-tocopherol, Celastrol, Hispolon, Dendrobium Nobile Polysaccharide, Silibinin, and Tetramethylpyrazine that have shown promise in treating SCI by inhibiting ferroptosis. Additionally, this review provides an overview of the mechanisms involved in these studies and proposes several perspectives to guide future research directions.
Collapse
Affiliation(s)
- Wei She
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Junxiao Su
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Wenji Ma
- Department of Orthopaedic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guohai Ma
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jianfu Li
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Hui Zhang
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Cheng Qiu
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xingyong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Smirnova YD, Hanetseder D, Derigo L, Gasser AS, Vaglio-Garro A, Sperger S, Brunauer R, Korneeva OS, Duvigneau JC, Marolt Presen D, Kozlov AV. Osteosarcoma Cells and Undifferentiated Human Mesenchymal Stromal Cells Are More Susceptible to Ferroptosis than Differentiated Human Mesenchymal Stromal Cells. Antioxidants (Basel) 2025; 14:189. [PMID: 40002376 PMCID: PMC11852062 DOI: 10.3390/antiox14020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Current research suggests that promoting ferroptosis, a non-apoptotic form of cell death, may be an effective therapy for osteosarcoma, while its inhibition could facilitate bone regeneration and prevent osteoporosis. Our objective was to investigate whether the susceptibility to and regulation of ferroptosis differ between undifferentiated (UBC) and differentiated (DBC) human bone marrow stromal cells, as well as human osteosarcoma cells (MG63). Ferroptosis was induced by either inhibiting glutathione peroxidase 4 (GPX4) using RSL3 or blocking all glutathione-dependent enzymes through inhibition of the glutamate/cysteine antiporter with Erastin. Lipid peroxidation was assessed using the fluorescent probe BODIPY™581/591C11, while Ferrostatin-1 was used to inhibit ferroptosis. We demonstrate that neither Erastin nor RSL3 induces ferroptosis in DBC. However, both RSL3 and Erastin induce ferroptosis in UBC, while Erastin predominantly induces ferroptosis in MG63 cells. Our data suggest that ferroptosis induction in undifferentiated hBMSCs is primarily regulated by GPX4, whereas glutathione S-Transferase P1 (GSTP1) plays a key role in controlling ferroptosis in osteosarcoma cells. In conclusion, targeting the key pathways involved in ferroptosis across different bone cell types may improve the efficacy of cancer treatments while minimizing collateral damage and supporting regenerative processes, with minimal impact on cancer therapy.
Collapse
Affiliation(s)
- Yuliya D. Smirnova
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (Y.D.S.); (D.H.); (L.D.); (A.S.G.); (A.V.-G.); (S.S.); (R.B.); (D.M.P.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia;
| | - Dominik Hanetseder
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (Y.D.S.); (D.H.); (L.D.); (A.S.G.); (A.V.-G.); (S.S.); (R.B.); (D.M.P.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Lukas Derigo
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (Y.D.S.); (D.H.); (L.D.); (A.S.G.); (A.V.-G.); (S.S.); (R.B.); (D.M.P.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andreas Sebastian Gasser
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (Y.D.S.); (D.H.); (L.D.); (A.S.G.); (A.V.-G.); (S.S.); (R.B.); (D.M.P.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Annette Vaglio-Garro
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (Y.D.S.); (D.H.); (L.D.); (A.S.G.); (A.V.-G.); (S.S.); (R.B.); (D.M.P.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Simon Sperger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (Y.D.S.); (D.H.); (L.D.); (A.S.G.); (A.V.-G.); (S.S.); (R.B.); (D.M.P.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Regina Brunauer
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (Y.D.S.); (D.H.); (L.D.); (A.S.G.); (A.V.-G.); (S.S.); (R.B.); (D.M.P.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Olga S. Korneeva
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia;
| | | | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (Y.D.S.); (D.H.); (L.D.); (A.S.G.); (A.V.-G.); (S.S.); (R.B.); (D.M.P.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andrey V. Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (Y.D.S.); (D.H.); (L.D.); (A.S.G.); (A.V.-G.); (S.S.); (R.B.); (D.M.P.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
3
|
Zheng D, Jin S, Liu PS, Ye J, Xie X. Targeting ferroptosis by natural products in pathophysiological conditions. Arch Toxicol 2024; 98:3191-3208. [PMID: 38987487 DOI: 10.1007/s00204-024-03812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Ferroptosis is a form of cell death that is induced by iron-mediated accumulation of lipid peroxidation. The involvement of ferroptosis in different pathophysiological conditions has offered new perspectives on potential therapeutic interventions. Natural products, which are widely recognized for their significance in drug discovery and repurposing, have shown great promise in regulating ferroptosis by targeting various ferroptosis players. In this review, we discuss the regulatory mechanisms of ferroptosis and its implications in different pathological conditions. We dissect the interactions between natural products and ferroptosis in cancer, ischemia/reperfusion, neurodegenerative diseases, acute kidney injury, liver injury, and cardiomyopathy, with an emphasis on the relevance of ferroptosis players to disease targetability.
Collapse
Affiliation(s)
- Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Shikai Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Pu-Ste Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jianping Ye
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China.
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
4
|
Wen Y, Zhang X, Zhang J, Lu Z. Deciphering the role of lipid metabolism and acetylation in osteosarcoma: A comprehensive molecular analysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:4776-4790. [PMID: 39162397 DOI: 10.1002/tox.24325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 08/21/2024]
Abstract
Osteosarcoma, known for its rapid progression and high metastatic potential, poses significant challenges in adolescent oncology. This study delves into the roles of lipid metabolism and acetylation genes in the disease's pathogenesis. Utilizing gene set variation analysis, we examined 14 lipid metabolism-related pathways in osteosarcoma patients, identifying significant variances in three pathways between metastatic and primary cases. Additionally, differences in four acetylation genes between these groups were observed. A comprehensive analysis pinpointed 62 lipid metabolism-related genes, with 39 exhibiting significant correlations with acetylation genes, termed lipid metabolism acetylation (LMA) genes. Employing machine learning techniques like Lasso+RSF and GBM, we developed a predictive model for overall survival based on LMA genes. This model, with an average c-index of 0.771, focuses on three key genes: CYP2C8, PAFAH2, and ACOX3, whose prognostic value was confirmed through survival and receiver operating characteristic curve analyses. Quantitative RT-PCR results indicated higher expression levels of ACOX3 and PAFAH2 in OS cells (143B, HOS, MG63) than in osteoblasts (hFOB1.19), while CYP2C8 was lower in OS cells. Furthermore, drug sensitivity analysis through the pRRophetic algorithm suggested potential targeted therapies, revealing drugs with differential sensitivity based on LMA scores and varied treatment responses related to the expression of core genes. This study not only highlights the crucial role of lipid metabolism and acetylation in osteosarcoma but also offers a foundation for personalized treatment strategies, marking a notable advancement in combating this severe form of adolescent cancer.
Collapse
Affiliation(s)
- Yong Wen
- Department of Orthopedics, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xijiang Zhang
- Department of Intensive Care Unit, Taizhou Municipal Hospital, Taizhou, China
| | - Jin Zhang
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Zhisheng Lu
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Gao R, Wang J, Huang J, Wang T, Guo L, Liu W, Guan J, Liang D, Meng Q, Pan H. FSP1-mediated ferroptosis in cancer: from mechanisms to therapeutic applications. Apoptosis 2024; 29:1019-1037. [PMID: 38615304 DOI: 10.1007/s10495-024-01966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Ferroptosis is a new discovered regulated cell death triggered by the ferrous ion (Fe2+)-dependent accumulation of lipid peroxides associated with cancer and many other diseases. The mechanism of ferroptosis includes oxidation systems (such as enzymatic oxidation and free radical oxidation) and antioxidant systems (such as GSH/GPX4, CoQ10/FSP1, BH4/GCH1 and VKORC1L1/VK). Among them, ferroptosis suppressor protein 1 (FSP1), as a crucial regulatory factor in the antioxidant system, has shown a crucial role in ferroptosis. FSP1 has been well validated to ferroptosis in three ways, and a variety of intracellular factors and drug molecules can alleviate ferroptosis via FSP1, which has been demonstrated to alter the sensitivity and effectiveness of cancer therapies, including chemotherapy, radiotherapy, targeted therapy and immunotherapy. This review aims to provide important frameworks that, bring the regulation of FSP1 mediated ferroptosis into cancer therapies on the basis of existing studies.
Collapse
Affiliation(s)
- Ran Gao
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinge Wang
- School of Public Health, Harbin Medical University, Harbin, China
| | - Jingjing Huang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tong Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingfeng Guo
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenlu Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jialu Guan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Desen Liang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qinghui Meng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huayang Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
ZHU YIWEN, YANG LIU, YU YING, XIONG YING, XIAO PING, FU XIAO, LUO XIN. Hydroxysafflor yellow A induced ferroptosis of Osteosarcoma cancer cells by HIF-1α/HK2 and SLC7A11 pathway. Oncol Res 2024; 32:899-910. [PMID: 38686047 PMCID: PMC11055989 DOI: 10.32604/or.2023.042604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/01/2023] [Indexed: 05/02/2024] Open
Abstract
Osteosarcoma is a very serious primary bone cancer with a high death rate and a dismal prognosis. Since there is no permanent therapy for this condition, it is necessary to develop a cure. Therefore, this investigation was carried out to assess the impacts and biological functions of hydroxysafflor yellow A (HYSA) in osteosarcoma cell lines (MG63). In this investigational study, MG63 cells were utilized. Microarray experiments, quantitative polymerase chain reaction (qPCR), immunofluorescent staining, extracellular acidification rate (ECAR), oxygen consumption rate (OCR), glucose consumption, lactate production, and ATP levels, proliferation assay, 5-Ethynyl-2'-deoxyuridine (EDU) staining, and Western blot were performed. In MG63 cells, HYSA lowered cell proliferation and metastasis rates, suppressed EDU cell number, and enhanced caspase-3/9 activity levels. HYSA reduced the Warburg effect and induced ferroptosis (FPT) in MG63 cells. Inhibiting ferroptosis diminished HYSA's anti-cancer activities in MG63 cells. The stimulation of the HIF-1α/SLC7A11 pathway decreased HYSA's anti-cancer activities in MG63 cells. HIF-1α is one target spot for HYSA in a model of osteosarcoma cancer (OC). HYSA altered HIF-1α's thermophoretic activity; following binding with HYSA, HIF-1α's melting point increased from ~55°C to ~60°C. HYSA significantly enhanced the thermal stability of exogenous WT HIF-1α while not affecting Mut HIF-1α, suggesting that ARG-311, GLY-312, GLN-347, and GLN-387 may be involved in the interaction between HIF-1α and HYSA. Conclusively, our study revealed that HYSA induced FPT and reduced the Warburg effect of OC through mitochondrial damage by HIF-1α/HK2/SLC7A11 pathway. HYSA is a possible therapeutic option for OC or other cancers.
Collapse
Affiliation(s)
- YIWEN ZHU
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - LIU YANG
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - YING YU
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - YING XIONG
- Department of General Practice, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - PING XIAO
- Department of General Practice, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - XIAO FU
- Department of General Practice, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - XIN LUO
- Department of General Practice, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| |
Collapse
|
7
|
Panczyszyn E, Saverio V, Monzani R, Gagliardi M, Petrovic J, Stojkovska J, Collavin L, Corazzari M. FSP1 is a predictive biomarker of osteosarcoma cells' susceptibility to ferroptotic cell death and a potential therapeutic target. Cell Death Discov 2024; 10:87. [PMID: 38368399 PMCID: PMC10874395 DOI: 10.1038/s41420-024-01854-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Human osteosarcoma (OS) is a relatively rare malignancy preferentially affecting long body bones which prognosis is often poor also due to the lack of effective therapies. Clinical management of this cancer basically relies on surgical removal of primary tumor coupled with radio/chemotherapy. Unfortunately, most osteosarcoma cells are resistant to conventional therapy, with the undergoing epithelial-mesenchymal transition (EMT) giving rise to gene expression reprogramming, thus increasing cancer cell invasiveness and metastatic potential. Alternative clinical approaches are thus urgently needed. In this context, the recently described ferroptotic cell death represents an attractive new strategy to efficiently kill cancer cells, since most chemoresistant and mesenchymal-shaped tumors display high susceptibility to pro-ferroptotic compounds. However, cancer cells have also evolved anti-ferroptotic strategies, which somehow sustain their survival upon ferroptosis induction. Indeed, here we show that osteosarcoma cell lines display heterogeneous sensitivity to ferroptosis execution, correlating with the mesenchymal phenotype, which is consistently affected by the expression of the well-known anti-ferroptotic factor ferroptosis suppressor protein 1 (FSP1). Interestingly, inhibiting the activity or expression of FSP1 restores cancer cell sensitivity to ferroptosis. Moreover, we also found that: i) AKRs might also contribute to resistance; ii) NRF2 enhances FSP1 expression upon ferroptosis induction; while iii) p53 contributes to the regulation of FSP1 basal expression in OS cells.In conclusion, FSP1 expression can potentially be used as a valuable predictive marker of OS sensitivity to ferroptosis and as a new potential therapeutic target.
Collapse
Affiliation(s)
- Elzbieta Panczyszyn
- Department of Health Sciences and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Valentina Saverio
- Department of Health Sciences and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Romina Monzani
- Department of Health Sciences and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Mara Gagliardi
- Department of Health Sciences and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
| | - Jelena Petrovic
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
- Innovation Center of the Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Jasmina Stojkovska
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Licio Collavin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marco Corazzari
- Department of Health Sciences and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy.
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
8
|
Jin S, Liu PS, Zheng D, Xie X. The interplay of miRNAs and ferroptosis in diseases related to iron overload. Apoptosis 2024; 29:45-65. [PMID: 37758940 DOI: 10.1007/s10495-023-01890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Ferroptosis has been conceptualized as a novel cell death modality distinct from apoptosis, necroptosis, pyroptosis and autophagic cell death. The sensitivity of cellular ferroptosis is regulated at multiple layers, including polyunsaturated fatty acid metabolism, glutathione-GPX4 axis, iron homeostasis, mitochondria and other parallel pathways. In addition, microRNAs (miRNAs) have been implicated in modulating ferroptosis susceptibility through targeting different players involved in the execution or avoidance of ferroptosis. A growing body of evidence pinpoints the deregulation of miRNA-regulated ferroptosis as a critical factor in the development and progression of various pathophysiological conditions related to iron overload. The revelation of mechanisms of miRNA-dependent ferroptosis provides novel insights into the etiology of diseases and offers opportunities for therapeutic intervention. In this review, we discuss the interplay of emerging miRNA regulators and ferroptosis players under different pathological conditions, such as cancers, ischemia/reperfusion, neurodegenerative diseases, acute kidney injury and cardiomyopathy. We emphasize on the relevance of miRNA-regulated ferroptosis to disease progression and the targetability for therapeutic interventions.
Collapse
Affiliation(s)
- Shikai Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Pu-Ste Liu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, ROC
| | - Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| |
Collapse
|
9
|
Li X, Liu J. FANCD2 inhibits ferroptosis by regulating the JAK2/STAT3 pathway in osteosarcoma. BMC Cancer 2023; 23:179. [PMID: 36814203 PMCID: PMC9945409 DOI: 10.1186/s12885-023-10626-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND This research aimed to investigate the roles of fanconi anemia complementation group D2 (FANCD2) on the regulation of ferroptosis in osteosarcoma progression. METHODS The function of FANCD2 on cell viability, invasion, migration, and tumor growth were explored. FANCD2 and pathway-related genes were determined by western blot. Ferroptosis-associated markers were determined, including lipid peroxidation, labile iron pool (LIP), ferrous iron (Fe2+), and ferroptosis-related genes. RESULTS FANCD2 expression was increased in osteosarcoma cells. FANCD2 knockdown reduced cell viability, invasion, and migration of osteosarcoma cells. FANCD2 knockdown regulated ferroptosis-related gene expression, and distinctly increased the levels of LIP, Fe2+, and lipid peroxidation, and these effects were reversed by a ferroptosis inhibitor Fer-1. In addition, JAK2 and STAT3 expression were reduced by silencing of FANCD2, and STAT3 activator (colivelin) distinctly reversed tumor suppressor effects of FANCD2 silencing on osteosarcoma development. CONCLUSION These findings suggested that FANCD2 silencing could suppress osteosarcoma cell viability, migration, invasion, and tumor growth, and induced ferroptosis by regulating the JAK2/STAT3 axis. These findings may provide novel therapeutic ideas for clinical treatment of osteosarcoma.
Collapse
Affiliation(s)
- Xujun Li
- grid.8547.e0000 0001 0125 2443Department of Orthopaedic, Minhang Hospital, Fudan University, No.170, Xinsong Road, Xinzhuang Town, Minhang District, Shanghai City, 201199 China
| | - Jiangyi Liu
- Department of Orthopaedic, Minhang Hospital, Fudan University, No.170, Xinsong Road, Xinzhuang Town, Minhang District, Shanghai City, 201199, China.
| |
Collapse
|
10
|
Huang H, Ye Z, Li Z, Wang B, Li K, Zhou K, Cao H, Zheng J, Wang G. Employing machine learning using ferroptosis-related genes to construct a prognosis model for patients with osteosarcoma. Front Genet 2023; 14:1099272. [PMID: 36733341 PMCID: PMC9888665 DOI: 10.3389/fgene.2023.1099272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Identifying effective biomarkers in osteosarcoma (OS) is important for predicting prognosis. We investigated the prognostic value of ferroptosis-related genes (FRGs) in OS. Transcriptome and clinical data were obtained from The Cancer Genome Atlas and Gene Expression Omnibus. FRGs were obtained from the ferroptosis database. Univariate COX regression and LASSO regression screening were performed and an FRG-based prognostic model was constructed, which was validated using the Gene Expression Omnibus cohort. The predictive power of the model was assessed via a subgroup analysis. A nomogram was constructed using clinical markers with independent prognostic significance and risk score results. The CIBERSORT algorithm was used to detect the correlation between prognostic genes and 22 tumor-infiltrating lymphocytes. The expression of prognostic genes in erastin-treated OS cell lines was verified via real-time PCR. Six prognostic FRGs (ACSL5, ATF4, CBS, CDO1, SCD, and SLC3A2) were obtained and used to construct the risk prognosis model. Subjects were divided into high- and low-risk groups. Prognosis was worse in the high-risk group, and the model had satisfactory prediction performance for patients younger than 18 years, males, females, and those with non-metastatic disease. Univariate COX regression analysis showed that metastasis and risk score were independent risk factors for patients with OS. Nomogram was built on independent prognostic factors with superior predictive power and patient benefit. There was a significant correlation between prognostic genes and tumor immunity. Six prognostic genes were differentially expressed in ferroptosis inducer-treated OS cell lines. The identified prognostic genes can regulate tumor growth and progression by affecting the tumor microenvironment.
Collapse
Affiliation(s)
- Hui Huang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Zhifang Ye
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Zhengzhao Li
- Department of Emergency Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Bo Wang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Ke Li
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Kai Zhou
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Huiyuan Cao
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Jiaxuan Zheng
- Department of Pathology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China,*Correspondence: Jiaxuan Zheng, ; Guangji Wang,
| | - Guangji Wang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China,*Correspondence: Jiaxuan Zheng, ; Guangji Wang,
| |
Collapse
|
11
|
Wang X, Liu T, Qiu C, Yu S, Zhang Y, Sheng Y, Wu C. Characterization and role exploration of ferroptosis-related genes in osteoarthritis. Front Mol Biosci 2023; 10:1066885. [PMID: 36950524 PMCID: PMC10025542 DOI: 10.3389/fmolb.2023.1066885] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/03/2023] [Indexed: 03/08/2023] Open
Abstract
Osteoarthritis (OA), viewing as a degenerative aseptic inflammatory disease, is characterized by joint pain and inflammation that significantly affects the quality of patients' life, especially for the elder. Although rapid progress has been achieved in elucidating the underlying mechanisms of OA occurrence and progression, there is still a lack of effective clinical therapeutics for OA patients. Currently the most common treatments including drug therapy and surgical operations are not very satisfactory in majority of cases, so it is worthy to explore new remedies. During the past few decades, a number of novel forms of regulated cell death have been reported widely, typified by ferroptosis, with its prominent features including reactive oxygen species (ROS) elevation, lipid peroxidation, iron accumulation and glutathione deprivation. Our study was designed to identify the functional roles of differentially expressed ferroptosis-related genes in OA, which were screened out by referring to GEO database via bioinformatics analyses. Human chondrocytes were applied to validate the above findings in the scenario of ferroptosis inhibitors administration. Results partially proved the consistency with bioinformatics analyses that ATF3 and TFRC were highly expressed in interleukin-1β (IL-1β)-stimulated chondrocytes whereas CXCL2 and JUN were downregulated. Besides, TFRC was firstly validated to be upregulated in IL-1β-stimulated chondrocytes, which could be reversed by ferroptosis inhibitors. In conclusion, our study reported two prominent ferroptosis-related genes, ATF3 and TFRC are upregulated in IL-1β-stimulated chondrocytes while CXCL2 and JUN are downregulated. And preliminary results demonstrated that TFRC might serve as an accomplice of ferroptosis process in IL-1β-stimulated chondrocytes and ferroptosis inhibitors have the potential to inhibit ROS in IL-1β-stimulated chondrocytes.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Tianyi Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Qiu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Shunan Yu
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Yanzhuo Zhang
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Yueyang Sheng
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Chengai Wu
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
- *Correspondence: Chengai Wu,
| |
Collapse
|
12
|
Theaflavin-3,3 -Digallate Plays a ROS-Mediated Dual Role in Ferroptosis and Apoptosis via the MAPK Pathway in Human Osteosarcoma Cell Lines and Xenografts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8966368. [PMID: 36329803 PMCID: PMC9626232 DOI: 10.1155/2022/8966368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Globally, osteosarcoma (OS) is the most prevalent form of primary bone cancer in children and adolescents. Traditional neoadjuvant chemotherapy regimens have reached a bottleneck; thus, OS survivors have unsatisfactory outcomes. Theaflavin-3,3′-digallate (TF3) exhibits potent anticancer properties against many human cancers. Nevertheless, the biological effects and the underlying molecular mechanism of TF3 in human OS remain unclear. The objective of this study was to investigate the effects of TF3 on human OS cell lines and mouse xenograft models. The results showed that TF3 reduced cell viability, suppressed cell proliferation, and caused G0/G1 cell cycle arrest in both MG63 and HOS cell lines in a concentration-dependent manner. TF3 also altered the homeostatic mechanisms for iron storage in the examined cell lines, resulting in an excess of labile iron. Unsurprisingly, TF3 caused oxidative stress through reduced glutathione (GSH) exhaustion, reactive oxygen species (ROS) accumulation, and the Fenton reaction, which triggered ferroptosis and apoptosis in the cells. TF3 also induced MAPK signalling pathways, including the ERK, JNK, and p38 MAPK pathways. Furthermore, oxidative stress was shown to be the primary reason for TF3-induced proliferation inhibition, programmed cell death, and MAPK pathway activation in vitro. Moreover, TF3 exhibited markedly strong antitumour efficacy in vivo in mouse models. In summary, this study demonstrates that TF3 concomitantly plays dual roles in apoptotic and ferroptotic cell death by triggering the ROS and MAPK signalling pathways in both in vitro and in vivo models.
Collapse
|
13
|
The Regulatory Role of Ferroptosis in Bone Homeostasis. Stem Cells Int 2022; 2022:3568597. [PMID: 35873534 PMCID: PMC9300333 DOI: 10.1155/2022/3568597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022] Open
Abstract
Ferroptosis is an iron-dependent form of programmed cell death and an important type of biological catabolism. Through the action of divalent iron or ester oxygenase, ferroptosis can induce lipid peroxidation and cell death, regulating a variety of physiological processes. The role of ferroptosis in the modulation of bone homeostasis is a significant topic of interest. Herein, we review and discuss recent studies exploring the mechanisms and functions of ferroptosis in different bone-related cells, including mesenchymal stem cells, osteoblasts, osteoclasts, and osteocytes. The association between ferroptosis and disorders of bone homeostasis is also explored in this review. Overall, we aim to provide a detailed overview of ferroptosis, summarizing recent understanding on its role in regulation of bone physiology and bone disease pathogenesis.
Collapse
|
14
|
Dong Z, Liao Z, He Y, Wu C, Meng Z, Qin B, Xu G, Li Z, Sun T, Wen Y, Li G. Advances in the Biological Functions and Mechanisms of miRNAs in the Development of Osteosarcoma. Technol Cancer Res Treat 2022; 21:15330338221117386. [PMID: 35950243 PMCID: PMC9379803 DOI: 10.1177/15330338221117386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osteosarcoma is one of the most common primary malignant bone tumors, mainly
occurring in children and adolescents, and is characterized by high morbidity
and poor prognosis. MicroRNAs, a class of noncoding RNAs consisting of 19 to 25
nucleotides, are involved in cell proliferation, invasion, metastasis, and
apoptosis to regulate the development and progression of osteosarcoma. Studies
have found that microRNAs are closely related to the diagnosis, treatment, and
prognosis of osteosarcoma patients and have an important role in improving drug
resistance in osteosarcoma. This paper reviews the role of microRNAs in the
pathogenesis of osteosarcoma and their clinical value, aiming to provide a new
research direction for diagnosing and treating osteosarcoma and achieving a
better prognosis.
Collapse
Affiliation(s)
- Zihe Dong
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zhipeng Liao
- The Second School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Yonglin He
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Chengye Wu
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zixiang Meng
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Baolong Qin
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Ge Xu
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zeyang Li
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Tianxin Sun
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Yuyan Wen
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Guangjie Li
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|