1
|
Li N, Fang D, Ge F, Zhang L, Liu Y, Gao Y, Jin H. Melatonin-Stimulated Mesenchymal Stem Cells-Derived Exosomes Carrying LINC00052 Alleviate Hyperoxic Lung Injury by Promoting miR-152-3p-KLF4-Nrf2 Pathway. J Biochem Mol Toxicol 2025; 39:e70241. [PMID: 40258169 DOI: 10.1002/jbt.70241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 03/02/2025] [Accepted: 03/13/2025] [Indexed: 04/23/2025]
Abstract
Exposure of the lungs to high O2 levels, can lead to a noninfectious lung damage known as hyperoxia-induced lung injury (HILI). Melatonin stimulation can enhance the efficacy of stem cells in some diseases. This study aims to investigate the mechanism of exosomes secreted by mesenchymal stem cells (MSCs) stimulated by melatonin in HILI. The MSCs-derived exosomes were isolated and identified after stimulation with melatonin, and the neonatal rat model of HILI was constructed. After injection of exosomes and related lentiviruses, the ratio of wet lung to dry lung was calculated to evaluate pulmonary edema. Inflammatory factors in medium or serum were measured by ELISA. HE staining was used to evaluate the pathological status of lung tissue. Masson staining was used to evaluate collagen deposition in lung tissue. Lung cell apoptosis was detected by Tunel staining. In vitro model of HILI was established, CCK-8 and EDU staining were used to detect cell viability and proliferation, and flow cytometry was used to detect cell apoptosis. The binding relationship between LINC00052, miR-152-3p, and KLF4 was verified through bioinformatics websites, dual luciferase reporter experiments, RIP experiments, and RNA pull down experiments. Melatonin-stimulated MSCs-derived exosomes could alleviate HILI. Exosomes had a therapeutic effect on HILI neonatal rats by carrying LINC00052. Inhibition of LINC00052 reversed the therapeutic effect of exosomes on HILI, while low expression of miR-152-3p or inducing KLF4 negated the effect of sh-LINC00052. LINC00052 bound to miR-152-3p. miR-152-3p targeted KLF4. In vitro, melatonin-stimulated MSC-derived exosomes alleviated the cytotoxicity and cell viability inhibition of AEC-II cells induced by hyperoxia. KLF4 overexpression activated NRF2 signaling in AEC-II cells. LINC00052 in MSCs-derived exosomes stimulated by melatonin activates the Nrf2 pathway through the miR-152-3p/KLF4 axis to alleviate HILI, which may be a potential therapeutic approach for HILI.
Collapse
Affiliation(s)
- Nan Li
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang City, Liaoning Province, China
| | - DeYu Fang
- Department of Chemistry, School of Information Engineering, Liaoning University of Traditional Chinese Medicine, Shenyang City, Liaoning Province, China
| | - Feng Ge
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang City, Liaoning Province, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Biology, Liaoning University of Traditional Chinese Medicine, Shenyang City, Liaoning Province, China
| | - Ying Liu
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang City, Liaoning Province, China
| | - Yan Gao
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang City, Liaoning Province, China
| | - HongXu Jin
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang City, Liaoning Province, China
| |
Collapse
|
2
|
Kuang L, Wu L, Li Y. Extracellular vesicles in tumor immunity: mechanisms and novel insights. Mol Cancer 2025; 24:45. [PMID: 39953480 PMCID: PMC11829561 DOI: 10.1186/s12943-025-02233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/14/2025] [Indexed: 02/17/2025] Open
Abstract
Extracellular vesicles (EVs), nanoscale vesicles secreted by cells, have attracted considerable attention in recent years due to their role in tumor immunomodulation. These vesicles facilitate intercellular communication by transporting proteins, nucleic acids, and other biologically active substances, and they exhibit a dual role in tumor development and immune evasion mechanisms. Specifically, EVs can assist tumor cells in evading immune surveillance and attack by impairing immune cell function or modulating immunosuppressive pathways, thereby promoting tumor progression and metastasis. Conversely, they can also transport and release immunomodulatory factors that stimulate the activation and regulation of the immune system, enhancing the body's capacity to combat malignant diseases. This dual functionality of EVs presents promising avenues and targets for tumor immunotherapy. By examining the biological characteristics of EVs and their influence on tumor immunity, novel therapeutic strategies can be developed to improve the efficacy and relevance of cancer treatment. This review delineates the complex role of EVs in tumor immunomodulation and explores their potential implications for cancer therapeutic approaches, aiming to establish a theoretical foundation and provide practical insights for the advancement of future EVs-based cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Liwen Kuang
- School of Medicine, Chongqing University, Chongqing, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongsheng Li
- School of Medicine, Chongqing University, Chongqing, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
3
|
Wang C, Shi ZZ. Exosomes in esophageal cancer: function and therapeutic prospects. Med Oncol 2024; 42:18. [PMID: 39601925 DOI: 10.1007/s12032-024-02543-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024]
Abstract
Esophageal cancer (EC) is one of the most common malignant tumors worldwide. Exosomes are a type of extracellular vesicles produced by eukaryotic cells and present in all body fluids. Recent studies have revealed that exosomes can be used as a tool for cell signaling and have great potential in cancer diagnosis and treatment strategies. This article reviews the research progress of exosomes in EC in recent years, mainly including the mechanism of action, diagnostic markers, therapeutic targets, and drug carriers. The challenges faced are discussed to provide guidelines for further research in future.
Collapse
Affiliation(s)
- Chong Wang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhi-Zhou Shi
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
4
|
Yang K, Gao F, Zhou C, Cao S, Chai S, Li L. Immunological biomarkers and predictive model for recurrence of esophageal squamous cell carcinoma after combined immunotherapy and neoadjuvant chemotherapy. Am J Cancer Res 2024; 14:4896-4908. [PMID: 39553214 PMCID: PMC11560828 DOI: 10.62347/elrq9964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024] Open
Abstract
OBJECTIVE To investigate the association between preoperative immunological biomarkers and risk of esophageal squamous cell carcinoma (ESCC) recurrence within 3 years after combined immunotherapy and neoadjuvant chemotherapy. METHODS This retrospective case-control study included 348 ESCC patients who received immunotherapy and neoadjuvant chemotherapy in Henan Provincial People's Hospital between 2021 and 2023. Patients were divided into a recurrence (n=197) group and a non-recurrence (n=151) group based on their recurrence within 3 years. Tumor-infiltrating lymphocytes, serum tumor-specific antibodies, immune checkpoint expression, and HLA expression were analyzed and compared between groups. Correlation and regression analyses evaluated associations between biomarkers and recurrence risk. Then, a joint prediction model was established. RESULTS The study revealed that CD8+ and Perforin+ cell percentages were significantly associated with a lower risk of recurrence (P<0.001), while EGFR, HER2, p53, PD-L1, CTLA-4, Tim-3, and LAG-3 were linked to an increased risk of recurrence (P<0.001). Lifestyle factors like salted food consumption, regular hot drink intake, gastric atrophy, and vitamin A deficiency also contributed to ESCC recurrence prediction (all P<0.05). A predictive model incorporating immune markers and risk factors for predicting ESCC recurrence within three years post-treatment demonstrated an AUC of 0.986. CONCLUSION Immunological biomarkers, including tumor-infiltrating lymphocytes, serum tumor antibodies, immune checkpoint expression, and HLA expression are associated with ESCC recurrence risk within 3 years of combined immunotherapy and neoadjuvant chemotherapy. These biomarkers may help stratify patients and guide management decisions.
Collapse
Affiliation(s)
- Ke Yang
- Oncology Department, Zhengzhou Universiy People's Hospital (Henan Provincial People's Hospital) Zhengzhou 450003, Henan, China
| | - Fangmiao Gao
- Oncology Department, Zhengzhou Universiy People's Hospital (Henan Provincial People's Hospital) Zhengzhou 450003, Henan, China
| | - Chenxuan Zhou
- Oncology Department, Zhengzhou Universiy People's Hospital (Henan Provincial People's Hospital) Zhengzhou 450003, Henan, China
| | - Sinan Cao
- Oncology Department, Zhengzhou Universiy People's Hospital (Henan Provincial People's Hospital) Zhengzhou 450003, Henan, China
| | - Shuaining Chai
- Oncology Department, Zhengzhou Universiy People's Hospital (Henan Provincial People's Hospital) Zhengzhou 450003, Henan, China
| | - Linwei Li
- Oncology Department, Zhengzhou Universiy People's Hospital (Henan Provincial People's Hospital) Zhengzhou 450003, Henan, China
| |
Collapse
|
5
|
Yuan L, Ji H, Cao Y, Yi H, Leng Q, Zhou J, Mei X. Exosomes in esophageal cancer: Promising nanocarriers in cancer progression, diagnosis, prognosis, and therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1989. [PMID: 39217461 DOI: 10.1002/wnan.1989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/26/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Esophageal cancer (EC) is one of the most fatal cancers all over the world. Sensitive detection modalities for early-stage EC and efficient treatment methods are urgently needed for the improvement of the prognosis of EC. Exosomes are small vesicles for intercellular communication, mediating many biological responses including cancer progression, which are not only promising biomarkers for diagnosis and prognosis but also therapeutic tools for EC. This review provides an overview of the relationships between exosomes and EC progression, as well as the application of exosomes in the diagnosis, prognosis, and treatment of EC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ligong Yuan
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haoran Ji
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yang Cao
- Peking University Health Science Center, Peking University, Beijing, China
| | - Hang Yi
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qihao Leng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jie Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Xinyu Mei
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Huang M, Li S, Zeng H, Zhu Y, Zhang F, Cai J. Exosomal miR-196a-5p contributes to esophageal squamous cell carcinoma malignant progression by inhibiting ITM2B. Pathol Int 2024; 74:464-474. [PMID: 38940569 DOI: 10.1111/pin.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/13/2024] [Accepted: 06/02/2024] [Indexed: 06/29/2024]
Abstract
Exosomes from cancer cells function as carriers to spread or transport specific microRNAs (miRNAs) to distant sites to exert their effects, but the mechanism of exosomal miRNA action in esophageal squamous cell carcinoma (ESCC) has not been fully explained. Therefore, in this study, we were interested in the impact of exosomal miR-196a-5p in ESCC progression. We found that miR-196a-5p was expressed enriched in clinical tissues, ESCC cells, and exosomes. Functionally, depletion of miR-196a-5p impeded ESCC cell growth, migration, and invasion, whereas overexpression of miR-196a-5p produced the opposite results. Moreover, enhancement of exosomal miR-196a-5p in recipient ESCC cells triggered more intense proliferation and migration. Mechanistically, we identified integral membrane protein 2B (ITM2B) as a direct target of miR-196a-5p. Silencing of ITM2B partially counteracted the inhibitory effect of miR-196a-5p inhibitors on the malignant phenotype of ESCC. Furthermore, in vivo, lower miR-196a-5p levels triggered by the introduction of antagomiR-196a-5p resulted in the generation of smaller volume and weight xenograft tumors. Thus, our results demonstrated novel mechanisms of exosomal and intracellular miR-196a-5p-mediated ESCC growth and migration and identify the interaction of miR-196a-5p with ITM2B. These works might provide new targets and basis for the development of clinical treatment options for ESCC.
Collapse
Affiliation(s)
- Min Huang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Shuang Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Hai Zeng
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Yan Zhu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Fan Zhang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
7
|
Rathee M, Umar SM, Dev AJR, Kashyap A, Mathur SR, Gogia A, Mohapatra P, Prasad CP. Canonical WNT/β-catenin signaling upregulates aerobic glycolysis in diverse cancer types. Mol Biol Rep 2024; 51:788. [PMID: 38970704 DOI: 10.1007/s11033-024-09694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/31/2024] [Indexed: 07/08/2024]
Abstract
Despite many efforts, a comprehensive understanding and clarification of the intricate connections within cancer cell metabolism remain elusive. This might pertain to intracellular dynamics and the complex interplay between cancer cells, and cells with the tumor stroma. Almost a century ago, Otto Warburg found that cancer cells exhibit a glycolytic phenotype, which continues to be a subject of thorough investigation. Past and ongoing investigations have demonstrated intricate mechanisms by which tumors modulate their functionality by utilizing extracellular glucose as a substrate, thereby sustaining the essential proliferation of cancer cells. This concept of "aerobic glycolysis," where cancer cells (even in the presence of enough oxygen) metabolize glucose to produce lactate plays a critical role in cancer progression and is regulated by various signaling pathways. Recent research has revealed that the canonical wingless-related integrated site (WNT) pathway promotes aerobic glycolysis, directly and indirectly, thereby influencing cancer development and progression. The present review seeks to gather knowledge about how the WNT/β-catenin pathway influences aerobic glycolysis, referring to relevant studies in different types of cancer. Furthermore, we propose the concept of impeding the glycolytic phenotype of tumors by employing specific inhibitors that target WNT/β-catenin signaling.
Collapse
Affiliation(s)
- Meetu Rathee
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Sheikh Mohammad Umar
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Arundhathi J R Dev
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Akanksha Kashyap
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Sandeep R Mathur
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | | | - Chandra Prakash Prasad
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
8
|
Wei QY, Jin F, Wang ZY, Li BJ, Cao WB, Sun ZY, Mo SJ. MicroRNAs: A novel signature in the metastasis of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:1497-1523. [PMID: 38617454 PMCID: PMC11008420 DOI: 10.3748/wjg.v30.i11.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.
Collapse
Affiliation(s)
- Qi-Ying Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Feng Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhong-Yu Wang
- Department of Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bing-Jie Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Wen-Bo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhi-Yan Sun
- Division of Special Service, Department of Basic Oncology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sai-Jun Mo
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
9
|
Xian D, Yang S, Liu Y, Liu Q, Huang D, Wu Y. MicroRNA-196a-5p facilitates the onset and progression via targeting ITM2B in esophageal squamous cell carcinoma. Pathol Int 2024; 74:129-138. [PMID: 38289121 DOI: 10.1111/pin.13408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 03/21/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy affecting the digestive tract, with an increasing incidence rate worldwide. Recently, numerous studies revealed that microRNAs were associated with gene expression regulation, particularly their involvement in the regulation of tumor cells, garnering widespread attention. Here, we discovered that miR-196a-5p was significantly upregulated in both ESCC tissues and cells, which was correlated with an unfavorable prognosis. Series functional in vitro investigations have confirmed that silencing miR-196a-5p obviously restrained the ESCC cells malignant phenotypes and promoted apoptosis. Bioinformatics analysis and rescue experiments revealed that miR-196a-5p directly targeted ITM2B, exerting influence on the development of ESCC cells through negative regulation of ITM2B expression. Xenograft mouse models were established for conducting in vivo experiments, providing further confirmation of the regulatory mechanism and biological significance of the miR-196a-5p/ITM2B axis in ESCC. Our research demonstrated miR-196a-5p promoted ESCC malignant progression by interacting with ITM2B, thereby providing novel clues and potential targets for the new diagnosis and thereby of ESCC.
Collapse
Affiliation(s)
- Dubiao Xian
- Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, The Respiratory Medical Center of Hainan Province, Haikou, Hainan, China
| | - Shubo Yang
- Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, The Respiratory Medical Center of Hainan Province, Haikou, Hainan, China
| | - Yunzhong Liu
- Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, The Respiratory Medical Center of Hainan Province, Haikou, Hainan, China
| | - Qingfeng Liu
- Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, The Respiratory Medical Center of Hainan Province, Haikou, Hainan, China
| | - Ding Huang
- Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, The Respiratory Medical Center of Hainan Province, Haikou, Hainan, China
| | - Yuechang Wu
- Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, The Respiratory Medical Center of Hainan Province, Haikou, Hainan, China
| |
Collapse
|
10
|
Zhang C, Guo Z, Jing Z. Prediction of Response to Chemoradiotherapy by Dynamic Changes of Circulating Exosome Levels in Patients with Esophageal Squamous Cell Carcinoma. Int J Nanomedicine 2024; 19:1351-1362. [PMID: 38352821 PMCID: PMC10863473 DOI: 10.2147/ijn.s440684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Background The exosomes-based liquid biopsy represents a prospective biomarker for tumor screening, prognosis prediction, and tumor regression. This study aimed to isolate circulating exosomes (CEs) from plasma of the esophageal squamous cell carcinoma (ESCC) patients who received chemoradiotherapy through exosome detection method via the ultrafast-isolation system (EXODUS) and investigated the association between the dynamic changes of CE levels and therapeutic effect. Methods We isolated and quantitatively analyzed CEs from plasma of locally advanced ESCC patients received chemoradiotherapy at 2 time points: baseline (pre-chemoradiotherapy) and 2 months after the chemoradiotherapy (post-chemoradiotherapy). We isolated exosomes from plasma by EXODUS platform and confirmed them through nanoparticle tracking analysis (NTA), transmission electron microscope (TEM), and Western blot. The associations of CE level with clinicopathological characteristics, tumor regression, and progression-free survival (PFS) were analyzed. Results The average diameter of CEs was 107.4±14.3 nm at baseline and 101.7±17.1 nm at post-chemoradiotherapy. The mean exosome concentration significantly decreased after chemoradiotherapy (7.3×1011 particles/mL vs 5.4×1011 particles/mL, P < 0.001). The patients with stage III-IVA and tumor length ≥5cm had obviously higher baseline CE levels. Dynamic changes in CE levels were successfully applied for evaluation of chemoradiotherapy response and PFS. Furthermore, through multivariate Cox regression analysis, it was revealed that dynamic changes of CE levels were an independent predictor of PFS in locally advanced ESCC patients who received chemoradiotherapy. Conclusion Here, we demonstrated EXODUS platform isolated and enriched CEs from plasma of ESCC patients with high-purity and high-yield. The EXODUS platform can facilitate liquid biopsy based on exosomes translation to the clinic. Baseline CE levels can reflect ESCC tumor burden. The dynamic changes of CE levels during chemoradiotherapy allow the prediction of treatment effect and PFS of ESCC patients, requiring further investigations in larger patient cohorts.
Collapse
Affiliation(s)
- Chuanfeng Zhang
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, People’s Republic of China
| | - Zhen Guo
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, People’s Republic of China
| | - Zhao Jing
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, People’s Republic of China
| |
Collapse
|