1
|
Liu J, Yan Z, Zhong T, Qu J, Lei D, Lai J, Zhang C, Lai Z, Ai W, Liu X. Identification of a NEK7-related pyroptosis gene signature against pancreatic cancer and evaluation of its potential in tumor microenvironment remodeling via regulating inflammasome complex. Funct Integr Genomics 2025; 25:92. [PMID: 40257657 PMCID: PMC12011910 DOI: 10.1007/s10142-025-01597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 04/01/2025] [Accepted: 04/06/2025] [Indexed: 04/22/2025]
Abstract
The treatment options for pancreatic ductal adenocarcinoma (PDAC) remain limited. It is therefore important to explore new therapeutic targets and strategies for better treatment and prognosis for patients with PDAC. NIMA-related kinase 7 (NEK7) is a serine/threonine kinase involved in PDAC development. Moreover, NEK7 was reported to regulate NLRP3 inflammasome and cell pyroptosis. To evaluate the role of NEK7 in PDAC, we performed RNA sequencing analysis in PDAC cells, and a series of bioinformatics analyses were employed to determine the biological function of NEK7 in PDAC. We identified a NEK7-Specific Pyroptosis Gene Set (NEK7-SPGS) by high-throughput transcriptome sequencing combining Gene Set Enrichment Analysis (GSEA). We reveal that NEK7-SPGS is highly associated with T helper cell infiltration and inflammatory response of PDAC. We therefore proposed that NEK7-SPGS might have potential for tumor microenvironment remodeling via T cells induced inflammatory response. Using dataset from TCGA database, we established a NEK7-SPGS-related prognostic signature for patients with PDAC. Subsequently, sensitivity estimation of chemotherapeutic drugs revealed a series of chemotherapy agents according to the NEK7-SPGS-related prognostic signature, including gemcitabine and paclitaxel, drugs that have been used as conventional agents for PDAC therapy. Meanwhile, we showed that the expression of SCAMP1, which is a member of NEK7-SPGS, was involved in the progression of PDAC in vivo and in vitro. We proposed a NEK7-specific pyroptosis gene signature and evaluated its potential in PDAC tumor microenvironment. The NEK7-SPGS-related prognostic signature could act as a prognostic biomarker and serve as therapeutic guidance in clinical application.
Collapse
Affiliation(s)
- Jia Liu
- Physical Examination Center, The Second Hospital of Hebei Medical University, 309 Zhonghua North St, Shijiazhuang, Hebei, 050000, China
| | - Zilong Yan
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518000, China
| | - Tongning Zhong
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518000, China
| | - Jianhua Qu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518000, China
| | - Defeng Lei
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518000, China
| | - Jinglin Lai
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518000, China
| | - Citing Zhang
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, 518055, China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, 518055, China
| | - Weipeng Ai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, 518055, China
| | - Xueqing Liu
- Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
2
|
Gao S, Su M, Bian T, Liu Y, Xu Y, Zhang Y. NEK6 functions as an oncogene to promote the proliferation and metastasis of ovarian cancer. J Cancer 2025; 16:1335-1346. [PMID: 39895790 PMCID: PMC11786049 DOI: 10.7150/jca.103769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/29/2024] [Indexed: 02/04/2025] Open
Abstract
Background: Ovarian cancer (OC) is a common malignant tumor of the female reproductive organs. The novel serine/threonine kinase NEK6 is highly expressed in various cancers and affects the prognosis of patients. However, the role of NEK6 in OC is still unclear. Methods: In this study, the expression profiles of NEK6 in OC and its roles in the development of OC were investigated. The expression profiles of NEK6 across cancers and OC were explored using bioinformatics analysis, and its expression in OC patients was detected by immunohistochemical (IHC) staining. The correlation between its expression and clinicopathological factors was also analyzed. Furthermore, the NEK6 levels in the tumor tissues of OC patients were detected via RT‒qPCR and Western blotting. Biological functions, including cell growth, migration, invasion and apoptosis, were analyzed using MTT, Transwell and flow cytometry assays, respectively. Results: Bioinformatics analysis revealed that NEK6 was highly expressed in most human cancers, including OC. IHC revealed 67.27% moderate or strong NEK6 staining in tumor tissues, 32.73% (36/110) weak staining, and negative or weak NEK6 staining in normal ovarian tissues, and its high expression was correlated with clinicopathological factors, including histological grade (P=0.008) and metastasis (P=0.006). The Kaplan‒Meier survival curve revealed that OC patients with high expression of NEK6 had poorer overall survival rates (P=0.025). NEK6 was overexpressed in OC tissues and SK-OV-3 and A2780 cells, and when NEK6 was knocked down with siRNAs, cell growth, migration and invasion were inhibited, whereas cell apoptosis was significantly promoted. Conclusion: NEK6 is highly expressed in OC; its overexpression indicates poor prognosis; and NEK6 knockdown leads to inhibited growth, migration and invasion while promoting the apoptosis of OC cells. These findings indicate that NEK6 is a potential oncogene and a poor prognostic factor in OC, suggesting that NEK6 can serve as a new therapeutic candidate for OC and that NEK6 inhibition may be an effective strategy for OC treatment.
Collapse
Affiliation(s)
- Sainan Gao
- Suzhou Medical College of Soochow University, Suzhou 215123, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Min Su
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Tingting Bian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yanhua Xu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yuquan Zhang
- Suzhou Medical College of Soochow University, Suzhou 215123, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
3
|
Zheng Y, Huang X. Identification of pyroptosis-associated miRNAs in the immunoscape and prognosis of hepatocellular carcinoma. BMC Cancer 2024; 24:1513. [PMID: 39695414 PMCID: PMC11657507 DOI: 10.1186/s12885-024-13276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma is one of the most prevalent types of liver malignancy and poses a severe threat to global health. Despite recent improvements in therapeutic approaches, treatment options for patients with advanced or recurrent HCC are still limited. MATERIALS AND METHODS Our study analyzed miRNA differential expression using data from hepatocellular carcinoma patients in the Cancer Genome Atlas. Pyroptosis-related genes were identified from gene cards. Differential expression of miRNAs was analyzed using DESeq2 and visualized using ggplot2 and pheatmap. A prognostic risk model for pyroptosis-associated miRNAs was constructed using LASSO regression and validated by principal component analysis, Kaplan-Meier survival and ROC curve analysis. We also performed gene and pathway enrichment analysis. Immune cell infiltration and function in HCC were assessed using single-sample genomic enrichment analysis, and correlations with immune cells and function were explored. Also, CCK-8 assay as well as migration and invasion assays were performed after knockdown of miR-6844. RESULTS We have established and validated a prognostic risk model based on ten DEmiRNAs, which is important for the survival of HCC patients. Significant changes in immune cell infiltration and immune function were also found in high-risk patients. It also demonstrated that knockdown of miR-6844 inhibited HCC cell proliferation, migration and invasion, highlighting its role in HCC progression. CONCLUSION Our study reveals the implications of pyroptosis-associated differential miRNAs on the prognosis of patients with hepatocellular carcinoma and provides a foundation for novel HCC therapies, especially immunotherapy.
Collapse
Affiliation(s)
- Yuting Zheng
- Departments of Anaesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xing Huang
- Departments of Anaesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
4
|
He C, Wu Q, Zeng Z, Yang Y, He H, Hu M, Liu S. OGT-induced O-GlcNAcylation of NEK7 protein aggravates osteoarthritis progression by enhancing NEK7/NLRP3 axis. Autoimmunity 2024; 57:2319202. [PMID: 38389178 DOI: 10.1080/08916934.2024.2319202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUNDS The role of O-GlcNAc transferase (OGT)-induced O-linked N-acetylglucosaminylation (O-GlcNAcylation) has been reported in multiple human diseases. However, its specific functions in osteoarthritis (OA) progression remain undetermined. OBJECTIVE This study focused on the target proteins of OGT-induced O-GlcNAcylation in OA and the specific functional mechanism. METHODS The levels of total O-GlcNAc and OGT were measured in both in vitro and in vivo OA models using western blot. The effects of OGT knockout on OA progression were detected through Safranin O staining, immunohistochemical staining and OARSI score evaluation. The effects of OGT silencing on LPS-induced chondrocyte injury were assessed by performing loss-of function assays. Co-immunoprecipitation (co-IP) was conducted to verify the effect of OGT-induced O-GlcNAcylation on the interaction between NEK7 and NLRP3. The role of OGT in modulating the O-GlcNAcylation and phosphorylation levels of NEK7 was analysed using western blot. RESULTS The OGT-indued O-GlcNAcylation level was increased in both in vitro and in vivo OA models. Knockout of OGT mitigated OA progression in model mice. Additionally, silencing of OGT suppressed LPS-induced chondrocyte pyroptosis. Moreover, silencing of OGT inhibited the O-GlcNAcylation and enhanced the phosphorylation of NEK7 at S260 site, thereby blocking the binding of NEK7 with NLRP3. CONCLUSION OGT-induced NEK7 O-GlcNAcylation promotes OA progression by promoting chondrocyte pyroptosis via the suppressing interaction between NEK7 and NLRP3.
Collapse
Affiliation(s)
- Chunlei He
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Qiang Wu
- Gannan Medical University, Ganzhou, China
| | | | - Yadong Yang
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Huabin He
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Meiyu Hu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Sheng Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| |
Collapse
|
5
|
Qu X, Zhang Y, Li H, Tan Y. The m 5C/m 6A/m 7G-related non-apoptotic regulatory cell death genes for the prediction of the prognosis and immune infiltration status in hepatocellular carcinoma. Transl Cancer Res 2024; 13:4714-4735. [PMID: 39430855 PMCID: PMC11483456 DOI: 10.21037/tcr-24-499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/01/2024] [Indexed: 10/22/2024]
Abstract
Background 5-methylcytosine/N6-methyladenosine/N7-methylguanosine (m5C/m6A/m7G)-related genes play a critical role in tumor occurrence and progression, and non-apoptotic regulatory cell death (NARCD) is closely linked to tumor development and immunity. However, the role of m5C/m6A/m7G-related NARCD genes in hepatocellular carcinoma (HCC) remains unclear. We used m5C/m6A/m7G-related NARCD genes to construct a prognostic model of HCC for prognostic prediction and clinical treatment of patients. Methods We obtained transcriptome data for HCC from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). Using the least absolute shrinkage and selection operator (LASSO) regression, we identified m5C/m6A/m7G-related NARCD genes and constructed a prognostic model through multivariate Cox regression. Model performance was assessed using Kaplan-Meier and receiver operating characteristic (ROC) curves, with external validation using the ICGC. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were used to study differentially expressed genes between high- and low-risk groups. We also examined immune cell infiltration, drug response, and cell communication between tumor cells and immune cells in high-risk groups. Results We identified 140 m5C/m6A/m7G-related NARCD genes, using five of them to build the prognostic model. Functional enrichment analysis revealed enrichment in tumor and immune-related pathways for risk genes. The high-risk group displayed increased immune cell infiltration and better responses to immune checkpoint inhibitors (ICIs). High-risk patients were more responsive to cisplatin, doxorubicin, and mitomycin C, while low-risk patients were more sensitive to erlotinib. Cell communication analysis indicated that high-risk tumor cells used insulin-like growth factor (IGF) and macrophage migration inhibitory factor (MIF) signaling pathways to send signals to immune cells and received signals through the bone morphogenetic protein (BMP) and lymphotoxin-related inducible ligand (LIGHT) pathways. Conclusions We have developed a prognostic model with m5C/m6A/m7G-related NARCD genes to predict the prognosis of HCC patients. This model can offer insights into the effectiveness of immunotherapy and chemotherapy for HCC patients.
Collapse
Affiliation(s)
- Xiangyu Qu
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Yigang Zhang
- Department of Plastic Surgery, Bengbu Third People’s Hospital, Bengbu, China
| | - Haoling Li
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Yi Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
6
|
Liu Y, Pan R, Ouyang Y, Gu W, Xiao T, Yang H, Tang L, Wang H, Xiang B, Chen P. Pyroptosis in health and disease: mechanisms, regulation and clinical perspective. Signal Transduct Target Ther 2024; 9:245. [PMID: 39300122 DOI: 10.1038/s41392-024-01958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Pyroptosis is a type of programmed cell death characterized by cell swelling and osmotic lysis, resulting in cytomembrane rupture and release of immunostimulatory components, which play a role in several pathological processes. Significant cellular responses to various stimuli involve the formation of inflammasomes, maturation of inflammatory caspases, and caspase-mediated cleavage of gasdermin. The function of pyroptosis in disease is complex but not a simple angelic or demonic role. While inflammatory diseases such as sepsis are associated with uncontrollable pyroptosis, the potent immune response induced by pyroptosis can be exploited as a therapeutic target for anti-tumor therapy. Thus, a comprehensive review of the role of pyroptosis in disease is crucial for further research and clinical translation from bench to bedside. In this review, we summarize the recent advancements in understanding the role of pyroptosis in disease, covering the related development history, molecular mechanisms including canonical, non-canonical, caspase 3/8, and granzyme-mediated pathways, and its regulatory function in health and multiple diseases. Moreover, this review also provides updates on promising therapeutic strategies by applying novel small molecule inhibitors and traditional medicines to regulate pyroptosis. The present dilemmas and future directions in the landscape of pyroptosis are also discussed from a clinical perspective, providing clues for scientists to develop novel drugs targeting pyroptosis.
Collapse
Affiliation(s)
- Yifan Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Oncology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Renjie Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Yuzhen Ouyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Neurology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Ling Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Bo Xiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| |
Collapse
|
7
|
Wang X, Yin QH, Wan LL, Sun RL, Wang G, Gu JF, Tang DC. Research progress on the effect of pyroptosis on the occurrence, development, invasion and metastasis of colorectal cancer. World J Gastrointest Oncol 2024; 16:3410-3427. [PMID: 39171180 PMCID: PMC11334039 DOI: 10.4251/wjgo.v16.i8.3410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
Pyroptosis is a type of programmed cell death mediated by gasdermines (GSDMs). The N-terminal domain of GSDMs forms pores in the plasma membrane, causing cell membrane rupture and the release of cell contents, leading to an inflammatory response and mediating pyrodeath. Pyroptosis plays an important role in inflammatory diseases and malignant tumors. With the further study of pyroptosis, an increasing number of studies have shown that the pyroptosis pathway can regulate the tumor microenvironment and antitumor immunity of colorectal cancer and is closely related to the occurrence, development, treatment and prognosis of colorectal cancer. This review aimed to explore the molecular mechanism of pyroptosis and the role of pyroptosis in the occurrence, development, treatment and prognosis of colorectal cancer (CRC) and to provide ideas for the clinical diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Xu Wang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Qi-Hang Yin
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Lin-Lu Wan
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Ruo-Lan Sun
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Gang Wang
- Department of Ana and Intestine Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jun-Fei Gu
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - De-Cai Tang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
8
|
Wu X, Cao J, Wan X, Du S. Programmed cell death in hepatocellular carcinoma: mechanisms and therapeutic prospects. Cell Death Discov 2024; 10:356. [PMID: 39117626 PMCID: PMC11310460 DOI: 10.1038/s41420-024-02116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Hepatocellular Carcinoma (HCC), the most common primary liver cancer, ranks as the third most common cause of cancer-related deaths globally. A deeper understanding of the cell death mechanisms in HCC is essential for developing more effective treatment strategies. This review explores programmed cell death (PCD) pathways involved in HCC, including apoptosis, necroptosis, pyroptosis, ferroptosis, and immunogenic cell death (ICD). These mechanisms trigger specific cell death cascades that influence the development and progression of HCC. Although multiple PCD pathways are involved in HCC, shared cellular factors suggest a possible interplay between the different forms of cell death. However, the exact roles of different cell death pathways in HCC and which cell death pathway plays a major role remain unclear. This review also highlights how disruptions in cell death pathways are related to drug resistance in cancer therapy, promoting a combined approach of cell death induction and anti-tumor treatment to enhance therapeutic efficacy. Further research is required to unravel the complex interplay between cell death modalities in HCC, which may lead to innovative therapeutic breakthroughs.
Collapse
Affiliation(s)
- Xiang'an Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Dongcheng, Beijing, 100730, China
| | - Jingying Cao
- Zunyi Medical University, Zun Yi, Guizhou, 563000, China
| | - Xueshuai Wan
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Dongcheng, Beijing, 100730, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Dongcheng, Beijing, 100730, China.
| |
Collapse
|
9
|
Zhu Y, Lin J, Li Y, Luo Z. Prognostic value and immune infiltration of the NEK family in clear cell renal cell carcinoma. Medicine (Baltimore) 2024; 103:e38961. [PMID: 39029088 PMCID: PMC11398795 DOI: 10.1097/md.0000000000038961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/23/2024] [Indexed: 07/21/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a fatal urological malignancy. Members of the never-in mitosis gene A (NIMA)-related kinase (NEK) family have been found to participate in the progression of several cancers and could be used as target genes to treat corresponding diseases. Nonetheless, the prognostic value and immune infiltration levels of NEK family genes in ccRCC remain unknown. The GSCA, TIMER, and GEPIA databases were utilized to examine the differential expression of NEK family members in ccRCC, and the Kaplan-Meier plotter was utilized to analyze the prognosis. The STRING database was used to construct a protein-protein interaction network. Analysis of function was performed by the Sangerbox tool. In addition, the relationship between NEK family genes and immune cells was explored using the TIMER and TISIDB databases. Finally, we used quantitative real-time PCR (qPCR) and immunohistochemistry (IHC) for experimental verification. Transcriptional levels of NEK2, NEK3, NEK5, NEK6, and NEK11 significantly differed between ccRCC and normal tissues. Moreover, there was a significant correlation between NEK1, NEK2, NEK4, NEK8, NEK9, and NEK10 and their clinicopathological stages in patients with ccRCC. Based on survival analysis, ccRCC patients with high transcriptional levels of NEK2, NEK3, NEK8, and NEK10 and low transcriptional levels of NEK1, NEK4, NEK5, NEK6, NEK7, NEK9, NEK11 had shorter survival times. Additionally, a significant relationship was observed between NEK family members and immune cell infiltration, immune cell markers, and immune subtypes. These results indicate that NEK family members are significantly differentially expressed in ccRCC, and a significant correlation exists between the NEK family and prognosis and immune infiltration. NEK family members may act as therapeutic targets and prognostic indicators in ccRCC.
Collapse
Affiliation(s)
- Yingli Zhu
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianfan Lin
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yufei Li
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Huang R, Jin X, Jiang Z, Wang Y, Wu Y, Wang L, Zhu W. Genetically evaluating the causal role of peripheral immune cells in colorectal cancer: a two-sample Mendelian randomization study. BMC Cancer 2024; 24:753. [PMID: 38902711 PMCID: PMC11191266 DOI: 10.1186/s12885-024-12515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Investigating novel therapeutic strategies for colorectal cancer (CRC) is imperative. However, there is limited research on the use of drugs to target peripheral blood immune cells in this context. To address this gap, we performed a two-sample Mendelian randomization (MR) analysis to identify potential therapeutic targets for CRC. METHODS We applied two-sample MR to identify the causal relationship between peripheral blood immune cells and CRC. GWAS data were obtained from the IEU OPEN GWAS project. Based on the implications from the MR results, we conducted a comprehensive database search and genetic analysis to explore potential underlying mechanisms. We predicted miRNAs for each gene and employed extensive research for potential therapeutic applications. RESULTS We have identified causal associations between two peripheral immune cells and colorectal cancer. Activated & resting Treg %CD4 + cell was positively associated with the risks of CRC, while DN (CD4-CD8-) %leukocyte cell exhibited a protective role in tumor progression. NEK7 (NIMA related kinase 7) and LHX9 (LIM homeobox 9) expressed in Treg cells were positively associated with CRC risks and may play a vital role in carcinogenesis. CONCLUSIONS This study identified causal relationship between peripheral immune cell and CRC. Treg and DN T cells were implicated to own promoting and inhibiting effects on CRC progression respectively. NEK7 and LHX9 in Treg cells were identified as potential biotarget for antitumor therapies.
Collapse
Affiliation(s)
- Runze Huang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Jin
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ziting Jiang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yixiu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yibin Wu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Weiping Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Lin Q, Lei D, Zhong T, Zhang Y, Da Q, Chen X, Li X, Liu J, Yan Z. Inactivation of ERK1/2 in cancer-associated hepatic stellate cells suppresses cancer-stromal interaction by regulating extracellular matrix in fibrosis. Am J Cancer Res 2024; 14:1015-1032. [PMID: 38590418 PMCID: PMC10998762 DOI: 10.62347/vpye3817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
The ERK1/2 pathway is involved in epithelial-mesenchymal transformation and cell cycle of tumor cells in hepatocellular carcinoma (HCC). In the present study, we investigated the involvement of ERK1/2 activation on hepatic stellate cells (HSCs). We identified ERK1/2 phosphorylation in activated HSCs of HCC samples. We found that tumor cells promoted the migration and invasion capacity of HSCs by activating ERK1/2 phosphorylation. Using high throughput transcriptome sequencing analysis, we found that ERK1/2 inhibition altered genes significantly correlated to signaling pathways involved in extracellular matrix remodeling. We screened genes and demonstrated that the ERK1/2 inhibition-related gene set significantly correlated to cancer-associated fibroblast infiltration in TCGA HCC tumor samples. Moreover, inhibition of ERK1/2 suppressed tumor cell-induced enhancement of HSC migration and invasion by regulating expression of fibrosis markers FAP, FN1 and COL1A1. In a tumor cell and HSC splenic co-transplanted xenograft mouse model, inhibition of ERK1/2 suppressed liver tumor formation by downregulating fibrosis, indicating ERK1/2 inhibition suppresses tumor-stromal interactions in vivo. Taken together, our data indicate that inhibition of ERK1/2 in tumor-associated HSCs suppresses tumor-stromal interactions and progression. Furthermore, inhibition of ERK1/2 may be a potential target for HCC treatment.
Collapse
Affiliation(s)
- Qirui Lin
- Department of Hepatobiliary Surgery, Peking University Shenzhen HospitalShenzhen 518000, Guangdong, China
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto UniversityKyoto 6068507, Japan
| | - Defeng Lei
- Department of Hepatobiliary Surgery, Peking University Shenzhen HospitalShenzhen 518000, Guangdong, China
| | - Tongning Zhong
- Central Laboratory, Peking University Shenzhen HospitalShenzhen 518000, Guangdong, China
| | - Yanmin Zhang
- Central Laboratory, Peking University Shenzhen HospitalShenzhen 518000, Guangdong, China
| | - Qingen Da
- Department of Cardiovascular Surgery, Peking University Shenzhen HospitalShenzhen 518000, Guangdong, China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, Peking University Shenzhen HospitalShenzhen 518000, Guangdong, China
| | - Xuemei Li
- Department of Gynecology, Zhanjiang Maternity and Child Healthcare HospitalZhanjiang 524000, Guangdong, China
| | - Jikui Liu
- Department of Hepatobiliary Surgery, Peking University Shenzhen HospitalShenzhen 518000, Guangdong, China
| | - Zilong Yan
- Department of Hepatobiliary Surgery, Peking University Shenzhen HospitalShenzhen 518000, Guangdong, China
| |
Collapse
|
12
|
Stoess C, Choi YK, Onyuru J, Friess H, Hoffman HM, Hartmann D, Feldstein AE. Cell Death in Liver Disease and Liver Surgery. Biomedicines 2024; 12:559. [PMID: 38540172 PMCID: PMC10968531 DOI: 10.3390/biomedicines12030559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 01/03/2025] Open
Abstract
Cell death is crucial for maintaining tissue balance and responding to diseases. However, under pathological conditions, the surge in dying cells results in an overwhelming presence of cell debris and the release of danger signals. In the liver, this gives rise to hepatic inflammation and hepatocellular cell death, which are key factors in various liver diseases caused by viruses, toxins, metabolic issues, or autoimmune factors. Both clinical and in vivo studies strongly affirm that hepatocyte death serves as a catalyst in the progression of liver disease. This advancement is characterized by successive stages of inflammation, fibrosis, and cirrhosis, culminating in a higher risk of tumor development. In this review, we explore pivotal forms of cell death, including apoptosis, pyroptosis, and necroptosis, examining their roles in both acute and chronic liver conditions, including liver cancer. Furthermore, we discuss the significance of cell death in liver surgery and ischemia-reperfusion injury. Our objective is to illuminate the molecular mechanisms governing cell death in liver diseases, as this understanding is crucial for identifying therapeutic opportunities aimed at modulating cell death pathways.
Collapse
Affiliation(s)
- Christian Stoess
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Yeon-Kyung Choi
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Internal Medicine, School of Medicine, Kyungpook National University Chilgok Hospital, Kyungpook National University, Daegu 41404, Republic of Korea
| | - Janset Onyuru
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Helmut Friess
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Hal M. Hoffman
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel Hartmann
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Ariel E. Feldstein
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Novo Nordisk, Global Drug Discovery, Ørestads Boulevard 108, 2300 Copenhagen, Denmark
| |
Collapse
|
13
|
Xie H, Xu J, Zhao Q. Identification of a potential prognostic model combining pyroptosis-related gene with immune microenvironment for pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:17175-17187. [PMID: 37782328 DOI: 10.1007/s00432-023-05436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a fatal tumor with grave prognosis. Pyroptosis, a programmed cell death, is involved in tumorigenesis. However, a few studies have elucidated the functions of pyroptosis in PDAC. METHODS The mRNA expression profiles were downloaded from the TCGA and GEO databases. Univariate and LASSO Cox regression analyses were used to screen out differentially expressed genes (DEGs) and construct the pyroptosis-related genes (PRGs) risk model. The efficiency of model was examined by Kaplan-Meier curve, ROC curve, and nomogram. Univariate and multivariate Cox regression analyses were utilized to assess whether the risk model could be used as an independent prognostic factor. The biological function was analyzed by GO, KEGG, and GSEA enrichment analysis. qRT-PCR and immunohistochemical staining detected gene expression. RESULTS Totally 9 PRGs with differential expression were identified between normal and PDAC tissues. Then, according to PRGs, we filtered out three key DEGs and constructed the prognostic risk model. Kaplan-Meier curve, ROC curve, and nomogram indicated that the prognostic risk model had high survival prediction efficiency. Meanwhile, the risk model had also shown to be an independent prognostic factor. Further functional enrichment analysis showed that cell adhesion, PI3K-AKT signaling pathway, and dysregulated immune status may be associated with PDAC development. External validation of the model was carried out in the GEO cohort, and the results were similar to that in the TCGA cohort. Finally, the expression of three genes was verified by qRT-PCR and immunohistochemical staining. CONCLUSION The prognostic risk model established in this study can give a good prediction of the prognosis of PDAC patients, which might provide insights into clinical treatments and prognostic prediction of PDAC.
Collapse
Affiliation(s)
- Haoran Xie
- Hepatobiliary Pancreatic Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jingxian Xu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Qiuyan Zhao
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
14
|
Qian F, Kong W, Wang S, Wei K. Predicting the prognosis of hepatocellular carcinoma based on the interaction between pyroptosis, apoptosis, and necroptosis. Clin Exp Med 2023; 23:2087-2104. [PMID: 36271962 DOI: 10.1007/s10238-022-00910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022]
Abstract
Multiple programmed cell death pathways (pyroptosis, apoptosis, and necroptosis) are closely related to the progression of hepatocellular carcinoma (HCC). Furthermore, molecular interactions among pyroptotic, apoptotic, and necroptotic components may be new targets for cancer therapy. However, the signature of the genes involved in the interaction between pyroptosis, apoptosis, and necroptosis (PANRGs), and their prognostic value, is still unclear in HCC. In this study, we used HCC clinical and expression data from TCGA and GEO to explore the relationship between PANRGs and HCC. First, we determined the copy number variation incidence of 41 PANRGs genes and explored the prognostic correlation of these genes in HCC. Based on PANRGs, two molecular subgroups of HCC associated with prognosis were identified. We also found significant differences in the overall survival time and the immune infiltration of HCC patients between the two subgroups. Finally, based on the nine PANRGs (CDC25B, EZH2, HMOX1, PLK1, SQSTM1, WEE1, TREM2, MYCN, and FLT3), we constructed a prognostic model using LASSO-Cox regression analysis. The prognostic model could predict OS of HCC patients in TCGA and GEO cohorts with high accuracy. Significant correlations were found between prognosis-related PANRGs and the tumor immune microenvironment (TIME), tumor mutational burden (TMB), and drug sensitivity. In conclusion, we explored the role of PANRGs in HCC and the association of these genes with TIME, TMB, and drug sensitivity.
Collapse
Affiliation(s)
- Fang Qian
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai, 201306, People's Republic of China
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai, 201306, People's Republic of China
| | - Kai Wei
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Zhu X, Li S. Ferroptosis, Necroptosis, and Pyroptosis in Gastrointestinal Cancers: The Chief Culprits of Tumor Progression and Drug Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300824. [PMID: 37436087 PMCID: PMC10502844 DOI: 10.1002/advs.202300824] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/29/2023] [Indexed: 07/13/2023]
Abstract
In recent years, the incidence of gastrointestinal cancers is increasing, particularly in the younger population. Effective treatment is crucial for improving patients' survival outcomes. Programmed cell death, regulated by various genes, plays a fundamental role in the growth and development of organisms. It is also critical for maintaining tissue and organ homeostasis and takes part in multiple pathological processes. In addition to apoptosis, there are other types of programmed cell death, such as ferroptosis, necroptosis, and pyroptosis, which can induce severe inflammatory responses. Notably, besides apoptosis, ferroptosis, necroptosis, and pyroptosis also contribute to the occurrence and development of gastrointestinal cancers. This review aims to provide a comprehensive summary on the biological roles and molecular mechanisms of ferroptosis, necroptosis, and pyroptosis, as well as their regulators in gastrointestinal cancers and hope to open up new paths for tumor targeted therapy in the near future.
Collapse
Affiliation(s)
- Xudong Zhu
- Department of General SurgeryCancer Hospital of Dalian University of TechnologyCancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangLiaoning Province110042China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor SurgeryCancer Hospital of Dalian University of TechnologyCancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangLiaoning Province110042China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with EngineeringShenyangLiaoning Province110042China
| |
Collapse
|
16
|
Zou Z, Zhao M, Yang Y, Xie Y, Li Z, Zhou L, Shang R, Zhou P. The role of pyroptosis in hepatocellular carcinoma. Cell Oncol (Dordr) 2023; 46:811-823. [PMID: 36864264 DOI: 10.1007/s13402-023-00787-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the main histologic type of liver cancer. It accounts for the majority of all diagnoses and deaths due to liver cancer. The induction of tumor cell death is an effective strategy to control tumor development. Pyroptosis is an inflammatory programmed cell death caused by microbial infection, accompanied by activation of inflammasomes and release of pro-inflammatory cytokines, interleukin-1β (IL-1β), and interleukin-18 (IL-18). The cleavage of gasdermins (GSDMs) promotes the occurrence of pyroptosis leading to cell swelling, lysis, and death. Accumulating evidence has indicated that pyroptosis influences the progression of HCC by regulating immune-mediated tumor cell death. Currently, some researchers hold the view that inhibition of pyroptosis-related components may prevent the incidence of HCC, but more researchers have the view that activation of pyroptosis exerts a tumor-inhibitory effect. Growing evidence indicates that pyroptosis can prevent or promote tumor development depending on the type of tumor. In this review, pyroptosis pathways and pyroptosis-related components were discussed. Next, the role of pyroptosis and its components in HCC was described. Finally, the therapeutic significance of pyroptosis in HCC was discussed.
Collapse
Affiliation(s)
- Zhimiao Zou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Minghui Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Yang Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Yalong Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Zeyang Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Liang Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Runshi Shang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
17
|
Joseph BB, Naslavsky N, Binti S, Conquest S, Robison L, Bai G, Homer RO, Grant BD, Caplan S, Fay DS. Conserved NIMA kinases regulate multiple steps of endocytic trafficking. PLoS Genet 2023; 19:e1010741. [PMID: 37099601 PMCID: PMC10166553 DOI: 10.1371/journal.pgen.1010741] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/08/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023] Open
Abstract
Human NIMA-related kinases have primarily been studied for their roles in cell cycle progression (NEK1/2/6/7/9), checkpoint-DNA-damage control (NEK1/2/4/5/10/11), and ciliogenesis (NEK1/4/8). We previously showed that Caenorhabditis elegans NEKL-2 (NEK8/9 homolog) and NEKL-3 (NEK6/7 homolog) regulate apical clathrin-mediated endocytosis (CME) in the worm epidermis and are essential for molting. Here we show that NEKL-2 and NEKL-3 also have distinct roles in controlling endosome function and morphology. Specifically, loss of NEKL-2 led to enlarged early endosomes with long tubular extensions but showed minimal effects on other compartments. In contrast, NEKL-3 depletion caused pronounced defects in early, late, and recycling endosomes. Consistently, NEKL-2 was strongly localized to early endosomes, whereas NEKL-3 was localized to multiple endosomal compartments. Loss of NEKLs also led to variable defects in the recycling of two resident cargoes of the trans-Golgi network (TGN), MIG-14/Wntless and TGN-38/TGN38, which were missorted to lysosomes after NEKL depletion. In addition, defects were observed in the uptake of clathrin-dependent (SMA-6/Type I BMP receptor) and independent cargoes (DAF-4/Type II BMP receptor) from the basolateral surface of epidermal cells after NEKL-2 or NEKL-3 depletion. Complementary studies in human cell lines further showed that siRNA knockdown of the NEKL-3 orthologs NEK6 and NEK7 led to missorting of the mannose 6-phosphate receptor from endosomes. Moreover, in multiple human cell types, depletion of NEK6 or NEK7 disrupted both early and recycling endosomal compartments, including the presence of excess tubulation within recycling endosomes, a defect also observed after NEKL-3 depletion in worms. Thus, NIMA family kinases carry out multiple functions during endocytosis in both worms and humans, consistent with our previous observation that human NEKL-3 orthologs can rescue molting and trafficking defects in C. elegans nekl-3 mutants. Our findings suggest that trafficking defects could underlie some of the proposed roles for NEK kinases in human disease.
Collapse
Affiliation(s)
- Braveen B. Joseph
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shaonil Binti
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Sylvia Conquest
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Lexi Robison
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Rafael O. Homer
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| |
Collapse
|
18
|
Zhao H, Zhang Y, Zhang Y, Chen C, Liu H, Yang Y, Wang H. The role of NLRP3 inflammasome in hepatocellular carcinoma. Front Pharmacol 2023; 14:1150325. [PMID: 37153780 PMCID: PMC10157400 DOI: 10.3389/fphar.2023.1150325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Inflammasomes play an important role in innate immunity. As a signal platform, they deal with the excessive pathogenic products and cellular products related to stress and injury. So far, the best studied and most characteristic inflammasome is the NLR-family pyrin domain-containing protein 3(NLRP3) inflammasome, which is composed of NLRP3, apoptosis associated speck like protein (ASC) and pro-caspase-1. The formation of NLRP3 inflammasome complexes results in the activation of caspase-1, the maturation of interleukin (IL)-1β and IL-18, and pyroptosis. Many studies have demonstrated that NLRP3 inflammasome not only participates in tumorigenesis, but also plays a protective role in some cancers. Hepatocellular carcinoma (HCC) is a major cause of cancer-related mortality. Currently, due to the lack of effective treatment methods for HCC, the therapeutic effect of HCC has not been ideal. Therefore, it is particularly urgent to explore the pathogenesis of HCC and find its effective treatment methods. The increasing evidences indicate that NLRP3 inflammasome plays a vital role in HCC, however, the related mechanisms are not fully understood. Hence, we focused on the recent progress about the role of NLRP3 inflammasome in HCC, and analyzed the relevant mechanisms in detail to provide reference for the future in-depth researches.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Yiming Zhang
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Yanting Zhang
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
- *Correspondence: Honggang Wang, ; Chaoran Chen,
| | - Huiyang Liu
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Yihan Yang
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Honggang Wang
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
- *Correspondence: Honggang Wang, ; Chaoran Chen,
| |
Collapse
|
19
|
Wu H, Qian D, Bai X, Sun S. Targeted Pyroptosis Is a Potential Therapeutic Strategy for Cancer. JOURNAL OF ONCOLOGY 2022; 2022:2515525. [PMID: 36467499 PMCID: PMC9715319 DOI: 10.1155/2022/2515525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/21/2022] [Accepted: 11/15/2022] [Indexed: 12/01/2023]
Abstract
As a type of regulated cell death (RCD) mode, pyroptosis plays an important role in several kinds of cancers. Pyroptosis is induced by different stimuli, whose pathways are divided into the canonical pathway and the noncanonical pathway depending on the formation of the inflammasomes. The canonical pathway is triggered by the assembly of inflammasomes, and the activation of caspase-1 and then the cleavage of effector protein gasdermin D (GSDMD) are promoted. While in the noncanonical pathway, the caspase-4/5/11 (caspase 4/5 in humans and caspase 11 in mice) directly cleave GSDMD without the assembly of inflammasomes. Pyroptosis is involved in various cancers, such as lung cancer, gastric cancer, hepatic carcinoma, breast cancer, and colorectal carcinoma. Pyroptosis in gastric cancer, hepatic carcinoma, breast cancer, and colorectal carcinoma is related to the canonical pathway, while both the canonical and noncanonical pathway participate in lung cancer. Moreover, simvastatin, metformin, and curcumin have effect on these cancers and simultaneously promote the pyroptosis of cancer cells. Accordingly, pyroptosis may be an important therapeutic target for cancer.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
- Clinical Medicine, Three Class, 2020 Grade, Kunming Medical University, Kunming, China
| | - Dianlun Qian
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiangfeng Bai
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
20
|
Papadakos SP, Dedes N, Kouroumalis E, Theocharis S. The Role of the NLRP3 Inflammasome in HCC Carcinogenesis and Treatment: Harnessing Innate Immunity. Cancers (Basel) 2022; 14:3150. [PMID: 35804922 PMCID: PMC9264914 DOI: 10.3390/cancers14133150] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
The HCC constitutes one of the most frequent cancers, with a non-decreasing trend in disease mortality despite advances in systemic therapy and surgery. This trend is fueled by the rise of an obesity wave which is prominent the Western populations and has reshaped the etiologic landscape of HCC. Interest in the nucleotide-binding domain leucine-rich repeat containing (NLR) family member NLRP3 has recently been revived since it would appear that, by generating inflammasomes, it participates in several physiologic processes and its dysfunction leads to disease. The NLRP3 inflammasome has been studied in depth, and its influence in HCC pathogenesis has been extensively documented during the past quinquennial. Since inflammation comprises a major regulator of carcinogenesis, it is of paramount importance an attempt to evaluate the contribution of the NLRP3 inflammasome to the generation and management of HCC. The aim of this review was to examine the literature in order to determine the impact of the NLRP3 inflammasome on, and present a hypothesis about its input in, HCC.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (N.D.)
| | - Nikolaos Dedes
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (N.D.)
| | - Elias Kouroumalis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (N.D.)
| |
Collapse
|