1
|
Garcia-Sureda L, Jacques C, Pons DG, Sastre-Serra J, Oliver J, Floris I. Active Substances from the Micro-Immunotherapy Medicine 2LMIREG Display Antioxidative Properties In Vitro in Two Colorectal Cancer Cell Lines. Life (Basel) 2025; 15:743. [PMID: 40430171 PMCID: PMC12112867 DOI: 10.3390/life15050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/28/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Mitochondria play a crucial role in oxidative stress control and reactive oxygen species (ROS) generation, impacting many cellular processes. Dysregulated mitochondria are linked to diseases such as colorectal cancer (CRC), known for its aggressiveness. Since ROS plays a role in tumor growth and metastasis, there is considerable interest in developing therapies that target these reactives. This study investigates the effects of some active substances from the micro-immunotherapy (MI) medicine 2LMIREG® on mitochondrial metabolism parameters in two CRC-derived cell lines. HT-29 and the metastasis-derived SW620 cell lines, which heavily rely on ROS for proliferation, were used to evaluate the effects of the tested active substances. Cellular viability and various mitochondrial metabolism parameters were measured: ROS production, mitochondrial mass index, and mitochondrial DNA levels. In both cell lines, the tested MI formulation reduced cellular viability as well as ROS production compared to the vehicle used as a control. The treatment also appeared to increase the mitochondrial mass index without affecting mitochondrial DNA levels in the two CRC models. Altogether, these preliminary results report for the first time the mitochondria-related effects of some actives from 2LMIREG® in two CRC cell models and open perspectives for further in-depth metabolism-based studies.
Collapse
Affiliation(s)
| | - Camille Jacques
- Preclinical Research Department, Labo’life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| | - Daniel G. Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (D.G.P.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (D.G.P.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (D.G.P.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Ilaria Floris
- Preclinical Research Department, Labo’life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| |
Collapse
|
2
|
Sung MT, Huang HE, Chang YC, Yu CY, Luo HL, Sung WW. Anticancer potential of isoalantolactone in testicular cancer: an analysis of cytotoxicity, apoptosis, and signaling pathways. Aging (Albany NY) 2024; 16:12820-12832. [PMID: 39382942 PMCID: PMC11501383 DOI: 10.18632/aging.206076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/18/2024] [Indexed: 10/10/2024]
Abstract
Testicular cancer, a highly prevalent malignancy among young adults, has witnessed an alarming rise in recent decades. This study delves into the therapeutic potential of isoalantolactone (IATL), a natural product extracted from Inula helenium and Inula racemosa, against testicular cancer. Employing MTT assays and flow cytometry, we observed a dose-dependent reduction in cell viability and induction of cell cycle arrest at sub-G1 phase with increasing IATL concentrations. Furthermore, Annexin V/PI dual staining revealed IATL-induced apoptosis. Human Apoptosis Array analysis demonstrated IATL's influence on HIF-1α and TNF R1 expression, implicating its role in cancer cell growth and death regulation. Next-generation sequencing (NGS) and pathway analysis highlighted the involvement of ferroptosis and HIF-1 signaling in IATL-mediated effects. Western blotting validated the downregulation of key proteins associated with apoptosis inhibition and activation, confirming IATL's potential as an anticancer agent. Moreover, IATL induced ferroptosis by modulating expression levels of GPX4, xCT, NRF2, and HO-1. Our findings shed light on IATL's multifaceted anticancer mechanisms, emphasizing its potential as a therapeutic candidate for testicular cancer.
Collapse
Affiliation(s)
- Ming-Tse Sung
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hsuan-En Huang
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Ya-Chuan Chang
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chia-Ying Yu
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Hao-Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
3
|
Yang G, Yang L, Xu F. Isoalantolactone: a review on its pharmacological effects. Front Pharmacol 2024; 15:1453205. [PMID: 39376605 PMCID: PMC11456459 DOI: 10.3389/fphar.2024.1453205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024] Open
Abstract
Isoalantolactone (ISA) is a sesquiterpene lactone that could be isolated from Inula helenium as well as many other herbal plants belonging to Asteraceae. Over the past 2 decades, lots of researches have been made on ISA, which owns multiple pharmacological effects, such as antimicrobial, anticancer, anti-inflammatory, neuroprotective, antidepressant-like activity, as well as others. The anticancer effects of ISA involve proliferation inhibition, ROS overproduction, apoptosis induction and cell cycle arrest. Through inhibiting NF-κB signaling, ISA exerts its anti-inflammatory effects which are involved in the neuroprotection of ISA. This review hackled the reported pharmacological effects of ISA and associated mechanisms, providing an update on understanding its potential in drug development.
Collapse
Affiliation(s)
- Guang Yang
- Department of Traditional Chinese Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Fei Xu
- Department of Acupuncture and Moxibustion, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Cao F, Chu C, Qin JJ, Guan X. Research progress on antitumor mechanisms and molecular targets of Inula sesquiterpene lactones. Chin Med 2023; 18:164. [PMID: 38111074 PMCID: PMC10726648 DOI: 10.1186/s13020-023-00870-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
The pharmacological effects of natural product therapy have received sigificant attention, among which terpenoids such as sesquiterpene lactones stand out due to their biological activity and pharmacological potential as anti-tumor drugs. Inula sesquiterpene lactones are a kind of sesquiterpene lactones extracted from Inula species. They have many pharmacological activities such as anti-inflammation, anti-asthma, anti-tumor, neuroprotective and anti-allergic. In recent years, more and more studies have proved that they are important candidate drugs for the treatment of a variety of cancers because of its good anti-tumor activity. In this paper, the structure, structure-activity relationship, antitumor activities, mechanisms and targets of Inula sesquiterpene lactones reported in recent years were reviewed in order to provide clues for the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Fei Cao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Chu Chu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Xiaoqing Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Qiu C, Shen X, Lu H, Chen Y, Xu C, Zheng P, Xia Y, Wang J, Zhang Y, Li S, Zou P, Cui R, Chen J. Combination therapy with HSP90 inhibitors and piperlongumine promotes ROS-mediated ER stress in colon cancer cells. Cell Death Discov 2023; 9:375. [PMID: 37833257 PMCID: PMC10576049 DOI: 10.1038/s41420-023-01672-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Colon cancer is a major cause of cancer-related death. Despite recent improvements in the treatment of colon cancer, new strategies to improve the overall survival of patients are urgently needed. Heat shock protein 90 (HSP90) is widely recognized as a promising target for treating various cancers, including colon cancer. However, no HSP90 inhibitor has been approved for clinical use due to limited efficacy. In this study, we evaluated the antitumor activities of HSP90 inhibitors in combination with piperlongumine in colon cancer cells. We show that combination treatment with HSP90 inhibitors and piperlongumine displayed strong synergistic interaction in colon cancer cells. These agents synergize by promoting ER stress, JNK activation, and DNA damage. This process is fueled by oxidative stress, which is caused by the accumulation of reactive oxygen species. These studies nominated piperlongumine as a promising agent for HSP90 inhibitor-based combination therapy against colon cancer.
Collapse
Affiliation(s)
- Chenyu Qiu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xin Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hui Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yinghua Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chenxin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Peisen Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yiqun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junqi Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yafei Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shaotang Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325035, China
| | - Peng Zou
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Ri Cui
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Jundixia Chen
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
6
|
Chun J. Isoalantolactone Suppresses Glycolysis and Resensitizes Cisplatin-Based Chemotherapy in Cisplatin-Resistant Ovarian Cancer Cells. Int J Mol Sci 2023; 24:12397. [PMID: 37569773 PMCID: PMC10419319 DOI: 10.3390/ijms241512397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Cisplatin is a potent chemotherapeutic drug for ovarian cancer (OC) treatment. However, its efficacy is significantly limited due to the development of cisplatin resistance. Although the acquisition of cisplatin resistance is a complex process involving various molecular alterations within cancer cells, the increased reliance of cisplatin-resistant cells on glycolysis has gained increasing attention. Isoalantolactone, a sesquiterpene lactone isolated from Inula helenium L., possesses various pharmacological properties, including anticancer activity. In this study, isoalantolactone was investigated as a potential glycolysis inhibitor to overcome cisplatin resistance in OC. Isoalantolactone effectively targeted key glycolytic enzymes (e.g., lactate dehydrogenase A, phosphofructokinase liver type, and hexokinase 2), reducing glucose consumption and lactate production in cisplatin-resistant OC cells (specifically A2780 and SNU-8). Importantly, it also sensitized these cells to cisplatin-induced apoptosis. Isoalantolactone-cisplatin treatment regulated mitogen-activated protein kinase and AKT pathways more effectively in cisplatin-resistant cells than individual treatments. In vivo studies using cisplatin-sensitive and resistant OC xenograft models revealed that isoalantolactone, either alone or in combination with cisplatin, significantly suppressed tumor growth in cisplatin-resistant tumors. These findings highlight the potential of isoalantolactone as a novel glycolysis inhibitor for treating cisplatin-resistant OC. By targeting the dysregulated glycolytic pathway, isoalantolactone offers a promising approach to overcoming drug resistance and enhancing the efficacy of cisplatin-based therapies.
Collapse
Affiliation(s)
- Jaemoo Chun
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|