1
|
Zhang Y, Zhang J, Liu J, Liang L, Zhou N, Liang S, Huang J, Hong M, Wang R, Xu S, Gu C, Tan B, Cao H. Imbalance of bladder neurohomeostasis by Myosin 5a aggravates diabetic cystopathy. Mol Med 2025; 31:91. [PMID: 40065210 PMCID: PMC11892272 DOI: 10.1186/s10020-025-01140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Diabetic cystopathy (DCP) is linked to bladder nerve conduction disorders, with diabetes-induced neuropathy impairing nerve signal transmission and causing bladder dysfunction. Myosin 5a, vital for neuronal transport, has been linked to neurological disorders, though its role in DCP remains unclear. The objective of this study was to investigate whether Myosin 5a plays a potential regulatory role in Diabetic Cystopathy. METHODS Bladder strips from diabetic rats were use to assess heightened responsiveness to external stimuli. Urodynamic assessments were conducted to track the progression of bladder voiding dysfunction over time, following streptozotocin (STZ) injection. Single-cell RNA-Seq mining was employed to identify associations between Myosin 5a and bladder overactivity. Cellular and tissue analyses were performed to determine the co-localization of Myosin 5a with neurotransmitter-related proteins. The impact of Myosin 5a knockdown on ChAT and SP expression in bladder neurons was also evaluated. Additionally, Myosin 5a-deficient DBA mice were studied for voiding function and sensitivity to stimuli. Student's t-test (two-tailed) or Mann-Whitney's U test analysis of variance was used to analyze the difference between groups. RESULTS Bladder strips from diabetic rats exhibit increased responsiveness to external stimuli, with urodynamic assessments showing a progressive decline in bladder function, culminating in overactivity by the fourth week post-STZ injection. Co-localization of Myosin 5a with neurotransmitter-related proteins was observed, and the knockdown of Myosin 5a in bladder neurons led to a significant reduction in ChAT and SP expression. Myosin 5a-deficient DBA mice exhibited abnormal voiding function and reduced sensitivity to stimuli, along with significant downregulation of SLC17A9. Single-cell RNA-Seq analysis revealed a significant link between Myosin 5a and bladder overactivity, with Myosin 5a expression escalating in tandem with the severity of bladder dysfunction. CONCLUSIONS Myosin 5a's dysregulation in diabetic rats may worsen bladder overactivity, suggesting its potential as a therapeutic target for diabetic OAB.
Collapse
Affiliation(s)
- Yao Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Jiao Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Jiaye Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Lang Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Na Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Shaochan Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Jingyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Ming Hong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Rui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Siyuan Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Chiming Gu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Traditional Chinese Medicine), Guangzhou, 510006, Guangdong, China
| | - Bo Tan
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China.
| | - Hongying Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
2
|
Smith NJ, Reddin I, Policelli P, Oh S, Zainal N, Howes E, Jenkins B, Tracy I, Edmond M, Sharpe B, Amendra D, Zheng K, Egawa N, Doorbar J, Rao A, Mahadevan S, Carpenter MA, Harris RS, Ali S, Hanley C, Buisson R, King E, Thomas GJ, Fenton TR. Differentiation signals induce APOBEC3A expression via GRHL3 in squamous epithelia and squamous cell carcinoma. EMBO J 2025; 44:1-29. [PMID: 39548236 PMCID: PMC11696371 DOI: 10.1038/s44318-024-00298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Two APOBEC DNA cytosine deaminase enzymes, APOBEC3A and APOBEC3B, generate somatic mutations in cancer, thereby driving tumour development and drug resistance. Here, we used single-cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell-cycle stage associated with APOBEC-mediated mutagenesis. In contrast, in squamous cell carcinoma we find that, there is expansion of GRHL3expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings suggest that APOBEC3A may play a functional role during keratinocyte differentiation, and offer a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.
Collapse
Affiliation(s)
- Nicola J Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Biosciences, University of Kent, Canterbury, UK
| | - Ian Reddin
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Bio-R Bioinformatics Research Facility, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paige Policelli
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Cell, Gene and RNA Therapies, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nur Zainal
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Emma Howes
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Jenkins
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ian Tracy
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark Edmond
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Sharpe
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Damian Amendra
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Anjali Rao
- Gilead Sciences, Research Department, 324 Lakeside Dr, Foster City, CA, 94404, USA
| | - Sangeetha Mahadevan
- Gilead Sciences, Research Department, 324 Lakeside Dr, Foster City, CA, 94404, USA
| | - Michael A Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Christopher Hanley
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Emma King
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gareth J Thomas
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Tim R Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
3
|
Li J, Jiang Y, Ma M, Wang L, Jing M, Yang Z, Wang L, Qiu Q, Song R, Pu Y, Zhang Y, Mei N, Zhang M, Fan J. IGF2BP2 Shapes the Tumor Microenvironment by Regulating Monocyte and Macrophage Recruitment in Bladder Cancer. Cancer Med 2024; 13:e70506. [PMID: 39711402 DOI: 10.1002/cam4.70506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Immunotherapy has shown promise for bladder cancer (BC) treatment but is effective only in a subset of patients. Understanding the tumor microenvironment (TME) and its regulators, such as the expression of N6-methyladenosine (m6A) regulators, may improve therapeutic outcomes. This study focuses on the role of IGF2BP2, an m6A reader, in modulating the BC TME. METHODS Transcriptomic and single-cell RNA-seq data from public databases were analyzed to identify BC subgroups and investigate IGF2BP2's role in the TME. Clustering and PCA identified key m6A regulators. NicheNet and SCENIC analyses were used to predict cell-cell interactions and transcriptional regulators, respectively. IGF2BP2's role in macrophage recruitment was validated via co-culture experiments and RNA sequencing. RESULTS Unsupervised clustering identified BC subgroups with distinct TME characteristics, with IGF2BP2 emerging as a key regulator associated with poor prognosis and reduced response to immunotherapy. Single-cell analysis revealed IGF2BP2's high expression in the GE-9 epithelial subpopulation, characterized by immune evasion features and cytokine-mediated macrophage recruitment. NicheNet analysis showed that GE-9 cells interact with monocyte/macrophage populations through cytokine signaling. Co-culture experiments confirmed IGF2BP2's role in recruiting macrophages, partially mediated by CCL2. Furthermore, IGF2BP2 expression was linked to immunosuppressive M2-like and SPP1+ macrophages, contributing to an angiogenesis-promoting and immunosuppressive TME. CONCLUSION IGF2BP2 shapes the BC TME by modulating macrophage infiltration and polarization, leading to an immunosuppressive microenvironment that hinders immunotherapy. Targeting IGF2BP2 could enhance the efficacy of current therapies and improve patient outcomes.
Collapse
Affiliation(s)
- Jianpeng Li
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yunzhong Jiang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Minghai Ma
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lu Wang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Minxuan Jing
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zezhong Yang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lizhao Wang
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Quanpeng Qiu
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rundong Song
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuanchun Pu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuanquan Zhang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Nan Mei
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengzhao Zhang
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jinhai Fan
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Wang G, Peng T, Chen L, Xiong K, Ju L, Qian K, Zhang Y, Xiao Y, Wang X. Mevalonate pathway inhibition reduces bladder cancer metastasis by modulating RhoB protein stability and integrin β1 localization. Commun Biol 2024; 7:1476. [PMID: 39521858 PMCID: PMC11550803 DOI: 10.1038/s42003-024-07067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The progression and outcome of bladder cancer (BLCA) are critically affected by the propensity of tumor metastasis. Our previous study revealed that activation of the mevalonate (MVA) pathway promoted migration of BLCA cells; however, the exact mechanism is unclear. Here we show that elevated expression of MVA pathway enzymes in BLCA cells, correlating with poorer patient prognosis by analyzing single-cell and bulk-transcriptomic datasets. Inhibition of the MVA pathway, either through knockdown of farnesyl diphosphate synthase (FDPS) or using inhibitors such as zoledronic acid or simvastatin, led to a marked reduction in BLCA cell migration. Notably, this effect was reversed by administering geranylgeranyl pyrophosphate (GGPP), not farnesyl pyrophosphate (FPP) or cholesterol, indicating the specificity of geranylgeranylation for cell motility. Moreover, we found that RhoB, a Rho GTPase family member, was identified as a key effector of the impact of the MVA pathway on BLCA metastasis. The post-translational modification of RhoB by GGPP-mediated geranylgeranylation influenced its protein stability through the ubiquitin-proteasome pathway. Additionally, overexpression of RhoB was found to block the membrane translocation of integrin β1 in BLCA cells. In summary, our findings underscore the role of the MVA pathway in BLCA metastasis, providing insights into potential therapeutic targets of this malignancy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Tianchen Peng
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang Chen
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kangping Xiong
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yu Xiao
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
5
|
Mao S, Wang Y, Chao N, Zeng L, Zhang L. Integrated analysis of single-cell RNA-seq and bulk RNA-seq reveals immune suppression subtypes and establishes a novel signature for determining the prognosis in lung adenocarcinoma. Cell Oncol (Dordr) 2024; 47:1697-1713. [PMID: 38616208 DOI: 10.1007/s13402-024-00948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer with lower survival rates. Recent advancements in targeted therapies and immunotherapies targeting immune checkpoints have achieved remarkable success, there is still a large percentage of LUAD that lacks available therapeutic options. Due to tumor heterogeneity, the diagnosis and treatment of LUAD are challenging. Exploring the biology of LUAD and identifying new biomarker and therapeutic targets options are essential. METHOD We performed single-cell RNA sequencing (scRNA-seq) of 6 paired primary and adjacent LUAD tissues, and integrative omics analysis of the scRNA-seq, bulk RNA-seq and whole-exome sequencing data revealed molecular subtype characteristics. Our experimental results confirm that CDC25C gene can serve as a potential marker for poor prognosis in LUAD. RESULTS We investigated aberrant gene expression in diverse cell types in LUAD via the scRNA-seq data. Moreover, multi-omics clustering revealed four subgroups defined by transcriptional profile and molecular subtype 4 (MS4) with poor survival probability, and immune cell infiltration signatures revealed that MS4 tended to be the immunosuppressive subtype. Our study revealed that the CDC25C gene can be a distinct prognostic biomarker that indicates immune infiltration levels and response to immunotherapy in LUAD patients. Our experimental results concluded that CDC25C expression affects lung cancer cell invasion and migration, might play a key role in regulating Epithelial-Mesenchymal Transition (EMT) pathways. CONCLUSIONS Our multi-omics result revealed a comprehensive set of molecular attributes associated with prognosis-related genes in LUAD at the cellular and tissue level. Identification of a subtype of immunosuppressive TME and prognostic signature for LUAD. We identified the cell cycle regulation gene CDC25C affects lung cancer cell invasion and migration, which can be used as a potential biomarker for LUAD.
Collapse
Affiliation(s)
- Shengqiang Mao
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yilong Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ningning Chao
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lingyan Zeng
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
6
|
Grausenburger R, Herek P, Shariat SF, Englinger B. Recent contributions of single-cell and spatial profiling to the understanding of bladder cancer. Curr Opin Urol 2024; 34:236-243. [PMID: 38650456 PMCID: PMC11155276 DOI: 10.1097/mou.0000000000001183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW Current risk stratification and treatment decision-making for bladder cancer informed by histopathology as well as molecular diagnostics face limitations. This review summarizes recent advancements in single-cell and spatial omics methodologies for understanding bladder cancer biology and their potential impact on development of novel therapeutic strategies. RECENT FINDINGS Single-cell RNA sequencing and spatial omics techniques offer unprecedented insights into various aspects of tumor microenvironment (TME), bladder cancer heterogeneity, cancer stemness, and cellular plasticity. Studies have identified multiple malignant cell subpopulations within tumors, revealing diverse transcriptional states and clonal evolution. Additionally, intratumor heterogeneity has been linked to tumor progression and therapeutic response. Immune cell composition analysis has revealed immunosuppressive features in the TME, impacting treatment response. Furthermore, studies have elucidated the role of cancer-associated fibroblasts and endothelial cells in shaping the tumor immune landscape and response to therapy. SUMMARY Single-cell and spatial omics technologies have revolutionized our understanding of bladder cancer biology, uncovering previously unseen complexities. These methodologies provide valuable insights into tumor heterogeneity and microenvironmental interactions, with implications for therapeutic development. However, challenges remain in translating research findings into clinical practice and implementing personalized treatment strategies. Continued interdisciplinary collaboration and innovation are essential for overcoming these challenges and leveraging the full potential of single-cell and spatial omics in improving bladder cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Reinhard Grausenburger
- Department of Urology and Comprehensive Cancer Center
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Paula Herek
- Department of Urology and Comprehensive Cancer Center
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Shahrokh F. Shariat
- Department of Urology and Comprehensive Cancer Center
- Department of Urology, Weill Cornell Medical College, New York, New York
- Department of Urology, University of Texas Southwestern, Dallas, Texas, USA
- Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Division of Urology, Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman, Jordan
- Research Center for Evidence Medicine, Urology Department, Tabriz University of Medical Sciences, Tabriz, Iran
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
| | - Bernhard Englinger
- Department of Urology and Comprehensive Cancer Center
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
YADOLLAHVANDMIANDOAB REZA, JALALIZADEH MEHRSA, DIONATO FRANCIELEAPARECIDAVECHIA, BUOSI KEINI, LEME PATRÍCIAAF, COL LUCIANASBDAL, GIACOMELLI CRISTIANEF, ASSIS ALEXDIAS, BASHIRICHELKASARI NASIM, REIS LEONARDOOLIVEIRA. Clinical implications of single cell sequencing for bladder cancer. Oncol Res 2024; 32:597-605. [PMID: 38560564 PMCID: PMC10972735 DOI: 10.32604/or.2024.045442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/08/2024] [Indexed: 04/04/2024] Open
Abstract
Bladder cancer (BC) is the 10th most common cancer worldwide, with about 0.5 million reported new cases and about 0.2 million deaths per year. In this scoping review, we summarize the current evidence regarding the clinical implications of single-cell sequencing for bladder cancer based on PRISMA guidelines. We searched PubMed, CENTRAL, Embase, and supplemented with manual searches through the Scopus, and Web of Science for published studies until February 2023. We included original studies that used at least one single-cell technology to study bladder cancer. Forty-one publications were included in the review. Twenty-nine studies showed that this technology can identify cell subtypes in the tumor microenvironment that may predict prognosis or response to immune checkpoint inhibition therapy. Two studies were able to diagnose BC by identifying neoplastic cells through single-cell sequencing urine samples. The remaining studies were mainly a preclinical exploration of tumor microenvironment at single cell level. Single-cell sequencing technology can discriminate heterogeneity in bladder tumor cells and determine the key molecular properties that can lead to the discovery of novel perspectives on cancer management. This nascent tool can advance the early diagnosis, prognosis judgment, and targeted therapy of bladder cancer.
Collapse
Affiliation(s)
- REZA YADOLLAHVANDMIANDOAB
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - MEHRSA JALALIZADEH
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | | | - KEINI BUOSI
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - PATRÍCIA A. F. LEME
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - LUCIANA S. B. DAL COL
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - CRISTIANE F. GIACOMELLI
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - ALEX DIAS ASSIS
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - NASIM BASHIRICHELKASARI
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - LEONARDO OLIVEIRA REIS
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
- ImmunOncology, Pontifical Catholic University of Campinas, PUC-Campinas, Campinas, Sao Paulo, 13087-571, Brazil
| |
Collapse
|
8
|
Smith NJ, Reddin I, Policelli P, Oh S, Zainal N, Howes E, Jenkins B, Tracy I, Edmond M, Sharpe B, Amendra D, Zheng K, Egawa N, Doorbar J, Rao A, Mahadevan S, Carpenter MA, Harris RS, Ali S, Hanley C, Buisson R, King E, Thomas GJ, Fenton TR. Differentiation signals induce APOBEC3A expression via GRHL3 in squamous epithelia and squamous cell carcinoma. RESEARCH SQUARE 2024:rs.3.rs-3997426. [PMID: 38496447 PMCID: PMC10942551 DOI: 10.21203/rs.3.rs-3997426/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Two APOBEC (apolipoprotein-B mRNA editing enzyme catalytic polypeptide-like) DNA cytosine deaminase enzymes (APOBEC3A and APOBEC3B) generate somatic mutations in cancer, driving tumour development and drug resistance. Here we used single cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires Grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell cycle stage associated with APOBEC-mediated mutagenesis. In contrast, we show that in squamous cell carcinoma tissues, there is expansion of GRHL3 expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings indicate a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.
Collapse
Affiliation(s)
- Nicola J. Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- School of Biosciences, University of Kent, UK
| | - Ian Reddin
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Bio-R Bioinformatics Research Facility, Faculty of Medicine, University of Southampton, UK
| | - Paige Policelli
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nur Zainal
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Emma Howes
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Benjamin Jenkins
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Ian Tracy
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Mark Edmond
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Benjamin Sharpe
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Damian Amendra
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Ke Zheng
- Department of Pathology, University of Cambridge, UK
| | | | - John Doorbar
- Department of Pathology, University of Cambridge, UK
| | - Anjali Rao
- Gilead Sciences, Research Department, 324 Lakeside Dr. Foster City, CA 94404, USA
| | - Sangeetha Mahadevan
- Gilead Sciences, Research Department, 324 Lakeside Dr. Foster City, CA 94404, USA
| | - Michael A. Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Christopher Hanley
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Emma King
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Gareth J. Thomas
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
| | - Tim R. Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
| |
Collapse
|
9
|
Tang D, Yan Y, Li Y, Li Y, Tian J, Yang L, Ding H, Bashir G, Zhou H, Ding Q, Tao R, Zhang S, Wang Z, Wu S. Targeting DAD1 gene with CRISPR-Cas9 system transmucosally delivered by fluorinated polylysine nanoparticles for bladder cancer intravesical gene therapy. Theranostics 2024; 14:203-219. [PMID: 38164146 PMCID: PMC10750211 DOI: 10.7150/thno.88550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Intravesical chemotherapy is highly recommended after transurethral resection of bladder tumor for patients with bladder cancer (BCa). However, this localized adjuvant therapy has drawbacks of causing indiscriminate damage and inability to penetrate bladder mucosal. Methods: Fluorinated polylysine micelles (PLLF) were synthesized by reacting polylysine (PLL) with heptafluorobutyrate anhydride. Anti-apoptotic gene defender against cell death 1 (DAD1) was selected by different gene expression analysis between BCa patients and healthy individuals and identified by several biological function assays. The gene transfection ability of PLLF was verified by multiple in vitro and in vivo assays. The therapeutic efficiency of PLLF nanoparticles (NPs) targeting DAD1 were confirmed by intravesical administration using an orthotopic BCa mouse model. Results: Decorated with fluorinated chains, PLL can self-assemble to form NPs and condense plasmids with excellent gene transfection efficiency in vitro. Loading with the CRISPR-Cas9 system designed to target DAD1 (Cas9-sgDAD1), PLLF/Cas9-sgDAD1 NPs strongly inhibited the expression of DAD1 in BCa cells and induced BCa cell apoptosis through the MAPK signaling pathway. Furthermore, intravesical administration of PLLF/Cas9-sgDAD1 NPs resulted in significant therapeutic outcomes without systemic toxicity in vivo. Conclusion: The synthetized PLLF can transmucosally deliver the CRISPR-Cas9 system into orthotopic BCa tissues to improve intravesical instillation therapy for BCa. This work presents a new strategy for targeting DAD1 gene in the intravesical therapy for BCa with high potential for clinical applications.
Collapse
Affiliation(s)
- Dongdong Tang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730030, China
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen University, Shenzhen 518000, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Yan
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen University, Shenzhen 518000, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Yangyang Li
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen University, Shenzhen 518000, China
| | - Yuqing Li
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518000, China
| | - Junqiang Tian
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Hui Ding
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Ghassan Bashir
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518000, China
| | - Houhong Zhou
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518000, China
| | - Qiuxia Ding
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen University, Shenzhen 518000, China
| | - Ran Tao
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen University, Shenzhen 518000, China
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen University, Shenzhen 518000, China
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518000, China
| | - Zhiping Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Song Wu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730030, China
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen University, Shenzhen 518000, China
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
10
|
Cai Y, Cheng Y, Wang Z, Li L, Qian Z, Xia W, Yu W. A novel metabolic subtype with S100A7 high expression represents poor prognosis and immuno-suppressive tumor microenvironment in bladder cancer. BMC Cancer 2023; 23:725. [PMID: 37543645 PMCID: PMC10403905 DOI: 10.1186/s12885-023-11182-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/14/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Bladder cancer (BLCA) represents a highly heterogeneous disease characterized by distinct histological, molecular, and clinical features, whose tumorigenesis and progression require aberrant metabolic reprogramming of tumor cells. However, current studies have not expounded systematically and comprehensively on the metabolic heterogeneity of BLCA. METHODS The UCSC XENA portal was searched to obtain the expression profiles and clinical annotations of BLCA patients in the TCGA cohort. A total of 1,640 metabolic-related genes were downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Then, consensus clustering was performed to divide the BLCA patients into two metabolic subtypes according to the expression of metabolic-related genes. Kaplan-Meier analysis was used to measure the prognostic values of the metabolic subtypes. Subsequently, comparing the immune-related characteristics between the two metabolic subtypes to describe the immunological difference. Then, the Scissor algorithm was applied to link the metabolic phenotypes and single-cell transcriptome datasets to determine the biomarkers associated with metabolic subtypes and prognosis. Finally, the clinical cohort included 63 BLCA and 16 para-cancerous samples was used to validate the prognostic value and immunological correlation of the biomarker. RESULTS BLCA patients were classified into two heterogeneous metabolic-related subtypes (MRSs) with distinct features: MRS1, the subtype with no active metabolic characteristics but an immune infiltration microenvironment; and MRS2, the lipogenic subtype with upregulated lipid metabolism. These two subtypes had distinct prognoses, molecular subtypes distributions, and activations of therapy-related pathways. MRS1 BLCAs preferred to be immuno-suppressive and up-regulated immune checkpoints expression, suggesting the well-therapeutic response of MRS1 patients to immunotherapy. Based on the Scissor algorithm, we found that S100A7 both specifically up-regulated in the MRS1 phenotype and MRS1-tumor cells, and positively correlated with immunological characteristics. In addition, in the clinical cohort included 63 BLCA and 16 para-cancerous samples, S100A7 was obviously associated with poor prognosis and enhanced PD-L1 expression. CONCLUSIONS The metabolic subtype with S100A7 high expression recognizes the immuno-suppressive tumor microenvironment and predicts well therapeutic response of immunotherapy in BLCA. The study provides new insights into the prognostic and therapeutic value of metabolic heterogeneity in BLCA.
Collapse
Affiliation(s)
- Yun Cai
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023, China
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, China
| | - Yifei Cheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyu Wang
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lu Li
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, China
| | - Zhengtao Qian
- Department of Clinical laboratory, Changshu Medicine Examination Institute, No.36, Qingduntang Road, Suzhou, 215500, China.
| | - Wei Xia
- Department of IntensiveCareUnit, TheAffiliated Wuxi People's Hospital of NanjingMedicalUniversity, Wuxi, China.
- Department of Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023, China.
| | - Weiwei Yu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
11
|
Zhou R, Zhou J, Muhuitijiang B, Zeng X, Tan W. Construction and experimental validation of a B cell-related gene signature to predict the prognosis and immunotherapeutic sensitivity in bladder cancer. Aging (Albany NY) 2023; 15:5355-5380. [PMID: 37379131 PMCID: PMC10333061 DOI: 10.18632/aging.204753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/09/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND B cells are essential components of tumor microenvironment and exert important functions in anti-tumor immune response. However, the prognosis value of B cell-related genes in bladder cancer (BLCA) remains obscure. MATERIALS AND METHODS The infiltrating levels of B cells were measured via the CD20 staining in the local samples and the computational biology analyses in the TCGA-BLCA cohort. The single-cell RNA sequencing analysis, gene-pair strategy, LASSO regression, random forest, and Cox regression were used for B cell-related signature construction. TCGA-BLCA cohort was chosen as the training cohort, and three independent cohorts from GEO and the local cohort were used for external validation. 326 B cells were adopted to explore the association between the model and B cells' biological processes. TIDE algorithm and two BLCA cohorts receiving anti-PD1/PDL1 treatment were utilized to detect its predictive ability to the immunotherapeutic response. RESULTS High infiltration levels of B cells heralded favorable prognosis, both in the TCGA-BLCA cohort and the local cohort (all P < 0.05). A 5-gene-pair model was established and served as a significant prognosis predictor across multiple cohorts (pooled hazard ratio = 2.79, 95% confidence interval = 2.22-3.49). The model could evaluate the prognosis effectively in 21 of 33 cancer types (P < 0.05). The signature was negatively associated with B cells' activation, proliferation, and infiltrating levels, and could serve as a potential predictor of immunotherapeutic outcomes. CONCLUSIONS A B cell-related gene signature was constructed to predict the prognosis and immunotherapeutic sensitivity in BLCA, helping to guide the personalized treatment.
Collapse
Affiliation(s)
- Ranran Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, Guangdong, China
| | - Jiawei Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, Guangdong, China
| | - Bahaerguli Muhuitijiang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, Guangdong, China
| | - Xiangbo Zeng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, Guangdong, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, Guangdong, China
| |
Collapse
|
12
|
Zhou TL, Chen HX, Wang YZ, Wen SJ, Dao PH, Wang YH, Chen MF. Single-cell RNA sequencing reveals the immune microenvironment and signaling networks in cystitis glandularis. Front Immunol 2023; 14:1083598. [PMID: 36814917 PMCID: PMC9940314 DOI: 10.3389/fimmu.2023.1083598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/12/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Cystitis glandularis (CG) is a rare chronic bladder hyperplastic disease that mainly manifests by recurrent frequent urination, dysuria and gross hematuria. The current lack of unified diagnosis and treatment criteria makes it essential to comprehensively describe the inflammatory immune environment in CG research. Methods Here, we performed scRNA-sequencing in CG patients for the first time, in which four inflamed tissues as well as three surrounding normal bladder mucosa tissues were included. Specifically, we isolated 18,869 cells to conduct bioinformatic analysis and performed immunofluorescence experiments. Results Our genetic results demonstrate that CG does not have the classic chromosomal variation observed in bladder tumors, reveal the specific effects of TNF in KRT15 epithelial cells, and identify a new population of PIGR epithelial cells with high immunogenicity. In addition, we confirmed the activation difference of various kinds of T cells during chronic bladder inflammation and discovered a new group of CD27-Switch memory B cells expressing a variety of immunoglobulins. Discussion CG was regarded as a rare disease and its basic study is still weak.Our study reveals, for the first time, the different kinds of cell subgroups in CG and provides the necessary basis for the clinical treatment of cystitis glandularis. Besides, our study significantly advances the research on cystitis glandularis at the cellular level and provides a theoretical basis for the future treatment of cystitis glandularis.
Collapse
Affiliation(s)
- Tai Lai Zhou
- Department of Urology, Xiangya Hosipital Central South University, Changsha, Hunan, China
| | - Heng Xin Chen
- Department of Urology, Xiangya Hosipital Central South University, Changsha, Hunan, China
| | - Yin Zhao Wang
- Department of Urology, Xiangya Hosipital Central South University, Changsha, Hunan, China
| | - Si Jie Wen
- Department of Urology, Xiangya Hosipital Central South University, Changsha, Hunan, China
| | - Ping Hong Dao
- Department of Urology, Xiangya Hosipital Central South University, Changsha, Hunan, China
| | - Yu Hang Wang
- Department of Urology, Xiangya Hosipital Central South University, Changsha, Hunan, China
| | - Min Feng Chen
- Department of Urology, Xiangya Hosipital Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Zhou R, Zhou J, Muhuitijiang B, Tan W. Construction and experimental validation of a B cell senescence-related gene signature to evaluate prognosis and immunotherapeutic sensitivity in bladder cancer. Funct Integr Genomics 2022; 23:3. [PMID: 36527532 DOI: 10.1007/s10142-022-00936-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Senescent B cells exhibit reduced antibody production and enhanced proinflammatory cytokine and chemokine secretion, exerting non-negligible functions in antitumor immunity. This study aims to clarify the prognosis value of B cell senescence-related genes in bladder cancer (BLCA). Twelve B cell senescence-related genes were identified based on previous studies and the single-cell RNA sequencing of a BLCA sample from Gene Expression Omnibus (GEO). The Cancer Genome Atlas BLCA cohort was used as the training dataset. Three cohorts from GEO, 35 clinical samples from the local hospital, and in vitro cell experiments were used for validation. The unsupervised clustering based on the 12 genes was associated with the prognosis and the tumor immunity. Through least absolute shrinkage and selection operator regression and random forest algorithm, G protein subunit gamma 11 (GNG11) and inhibitor of DNA binding 1 (ID1) of the 12 genes were determined as significant prognosis predictors and then included in the multivariate Cox regression model. The model was a reliable and robust prognosis biomarker across multiple large-scale cohorts (pooled HR = 1.76, 95% CI = 1.41-2.20). The tight association between the model and BLCA malignant degree was demonstrated in the local cohort (P < 0.01). The model could also predict the immunotherapeutic sensitivity, which was confirmed by the tumor immune dysfunction and exclusion algorithm (P < 0.0001) and IMvigor210 cohort (P < 0.0001). At last, in vitro cell experiments in IM-9 and GM12878 B cells indicated that GNG11 and ID1 were involved in the cellular aging process. Collectively, a B cell senescence-related gene signature was constructed to evaluate the prognosis and immunotherapeutic response in BLCA, providing novel insights into the biological mechanisms.
Collapse
Affiliation(s)
- Ranran Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510000, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Jiawei Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510000, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Bahaerguli Muhuitijiang
- Department of Urology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510000, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510000, China.
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|