1
|
Gao Y, Zandieh K, Zhao K, Khizanishvili N, Fazio PD, Yu X, Schulte L, Aillaud M, Chung HR, Ball Z, Meixner M, Bauer UM, Bartsch DK, Buchholz M, Lauth M, Nimsky C, Cook L, Bartsch JW. The long non-coding RNA NEAT1 contributes to aberrant STAT3 signaling in pancreatic cancer and is regulated by a metalloprotease-disintegrin ADAM8/miR-181a-5p axis. Cell Oncol (Dordr) 2025; 48:391-409. [PMID: 39412616 PMCID: PMC11996950 DOI: 10.1007/s13402-024-01001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 12/05/2024] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and several studies demonstrate that STAT3 has critical roles throughout the course of PDAC pathogenesis. METHODS TCGA, microarray, and immunohistochemistry data from a PDAC cohort were used for clinical analyses. Panc89 cells with ADAM8 knockout, re-expression of ADAM8 mutants, and Panc1 cells overexpressing ADAM8 were generated. Gene expression analyses of ADAM8, STAT3, long non-coding (lnc) RNA NEAT1, miR-181a-5p and ICAM1 were performed by quantitative PCR. Subcellular fractionation quantified NEAT1 expression in cytoplasm and nucleus of PDAC cell lines. Cell proliferation, scratch, and invasion assays were performed to detect growth rate, migration and invasion capabilities of cells. Gain and loss of function experiments were carried out to investigate the biological effects of lncRNA NEAT1 and miR-181a-5p on PDAC cells and downstream genes. Dual-luciferase reporter gene assay determined interaction and binding sites of miR-181a-5p in lncRNA NEAT1. Pull down assays, RNA binding protein immunoprecipitation (RIP), and ubiquitination assays explored the molecular interaction between lncRNA NEAT1 and STAT3. RESULTS High ADAM8 expression causes aberrant STAT3 signaling in PDAC cells and is positively correlated with NEAT1 expression. NEAT1 binding to STAT3 was confirmed and prevents STAT3 degradation in the proteasome as increased degradation of STAT3 was observed in ADAM8 knockout cells and cells treated with bortezomib. Furthermore, miRNA-181a-5p regulates NEAT1 expression by direct binding to the NEAT1 promoter. CONCLUSION ADAM8 regulates intracellular STAT3 levels via miR-181a-5p and NEAT1 in pancreatic cancer.
Collapse
Affiliation(s)
- Yutong Gao
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Kimia Zandieh
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Kai Zhao
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Natalia Khizanishvili
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | - Xiangdi Yu
- Department of Anesthesiology, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou University, Guiyang, Guizhou, 550000, China
| | - Leon Schulte
- Institute for Lung Research, Philipps-University Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Michelle Aillaud
- Institute for Lung Research, Philipps-University Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Ho-Ryun Chung
- Institute for Medical Bioinformatics and Biostatistics, Philipps-University Marburg, 35033, Marburg, Germany
| | - Zachary Ball
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Marion Meixner
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Detlef Klaus Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism and Infection, Center for Tumor and Immunology (ZTI), Philipps-University Marburg, Marburg, Germany
| | - Matthias Lauth
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Lena Cook
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany.
| |
Collapse
|
2
|
McIntyre G, Jackson Z, Colina J, Sekhar S, DiFeo A. miR-181a: regulatory roles, cancer-associated signaling pathway disruptions, and therapeutic potential. Expert Opin Ther Targets 2024; 28:1061-1091. [PMID: 39648331 PMCID: PMC12054384 DOI: 10.1080/14728222.2024.2433687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION microRNA-181a (miR-181a) is a crucial post-transcriptional regulator of many mRNA transcripts and noncoding-RNAs, influencing cell proliferation, cancer cell stemness, apoptosis, and immune responses. Its abnormal expression is well-characterized in numerous cancers, establishing it as a significant genomic vulnerability and biomarker in cancer research. AREAS COVERED Here, we summarize miR-181a's correlation with poor patient outcomes across numerous cancers and the mechanisms governing miR-181a's activity and processing. We comprehensively describe miR-181a's involvement in multiple regulatory cancer signaling pathways, cellular processes, and the tumor microenvironment. We also discuss current therapeutic approaches to targeting miR-181a, highlighting their limitations and future potential. EXPERT OPINION miR-181a is a clinically relevant pan-cancer biomarker with potential as a therapeutic target. Its regulatory control of tumorigenic signaling pathways and immune responses positions it as a promising candidate for personalized treatments. The success of miR-181a as a target relies on the development of specific therapeutics platforms. Future research on miR-181a's role in the tumor microenvironment and the RNA binding proteins that regulate its stability will help uncover new techniques to targeting miR-181a. Further research into miR-181a serum levels in patients undergoing therapy will help to better stratify patients and enhance therapeutic success.
Collapse
Affiliation(s)
- Grace McIntyre
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Zoe Jackson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jose Colina
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Sreeja Sekhar
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Analisa DiFeo
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Sandhanam K, Tamilanban T. Unraveling the noncoding RNA landscape in glioblastoma: from pathogenesis to precision therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9475-9502. [PMID: 39007929 DOI: 10.1007/s00210-024-03265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Glioblastoma (GBM) is an aggressive type IV brain tumor that originates from astrocytes and has a poor prognosis. Despite intensive research, survival rates have not significantly improved. Noncoding RNAs (ncRNAs) are emerging as critical regulators of carcinogenesis, progression, and increased treatment resistance in GBM cells. They influence angiogenesis, migration, epithelial-to-mesenchymal transition, and invasion in GBM cells. ncRNAs, such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are commonly dysregulated in GBM. miRNAs, such as miR-21, miR-133a, and miR-27a-3p, are oncogenes that increase cell proliferation, metastasis, and migration by targeting TGFBR1 and BTG2. In contrast, lncRNAs, such as HOXD-AS2 and LINC00511, are oncogenes that increase the migration, invasion, and proliferation of cells. CircRNAs, such as circ0001730, circENTPD7, and circFOXO3, are oncogenes responsible for cell growth, angiogenesis, and viability. Developing novel therapeutic strategies targeting ncRNAs, cell migration, and angiogenesis is a promising approach for GBM. By targeting these dysregulated ncRNAs, we can potentially restore a healthy balance in gene expression and influence disease progression. ncRNAs abound within GBM, demonstrating significant roles in governing the growth and behavior of these tumors. They may also be useful as biomarkers or targets for therapy. The use of morpholino oligonucleotides (MOs) suppressing the oncogene expression of HOTAIR, BCYRN1, and cyrano, antisense oligonucleotides (ASOs) suppressing the expression of ncRNAs such as MALAT1 and miR-10b, locked nucleic acids (LNAs) suppressing miR-21, and peptide nucleic acids (PNAs) suppressing the expression of miR-155 inhibited the PI3K pathway, tumor growth, angiogenesis, proliferation, migration, and invasion. Targeting oncogenic ncRNAs with RNA-interfering strategies such as MOs, ASOs, LNAs, CRISPR-Cas9 gene editing, and PNA approaches may represent a promising therapeutic strategy for GBM. This review emphasizes the critical role of ncRNAs in GBM pathogenesis, as well as the potential for new therapeutic strategies targeting these pathways to improve the prognosis and quality of life for GBM patients.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India.
| |
Collapse
|
4
|
SHADBAD MAHDIABDOLI, BARADARAN BEHZAD. hsa-miR-181a-5p inhibits glioblastoma development via the MAPK pathway: in-silico and in-vitro study. Oncol Res 2024; 32:1949-1958. [PMID: 39574474 PMCID: PMC11576920 DOI: 10.32604/or.2024.051569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/22/2024] [Indexed: 11/24/2024] Open
Abstract
Background Glioblastoma remains a highly invasive primary brain malignancy with an undesirable prognosis. Growing evidence has shed light on the importance of microRNAs (miRs), as small non-coding RNAs, in tumor development and progression. The present study leverages the in-silico and in-vitro techniques to investigate the significance of hsa-miR-181a-5p and the underlying hsa-miR-181a-5p-meidated signaling pathway in glioblastoma development. Methods Bioinformatic studies were performed on GSE158284, GSE108474 (REMBRANDT study), TCGA-GTEx, CCLE, GeneMANIA, Reactome, WikiPathways, KEGG, miRDB, and microT-CDS to identify the significance of hsa-miR-181a-5p and its underlying target. Afterward, the U373 cell line was selected and transfected with hsa-miR-181a-5p mimics, and the cell viability, clonogenicity, migration, mRNA expression, apoptosis, and cell cycle were studied using the MTT assay, colony formation test, migration assay, qRT-PCR, and flow cytometry respectively. Results hsa-miR-181a-5p expression is decreased in glioblastoma samples. The in-silico results have shown that hsa-miR-181a-5p could regulate the MAPK pathway by targeting AKT3. The experimental assays have shown that hsa-miR-181a-5p decreases the migration of glioblastoma cells, arrests the cell cycle, and increases the apoptosis rate. Besides downregulating MMP9 and upregulating BAX, hsa-miR-181a-5p downregulates MET, MAP2K1, MAPK1, MAPK3, and AKT3 expression in U373 cells. The in-vitro results were consistent with in-silico results regarding the regulatory effect of hsa-miR-181a-5p on the MAPK pathway, leading to tumor suppression in glioblastoma. Conclusions hsa-miR-181a-5p inhibits glioblastoma development partially by regulating the signaling factors of the MAPK pathway.
Collapse
Affiliation(s)
| | - BEHZAD BARADARAN
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Yang M, Li S, Luo R, Zhao Y, Sun Y, Li H, Cui Q, Wu J, Mao L. ADAM8 promotes alcoholic liver fibrosis through the MAPK signaling pathway. J Physiol Sci 2024; 74:52. [PMID: 39407108 PMCID: PMC11481351 DOI: 10.1186/s12576-024-00943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
The effect and molecular regulatory mechanism of A Disintegrin and Metalloproteinase 8 (ADAM8) were explored in alcoholic liver fibrosis (ALF). C57BL/6N male mice were randomly divided into control, alcohol, and ADAM8-sgRNA3 plasmid groups. The control group received control liquid diet, while the alcohol and ADAM8-sgRNA3 plasmid groups were given alcohol liquid feed diet combined with ethanol gavage treatment for 8 weeks to induce ALF modeling. In addition, the ADAM8-sgRNA3 plasmid group was injected with the effective ADAM8-sgRNA3 plasmid, while the alcohol and control group mice were injected with an equivalent amount of physiological saline. LX-2 human hepatic stellate cells were divided into control, alcohol, si-ADAM8-2, and si-ADAM8-NC groups and induced for 48 h for model establishment in vitro. Serological detection, pathological staining, Western blotting, qRT-PCR and CCK8 assay were performed for experiments. Compared with the alcohol group, ADAM8 mRNA, protein and, positive area rate, serological indicators, pathological changes, and the expression of liver fibrosis marker and MAPK signaling pathway-related factors in the ADAM8-sgRNA3 plasmid group significantly decreased in vivo. Compared with the alcohol group, ADAM8 mRNA and protein expression, cell viability, and the expression of liver fibrosis markers and MAPK signaling pathway-related factors (p-ERK1/2, PCNA, Bcl-2, p-c-Jun, TGFβ1, p-p38 MAPK and HSP27) reduced significantly in the si-ADAM8-2 group. Therefore, ADAM8 promotes ALF through the MAPK signaling pathway, a promising target for treating ALF.
Collapse
Affiliation(s)
- Mengli Yang
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 KaiYuan Road, Luoyang, 471000, Henan, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang, 471000, Henan, China
| | - Sanqiang Li
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 KaiYuan Road, Luoyang, 471000, Henan, China.
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang, 471000, Henan, China.
| | - Renli Luo
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 KaiYuan Road, Luoyang, 471000, Henan, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang, 471000, Henan, China
| | - Yadi Zhao
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 KaiYuan Road, Luoyang, 471000, Henan, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang, 471000, Henan, China
| | - Yue Sun
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 KaiYuan Road, Luoyang, 471000, Henan, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang, 471000, Henan, China
| | - Haoyuan Li
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 KaiYuan Road, Luoyang, 471000, Henan, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang, 471000, Henan, China
| | - Qinyi Cui
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 KaiYuan Road, Luoyang, 471000, Henan, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang, 471000, Henan, China
| | - Junfei Wu
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 KaiYuan Road, Luoyang, 471000, Henan, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang, 471000, Henan, China
| | - Longfei Mao
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 KaiYuan Road, Luoyang, 471000, Henan, China.
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang, 471000, Henan, China.
| |
Collapse
|
6
|
Cook L, Gharzia FG, Bartsch JW, Yildiz D. A jack of all trades - ADAM8 as a signaling hub in inflammation and cancer. FEBS J 2024; 291:3989-4008. [PMID: 38097912 DOI: 10.1111/febs.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
As a member of the family of A Disintegrin And Metalloproteinases (ADAM) ADAM8 is preferentially expressed in lymphatic organs, immune cells, and tumor cells. The substrate spectrum for ADAM8 proteolytic activity is not exclusive but is related to effectors of inflammation and signaling in the tumor microenvironment. In addition, complexes of ADAM8 with extracellular binding partners such as integrin β-1 cause an extensive intracellular signaling in tumor cells, thereby activating kinase pathways with STAT3, ERK1/2, and Akt signaling, which causes increased cell survival and enhanced motility. The cytoplasmic domain of ADAM8 harbors five SRC homology-3 (SH3) domains that can potentially interact with several proteins involved in actin dynamics and cell motility, including Myosin 1F (MYO1F), which is essential for neutrophil motility. The concept of ADAM8 thus involves immune cell recruitment, in most cases leading to an enhancement of inflammatory (asthma, COPD) and tumor (including pancreatic and breast cancers) pathologies. In this review, we report on available studies that qualify ADAM8 as a therapeutic target in different pathologies. As a signaling hub, ADAM8 controls extracellular, intracellular, and intercellular communication, the latter one mainly mediated by the release of extracellular vesicles with ADAM8 as cargo. Here, we will dissect the contribution of different domains to these distinct ways of communication in several pathologies. We conclude that therapeutic targeting attempts for ADAM8 should consider blocking more than a single domain and that this requires a thorough evaluation of potent molecules targeting ADAM8 in an in vivo setting.
Collapse
Affiliation(s)
- Lena Cook
- Department of Neurosurgery, Philipps University Marburg, Germany
| | - Federico Guillermo Gharzia
- Experimental and Clinical Pharmacology and Toxicology Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Germany
| | - Daniela Yildiz
- Experimental and Clinical Pharmacology and Toxicology Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
7
|
Panda VK, Mishra B, Nath AN, Butti R, Yadav AS, Malhotra D, Khanra S, Mahapatra S, Mishra P, Swain B, Majhi S, Kumari K, Radharani NNV, Kundu GC. Osteopontin: A Key Multifaceted Regulator in Tumor Progression and Immunomodulation. Biomedicines 2024; 12:1527. [PMID: 39062100 PMCID: PMC11274826 DOI: 10.3390/biomedicines12071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) is composed of various cellular components such as tumor cells, stromal cells including fibroblasts, adipocytes, mast cells, lymphatic vascular cells and infiltrating immune cells, macrophages, dendritic cells and lymphocytes. The intricate interplay between these cells influences tumor growth, metastasis and therapy failure. Significant advancements in breast cancer therapy have resulted in a substantial decrease in mortality. However, existing cancer treatments frequently result in toxicity and nonspecific side effects. Therefore, improving targeted drug delivery and increasing the efficacy of drugs is crucial for enhancing treatment outcome and reducing the burden of toxicity. In this review, we have provided an overview of how tumor and stroma-derived osteopontin (OPN) plays a key role in regulating the oncogenic potential of various cancers including breast. Next, we dissected the signaling network by which OPN regulates tumor progression through interaction with selective integrins and CD44 receptors. This review addresses the latest advancements in the roles of splice variants of OPN in cancer progression and OPN-mediated tumor-stromal interaction, EMT, CSC enhancement, immunomodulation, metastasis, chemoresistance and metabolic reprogramming, and further suggests that OPN might be a potential therapeutic target and prognostic biomarker for the evolving landscape of cancer management.
Collapse
Affiliation(s)
- Venketesh K. Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Angitha N. Nath
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Ramesh Butti
- Division of Hematology and Oncology, Department of Internal Medicine, Southwestern Medical Center, University of Texas, Dallas, TX 75235, USA;
| | - Amit Singh Yadav
- Biomedical Centre, Faculty of Medicine, Lund University, 223 62 Lund, Sweden; (A.S.Y.); (N.N.V.R.)
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Priyanka Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Sambhunath Majhi
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - N. N. V. Radharani
- Biomedical Centre, Faculty of Medicine, Lund University, 223 62 Lund, Sweden; (A.S.Y.); (N.N.V.R.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar 751024, India
| |
Collapse
|
8
|
Qian Z, Li R, Zhao T, Xie K, Li P, Li G, Shen N, Gong J, Hong X, Yang L, Li H. Blockade of the ADAM8-Fra-1 complex attenuates neuroinflammation by suppressing the Map3k4/MAPKs axis after spinal cord injury. Cell Mol Biol Lett 2024; 29:75. [PMID: 38755530 PMCID: PMC11100242 DOI: 10.1186/s11658-024-00589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Mechanical spinal cord injury (SCI) is a deteriorative neurological disorder, causing secondary neuroinflammation and neuropathy. ADAM8 is thought to be an extracellular metalloproteinase, which regulates proteolysis and cell adherence, but whether its intracellular region is involved in regulating neuroinflammation in microglia after SCI is unclear. METHODS Using animal tissue RNA-Seq and clinical blood sample examinations, we found that a specific up-regulation of ADAM8 in microglia was associated with inflammation after SCI. In vitro, microglia stimulated by HMGB1, the tail region of ADAM8, promoted microglial inflammation, migration and proliferation by directly interacting with ERKs and Fra-1 to promote activation, then further activated Map3k4/JNKs/p38. Using SCI mice, we used BK-1361, a specific inhibitor of ADAM8, to treat these mice. RESULTS The results showed that administration of BK-1361 attenuated the level of neuroinflammation and reduced microglial activation and recruitment by inhibiting the ADAM8/Fra-1 axis. Furthermore, treatment with BK-1361 alleviated glial scar formation, and also preserved myelin and axonal structures. The locomotor recovery of SCI mice treated with BK-1361 was therefore better than those without treatment. CONCLUSIONS Taken together, the results showed that ADAM8 was a critical molecule, which positively regulated neuroinflammatory development and secondary pathogenesis by promoting microglial activation and migration. Mechanically, ADAM8 formed a complex with ERK and Fra-1 to further activate the Map3k4/JNK/p38 axis in microglia. Inhibition of ADAM8 by treatment with BK-1361 decreased the levels of neuroinflammation, glial formation, and neurohistological loss, leading to favorable improvement in locomotor functional recovery in SCI mice.
Collapse
Affiliation(s)
- Zhanyang Qian
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China
| | - Rulin Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Dalian Medical University, Dalian, China
| | - Tianyu Zhao
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Dalian Medical University, Dalian, China
| | - Kunxin Xie
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - PengFei Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangshen Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Na Shen
- School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Jiamin Gong
- School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Hong
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China
| | - Lei Yang
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| | - Haijun Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| |
Collapse
|
9
|
Cosenza-Contreras M, Schäfer A, Sing J, Cook L, Stillger MN, Chen CY, Villacorta Hidalgo J, Pinter N, Meyer L, Werner T, Bug D, Haberl Z, Kübeck O, Zhao K, Stei S, Gafencu AV, Ionita R, Brehar FM, Ferrer-Lozano J, Ribas G, Cerdá-Alberich L, Martí-Bonmatí L, Nimsky C, Van Straaten A, Biniossek ML, Föll M, Cabezas-Wallscheid N, Büscher J, Röst H, Arnoux A, Bartsch JW, Schilling O. Proteometabolomics of initial and recurrent glioblastoma highlights an increased immune cell signature with altered lipid metabolism. Neuro Oncol 2024; 26:488-502. [PMID: 37882631 PMCID: PMC10912002 DOI: 10.1093/neuonc/noad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND There is an urgent need to better understand the mechanisms associated with the development, progression, and onset of recurrence after initial surgery in glioblastoma (GBM). The use of integrative phenotype-focused -omics technologies such as proteomics and lipidomics provides an unbiased approach to explore the molecular evolution of the tumor and its associated environment. METHODS We assembled a cohort of patient-matched initial (iGBM) and recurrent (rGBM) specimens of resected GBM. Proteome and metabolome composition were determined by mass spectrometry-based techniques. We performed neutrophil-GBM cell coculture experiments to evaluate the behavior of rGBM-enriched proteins in the tumor microenvironment. ELISA-based quantitation of candidate proteins was performed to test the association of their plasma concentrations in iGBM with the onset of recurrence. RESULTS Proteomic profiles reflect increased immune cell infiltration and extracellular matrix reorganization in rGBM. ASAH1, SYMN, and GPNMB were highly enriched proteins in rGBM. Lipidomics indicates the downregulation of ceramides in rGBM. Cell analyses suggest a role for ASAH1 in neutrophils and its localization in extracellular traps. Plasma concentrations of ASAH1 and SYNM show an association with time to recurrence. CONCLUSIONS We describe the potential importance of ASAH1 in tumor progression and development of rGBM via metabolic rearrangement and showcase the feedback from the tumor microenvironment to plasma proteome profiles. We report the potential of ASAH1 and SYNM as plasma markers of rGBM progression. The published datasets can be considered as a resource for further functional and biomarker studies involving additional -omics technologies.
Collapse
Affiliation(s)
- Miguel Cosenza-Contreras
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Agnes Schäfer
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Justin Sing
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Lena Cook
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Maren N Stillger
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Chia-Yi Chen
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jose Villacorta Hidalgo
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Niko Pinter
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Larissa Meyer
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Tilman Werner
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Darleen Bug
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Zeno Haberl
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Oliver Kübeck
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Susanne Stei
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Anca Violeta Gafencu
- Institute of Cellular Biology and Pathology “ Nicolae Simionescu,”Bucharest, Romania
| | - Radu Ionita
- Institute of Cellular Biology and Pathology “ Nicolae Simionescu,”Bucharest, Romania
| | - Felix M Brehar
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Bagdasar-Arseni” Emergency Clinical Hospital, Bucharest, Romania
| | - Jaime Ferrer-Lozano
- Department of Pathology Hospital Universitari i Politècnic La Fe, València, Spain
| | - Gloria Ribas
- Biomedical Imaging Research Group (GIBI230) Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Leo Cerdá-Alberich
- Biomedical Imaging Research Group (GIBI230) Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Luis Martí-Bonmatí
- Department of Pathology Hospital Universitari i Politècnic La Fe, València, Spain
- Department of Radiology Hospital Universitari i Politècnic La Fe, València, Spain
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Alexis Van Straaten
- Department of medical informatics and evaluation of practices, Assistance Publique-Hôpitaux de Paris Centre, Paris University & European Hospital Georges Pompidou, Paris, France
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Melanie Föll
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Khoury College of Computer Sciences, Northeastern University, Boston, USA
| | | | - Jörg Büscher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Hannes Röst
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Armelle Arnoux
- Clinical Epidemiology INSERM & Clinical Research Unit, Assistance Publique-Hôpitaux de Paris Centre, Paris University & European Hospital Georges Pompidou, Paris, France
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Zhao K, Calero-Pérez P, Bopp MHA, Möschl V, Pagenstecher A, Mulero-Acevedo M, Vázquez M, Barcia C, Arús C, Nimsky C, Rusch T, Bartsch JW, Candiota AP. Correlation of MR-Based Metabolomics and Molecular Profiling in the Tumor Microenvironment of Temozolomide-Treated Orthotopic GL261 Glioblastoma in Mice. Int J Mol Sci 2023; 24:17628. [PMID: 38139457 PMCID: PMC10743933 DOI: 10.3390/ijms242417628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The tumor microenvironment in glioblastoma (GB) is considered to be "cold", i.e., the fraction of cytotoxic T cells, for instance, is low. Instead, macrophages are the major immune cell population in GB, which stem either from tissue response (resident microglia) or recruitment of macrophages from the periphery, thereby undergoing tumor-dependent "imprinting" mechanisms by which macrophages can adapt a tumor-supportive phenotype. In this regard, it is important to describe the nature of macrophages associated with GB, in particular under therapy conditions using the gold standard chemotherapy drug temozolomide (TMZ). Here, we explored the suitability of combining information from in vivo magnetic resonance spectroscopic (MRS) approaches (metabolomics) with in vitro molecular analyses to assess therapy response and characterize macrophage populations in mouse GB using an isogenic GL261 model. For macrophage profiling, expression levels of matrix metalloproteinases (MMPs) and A disintegrin and metalloproteinases (ADAMs) were determined, since their gene products affect macrophage-tumor cell communication by extensive cleavage of immunomodulatory membrane proteins, such as PD-L1. In tumor mice with an overall therapy response, expression of genes encoding the proteases ADAM8, ADAM10, and ADAM17 was increased and might contribute to the immunosuppressive phenotype of GB and immune cells. In tumors responding to therapy, expression levels of ADAM8 were upregulated by TMZ, and higher levels of PD-L1 were correlated significantly. Using a CRISPR/Cas9 knockout of ADAM8 in GL261 cells, we demonstrated that soluble PD-L1 (sPD-L1) is only generated in the presence of ADAM8. Moreover, primary macrophages from WT and ADAM8-deficient mice showed ADAM8-dependent release of sPD-L1, independent of the macrophage polarization state. Since ADAM8 expression is induced in responding tumors and PD-L1 shedding is likely to decrease the anti-tumor activities of T-cells, we conclude that immunotherapy resistance is caused, at least in part, by the increased presence of proteases, such as ADAM8.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany; (K.Z.); (M.H.A.B.); (C.N.)
| | - Pilar Calero-Pérez
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.C.-P.); (M.M.-A.); (M.V.); (C.B.); (C.A.)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain
| | - Miriam H. A. Bopp
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany; (K.Z.); (M.H.A.B.); (C.N.)
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Strasse 6, 35032 Marburg, Germany;
| | - Vincent Möschl
- Department of Neuropathology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany;
| | - Axel Pagenstecher
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Strasse 6, 35032 Marburg, Germany;
- Department of Neuropathology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany;
- Department of Neuropathology, Core Facility Mouse Pathology and Electron Microscopy, Philipps-University Marburg, 35037 Marburg, Germany
| | - Marta Mulero-Acevedo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.C.-P.); (M.M.-A.); (M.V.); (C.B.); (C.A.)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Mario Vázquez
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.C.-P.); (M.M.-A.); (M.V.); (C.B.); (C.A.)
- Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Carlos Barcia
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.C.-P.); (M.M.-A.); (M.V.); (C.B.); (C.A.)
- Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Carles Arús
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.C.-P.); (M.M.-A.); (M.V.); (C.B.); (C.A.)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany; (K.Z.); (M.H.A.B.); (C.N.)
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Strasse 6, 35032 Marburg, Germany;
| | - Tillmann Rusch
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany;
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany; (K.Z.); (M.H.A.B.); (C.N.)
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Strasse 6, 35032 Marburg, Germany;
| | - Ana Paula Candiota
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.C.-P.); (M.M.-A.); (M.V.); (C.B.); (C.A.)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
11
|
Passos Gibson V, Tahiri H, Yang C, Phan QT, Banquy X, Hardy P. Hyaluronan decorated layer-by-layer assembled lipid nanoparticles for miR-181a delivery in glioblastoma treatment. Biomaterials 2023; 302:122341. [PMID: 37778056 DOI: 10.1016/j.biomaterials.2023.122341] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal primary brain cancer. Current pharmacological interventions marginally increase the 12-month overall survival of patients with GBM. Among the novel therapeutic strategies being pursued, micro-RNAs, a class of non-coding RNAs, are receiving considerable attention for their regulation of several pathways implicated in tumorigenesis and survival. Notably, microRNA-181a-5p (miR-181a) has consistently been reported to be downregulated in GBM clinical samples, and its overexpression negatively affects tumor growth both in vitro and in vivo. To improve the delivery of miR-181a to GBM cells, we sought to develop a modified lipid-based nanocarrier capable of encapsulating and delivering miR-181a to GBM cells in vitro and in vivo. Optimized ionizable-lipid containing lipid nanoparticles (LNP) were constructed by covering the miR-181a-loaded LNP with alternating layers of miR-181a, poly-l-arginine and hyaluronic acid through the layer-by-layer technique. The resulting hyaluronan-decorated lipid nanoparticles (HA-LNP) targeted GBM cells more efficiently than non-modified LNP and mediated siRNA and miRNA transfection in vitro. Finally, delivery of miR-181a by HA-LNP induced significant cellular death of U87 GBM cells in vitro and delayed tumor growth in an in vivo subcutaneous tumor model.
Collapse
Affiliation(s)
- Victor Passos Gibson
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada; Research Center of CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Houda Tahiri
- Research Center of CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Chun Yang
- Research Center of CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Quoc Thang Phan
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Pierre Hardy
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada; Research Center of CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
12
|
Hassan SN, Mohamed Yusoff AA, Idris Z, Mohd Redzwan N, Ahmad F. A mini-review on anticancer-related properties of azithromycin and its potential activities in overcoming the challenges of glioblastoma. Fundam Clin Pharmacol 2023; 37:918-927. [PMID: 37069134 DOI: 10.1111/fcp.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/07/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
The resistance, plasticity and heterogeneity of cancer cells, including glioblastoma (GB) cells, have prompted the investigation of various agents for possible adjuncts and alternatives to existing therapies. This includes a macrolide antibiotic, azithromycin (AZI). It possesses intriguing anticancer properties in a range of cancer models in vitro, such as antiproliferative, pro-apoptotic, anti-autophagy and anti-angiogenic effects. In fact, AZI is renowned for its ability to eradicate cancer stem cells by inhibiting mitochondrial biogenesis and respiration. AZI-containing regimens in cancer patients for different purposes have shown favourable (i.e., attributed to its antibacterial activity) and unfavourable outcomes. Whilst its direct anticancer effects have yet to be clinically proven. To that end, this review provides a summary of AZI anticancer studies and delineates its potential activities in overcoming the challenges of GB.
Collapse
Affiliation(s)
- Siti Nazihahasma Hassan
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Norhanani Mohd Redzwan
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Farizan Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
13
|
Shao B, Zhou D, Wang J, Yang D, Gao J. A novel LncRNA SPIRE1/miR-181a-5p/PRLR axis in mandibular bone marrow-derived mesenchymal stem cells regulates the Th17/Treg immune balance through the JAK/STAT3 pathway in periodontitis. Aging (Albany NY) 2023; 15:7124-7145. [PMID: 37490712 PMCID: PMC10415575 DOI: 10.18632/aging.204895] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Periodontitis is a microbial-related chronic inflammatory disease associated with imbalanced differentiation of Th17 cells and Treg cells. Bone marrow-derived mesenchymal stem cells (BM-MSCs) possess wide immunoregulatory properties. Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) contribute to the immunomodulation in the pathological mechanisms of inflammatory diseases. However, critical lncRNAs/miRNAs involved in immunomodulation of mandibular BM-MSCs largely remain to be identified. Here, we explored the molecular mechanisms behind the defective immunomodulatory ability of mandibular BM-MSCs under the periodontitis settings. We found that mandibular BM-MSCs from P. gingivalis-induced periodontitis mice had significantly reduced expression of LncRNA SPIRE1 than that from normal control mice. LncRNA SPIRE1 knockdown in normal BM-MSCs caused Th17/Treg cell differentiation imbalance during the coculturing of BM-MSCs and CD4 T cells. In addition, LncRNA SPIRE1 was identified as a competitive endogenous RNA that sponges miR-181a-5p in BM-MSCs. Moreover, miR-181a-5p inhibition attenuated the impact of LncRNA SPIRE1 knockdown on the ability of BM-MSCs in modulating Th17/Treg balance. Prolactin receptor (PRLR) was validated as a downstream target of miR-181a-5p. Notably, targeted knockdown of LncRNA SPIRE1 or PRLR or transfection of miR-181a-5p mimics activated the JAK/STAT3 signaling in normal BM-MSCs, while treatment with STAT3 inhibitor C188-9 restored the immunomodulatory properties of periodontitis-associated BM-MSCs. Furthermore, BM-MSCs with miR-181a-5p inhibition or PRLR-overexpression showed enhanced in vivo immunosuppressive properties in the periodontitis mouse model. Our results indicate that the JAK/STAT3 pathway is involved in the immunoregulation of BM-MSCs, and provide critical insights into the development of novel targeted therapies against periodontitis.
Collapse
Affiliation(s)
- Bingyi Shao
- Northern Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Duo Zhou
- Northern Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jie Wang
- Northern Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Deqin Yang
- Northern Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jing Gao
- Northern Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
14
|
Makowska M, Smolarz B, Romanowicz H. microRNAs (miRNAs) in Glioblastoma Multiforme (GBM)-Recent Literature Review. Int J Mol Sci 2023; 24:3521. [PMID: 36834933 PMCID: PMC9965735 DOI: 10.3390/ijms24043521] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common, malignant, poorly promising primary brain tumor. GBM is characterized by an infiltrating growth nature, abundant vascularization, and a rapid and aggressive clinical course. For many years, the standard treatment of gliomas has invariably been surgical treatment supported by radio- and chemotherapy. Due to the location and significant resistance of gliomas to conventional therapies, the prognosis of glioblastoma patients is very poor and the cure rate is low. The search for new therapy targets and effective therapeutic tools for cancer treatment is a current challenge for medicine and science. microRNAs (miRNAs) play a key role in many cellular processes, such as growth, differentiation, cell division, apoptosis, and cell signaling. Their discovery was a breakthrough in the diagnosis and prognosis of many diseases. Understanding the structure of miRNAs may contribute to the understanding of the mechanisms of cellular regulation dependent on miRNA and the pathogenesis of diseases underlying these short non-coding RNAs, including glial brain tumors. This paper provides a detailed review of the latest reports on the relationship between changes in the expression of individual microRNAs and the formation and development of gliomas. The use of miRNAs in the treatment of this cancer is also discussed.
Collapse
Affiliation(s)
- Marianna Makowska
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
15
|
Mierke CT. The versatile roles of ADAM8 in cancer cell migration, mechanics, and extracellular matrix remodeling. Front Cell Dev Biol 2023; 11:1130823. [PMID: 36910158 PMCID: PMC9995898 DOI: 10.3389/fcell.2023.1130823] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The posttranslational proteolytic cleavage is a unique and irreversible process that governs the function and half-life of numerous proteins. Thereby the role of the family of A disintegrin and metalloproteases (ADAMs) plays a leading part. A member of this family, ADAM8, has gained attention in regulating disorders, such as neurogenerative diseases, immune function and cancer, by attenuating the function of proteins nearby the extracellular membrane leaflet. This process of "ectodomain shedding" can alter the turnover rate of a number of transmembrane proteins that function in cell adhesion and receptor signal transduction. In the past, the major focus of research about ADAMs have been on neurogenerative diseases, such as Alzheimer, however, there seems to be evidence for a connection between ADAM8 and cancer. The role of ADAMs in the field of cancer research has gained recent attention, but it has been not yet been extensively addressed. Thus, this review article highlights the various roles of ADAM8 with particular emphasis on pathological conditions, such as cancer and malignant cancer progression. Here, the shedding function, direct and indirect matrix degradation, effects on cancer cell mobility and transmigration, and the interplay of ADAM8 with matrix-embedded neighboring cells are presented and discussed. Moreover, the most probable mechanical impact of ADAM8 on cancer cells and their matrix environment is addressed and debated. In summary, this review presents recent advances in substrates/ligands and functions of ADAM8 in its new role in cancer and its potential link to cell mechanical properties and discusses matrix mechanics modifying properties. A deeper comprehension of the regulatory mechanisms governing the expression, subcellular localization, and activity of ADAM8 is expected to reveal appropriate drug targets that will permit a more tailored and fine-tuned modification of its proteolytic activity in cancer development and metastasis.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Leipzig University, Leipzig, Germany
| |
Collapse
|
16
|
Dai L, Liang W, Shi Z, Li X, Zhou S, Hu W, Yang Z, Wang X. Systematic characterization and biological functions of non-coding RNAs in glioblastoma. Cell Prolif 2022; 56:e13375. [PMID: 36457281 PMCID: PMC9977673 DOI: 10.1111/cpr.13375] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant and aggressive type of glioma. Non-coding RNAs (ncRNAs) are RNAs that do not encode proteins but widely exist in eukaryotic cells. The common characteristics of these RNAs are that they can all be transcribed from the genome without being translated into proteins, thus performing biological functions, particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs. Studies have found that ncRNAs are associated with the occurrence and development of GBM, and there is a complex regulatory network among ncRNAs, which can regulate cell proliferation, migration, apoptosis and differentiation, thus provide a basis for the development of highly specific diagnostic tools and therapeutic strategies in the future. The present review aimed to comprehensively describe the biogenesis, general features and functions of regulatory ncRNAs in GBM, and to interpret the potential biological functions of these ncRNAs in GBM as well as their impact on clinical diagnosis, treatment and prognosis and discusses the potential mechanisms of these RNA subtypes leading to cancer in order to contribute to the better design of personalized GBM therapies in the future.
Collapse
Affiliation(s)
- Lirui Dai
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Wulong Liang
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Zimin Shi
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Xiang Li
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Shaolong Zhou
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Weihua Hu
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Zhuo Yang
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Xinjun Wang
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| |
Collapse
|
17
|
Associations of miR-181a with Health-Related Quality of Life, Cognitive Functioning, and Clinical Data of Patients with Different Grade Glioma Tumors. Int J Mol Sci 2022; 23:ijms231911149. [PMID: 36232448 PMCID: PMC9570445 DOI: 10.3390/ijms231911149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Gliomas are central nervous system tumors with a lethal prognosis. Small micro-RNA molecules participate in various biological processes, are tissue-specific, and, therefore, could be promising targets for cancer treatment. Thus, this study aims to examine miR-181a as a potent biomarker for the diagnosis and prognosis of glioma patients and, for the first time, to find associations between the expression level of miR-181a and patient quality of life (QoL) and cognitive functioning. The expression level of miR-181a was analyzed in 78 post-operative II-IV grade gliomas by quantitative real-time polymerase chain reaction. The expression profile was compared with patient clinical data (age, survival time after the operation, tumor grade and location, mutation status of isocitrate dehydrogenase 1 (IDH1), and promoter methylation of O-6-methylguanine methyltransferase). Furthermore, the health-related QoL was assessed using the Karnofsky performance scale and the quality of life questionnaires; while cognitive assessment was assessed by the Hopkins verbal learning test-revised, trail-making test, and phonemic fluency tasks. The expression of miR-181a was significantly lower in tumors of grade III and IV and was associated with IDH1 wild-type gliomas and a worse prognosis of patient overall survival. Additionally, a positive correlation was observed between miR-181a levels and functional status and QoL of glioma patients. Therefore, miR-181a is a unique molecule that plays an important role in gliomagenesis, and is also associated with changes in patients’ quality of life.
Collapse
|