1
|
Mathieson L, Koppensteiner L, Dorward DA, O'Connor RA, Akram AR. Cancer-associated fibroblasts expressing fibroblast activation protein and podoplanin in non-small cell lung cancer predict poor clinical outcome. Br J Cancer 2024; 130:1758-1769. [PMID: 38582812 PMCID: PMC11130154 DOI: 10.1038/s41416-024-02671-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are a dominant cell type in the stroma of non-small cell lung cancer (NSCLC). Fibroblast heterogeneity reflects subpopulations of CAFs, which can influence prognosis and treatment efficacy. We describe the subtypes of CAFs in NSCLC. METHODS Primary human NSCLC resections were assessed by flow cytometry and multiplex immunofluorescence for markers of fibroblast activation which allowed identification of CAF subsets. Survival data were analysed for our NSCLC cohort consisting of 163 patients to understand prognostic significance of CAF subsets. RESULTS We identified five CAF populations, termed CAF S1-S5. CAF-S5 represents a previously undescribed population, and express FAP and PDPN but lack the myofibroblast marker αSMA, whereas CAF-S1 populations express all three. CAF-S5 are spatially further from tumour regions then CAF-S1 and scRNA data demonstrate an inflammatory phenotype. The presence of CAF-S1 or CAF-S5 is correlated to worse survival outcome in NSCLC, despite curative resection, highlighting the prognostic importance of CAF subtypes in NSCLC. TCGA data suggest the predominance of CAF-S5 has a poor prognosis across several cancer types. CONCLUSION This study describes the fibroblast heterogeneity in NSCLC and the prognostic importance of the novel CAF-S5 subset where its presence correlates to worse survival outcome.
Collapse
Affiliation(s)
- Layla Mathieson
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 5 Little France Dr, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 5 Little France Dr, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Lilian Koppensteiner
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 5 Little France Dr, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 5 Little France Dr, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - David A Dorward
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Richard A O'Connor
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 5 Little France Dr, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 5 Little France Dr, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Ahsan R Akram
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 5 Little France Dr, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK.
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 5 Little France Dr, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK.
- Cancer Research UK Scotland Centre, Institute of Genetics & Cancer, The University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK.
| |
Collapse
|