1
|
Liu X, Liu J, Zeng Y, Qiao D, Wang Q. AL365181.3 as a novel prognostic biomarker for lung adenocarcinoma. Sci Rep 2025; 15:5853. [PMID: 39966648 PMCID: PMC11836369 DOI: 10.1038/s41598-025-90008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
As a lncRNA, AL365181.3 is aberrantly expressed in multiple cancer types, including lung adenocarcinoma (LUAD). However, the biological process underlying the ability of AL365181.3 to promote the progression of LUAD is unclear. Here, the pancancer expression level of AL365181.3 was analyzed via the TCGA and GTEx databases, as well as its clinical characteristics and prognostic value. We investigated the biological functions of AL365181.3 in LUAD using various in vitro and in vivo assays. We found that AL365181.3 was significantly more highly expressed in many types of cancer tissues, including LUAD tissues, than in adjacent normal tissues. LUAD patients with high AL365181.3 expression had poor prognoses. Functional enrichment analyses indicated that AL365181.3 is involved in the regulation of metabolism, MAPK signaling and other tumor regulatory signaling pathways. Finally, we found that AL365181.3 knockdown reduced the proliferation, migration and invasion capacity of LUAD cells, and AL365181.3 knockdown resulted in a reduced in vivo tumorigenic capacity of LUAD cells. These findings provide a comprehensive understanding of the role of AL365181.3 in LUAD.
Collapse
Affiliation(s)
- Xiaoying Liu
- Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Department of Thoracic Surgery, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New Area, Shanghai, 201318, China
| | - Jinlong Liu
- Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Department of Thoracic Surgery, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New Area, Shanghai, 201318, China
| | - Yingou Zeng
- Department of Thoracic Surgery, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New Area, Shanghai, 201318, China
| | - Di Qiao
- Department of Thoracic Surgery, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New Area, Shanghai, 201318, China
| | - Qiang Wang
- Department of Thoracic Surgery, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New Area, Shanghai, 201318, China.
| |
Collapse
|
2
|
Liu X, Wang C, Zhang X, Zhang R. LEF1 is associated with immunosuppressive microenvironment of patients with lung adenocarcinoma. Medicine (Baltimore) 2024; 103:e39892. [PMID: 39465830 PMCID: PMC11479531 DOI: 10.1097/md.0000000000039892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/11/2024] [Indexed: 10/29/2024] Open
Abstract
Wnt/β-Catenin pathway plays an important role in the occurrence and progression of malignant tumors, especially PD-L1-mediated tumor immune evasion. However, the role of TCF/LEF, an important member of the Wnt/β-catenin pathway, in the tumor immunosuppressive microenvironment of lung adenocarcinoma (LUAD) remains unknown. LUAD tissue-coding RNA expression data from The Cancer Genome Atlas and TIMER databases were used to analyze the expression of TCF/LEF transcription factors and their correlation with various immune cell infiltration. Immunohistochemistry and immunofluorescence were used to detect tissue protein staining in 105 patients with LUAD. LEF1, TCF7, TCF7L1 and TCF7L2 were all aberrantly expressed in the tumor tissues of LUAD patients with the data from The Cancer Genome Atlas (TCGA) database, tumor immune estimation resource (TIMER) database and results of immunohistochemistry, but only LEF1 expression was associated with 5-year overall survival in LUAD patients. LEF1 protein expression was associated with advanced tumor node metastasis (TNM) stage, lymphatic metastasis and local invasion in 105 cases LUAD patients. At the same time, LEF1 mRNA expression was also associated with immunosuppressive microenvironment in LUAD patients with the data from TCGA database and TIMER database. Results of immunohistochemistry and immunofluorescence in tumor tissues of 105 cases LUAD patients showed that there was a positively correlation between LEF1 protein expression and the infiltration of M2 macrophages and Treg cells. LEF1 was highly expressed in tumor tissues of LUAD patients, and highly expressed LEF1 was associated with the immunosuppressive microenvironment of LUAD patients.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Chunlou Wang
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiaoling Zhang
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Rongju Zhang
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
3
|
Han Z, Luo W, Shen J, Xie F, Luo J, Yang X, Pang T, Lv Y, Li Y, Tang X, He J. Non-coding RNAs are involved in tumor cell death and affect tumorigenesis, progression, and treatment: a systematic review. Front Cell Dev Biol 2024; 12:1284934. [PMID: 38481525 PMCID: PMC10936223 DOI: 10.3389/fcell.2024.1284934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/08/2024] [Indexed: 11/02/2024] Open
Abstract
Cell death is ubiquitous during development and throughout life and is a genetically determined active and ordered process that plays a crucial role in regulating homeostasis. Cell death includes regulated cell death and non-programmed cell death, and the common types of regulatory cell death are necrosis, apoptosis, necroptosis, autophagy, ferroptosis, and pyroptosis. Apoptosis, Necrosis and necroptosis are more common than autophagy, ferroptosis and pyroptosis among cell death. Non-coding RNAs are regulatory RNA molecules that do not encode proteins and include mainly microRNAs, long non-coding RNAs, and circular RNAs. Non-coding RNAs can act as oncogenes and tumor suppressor genes, with significant effects on tumor occurrence and development, and they can also regulate tumor cell autophagy, ferroptosis, and pyroptosis at the transcriptional or post-transcriptional level. This paper reviews the recent research progress on the effects of the non-coding RNAs involved in autophagy, ferroptosis, and pyroptosis on tumorigenesis, tumor development, and treatment, and looks forward to the future direction of this field, which will help to elucidate the molecular mechanisms of tumorigenesis and tumor development, as well as provide a new vision for the treatment of tumors.
Collapse
Affiliation(s)
- Zeping Han
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Rehabilitation Medicine Institute of Panyu District, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jian Shen
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Fangmei Xie
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jinggen Luo
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Xiang Yang
- Department of Gynaecology and Obstetrics, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Ting Pang
- Clinical Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yubing Lv
- Clinical Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yuguang Li
- He Xian Memorial Hospital, Southern Medical University, Guangzhou, China
| | - Xingkui Tang
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jinhua He
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Rehabilitation Medicine Institute of Panyu District, Guangzhou, China
| |
Collapse
|
4
|
Chen WS, Zhang X, Zhao ZF, Che XM. MBNL1‑AS1 attenuates tumor cell proliferation by regulating the miR‑29c‑3p/BVES signal in colorectal cancer. Oncol Rep 2023; 50:191. [PMID: 37711058 PMCID: PMC10523431 DOI: 10.3892/or.2023.8628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/05/2023] [Indexed: 09/16/2023] Open
Abstract
Dysregulation of long non‑coding RNAs (lncRNAs) is involved in the development of colorectal cancer (CRC). In the present study, the identification of muscle blind like splicing regulator 1 antisense RNA 1 (MBNL1‑AS1) lncRNA was reported. Firstly, Cell Counting Kit‑8, EdU and colony formation assays were uesed to explore the role of MBNL1‑AS1 in regulating the proliferation of CRC cells. According to TCGA database, it was found that MBNL1‑AS1 was correlated with microRNA (miR)‑29c‑3p and blood vessel epicardial substance (BVES) expression in CRC cells. Then, the regulation among MBNL1‑AS1, miR‑29C‑3P and BVES was detected by dual luciferase reporter assay and the function of MBNL1‑AS1/miR‑29C‑3P/BVES axis was explored by rescue assay. The results demonstrated that MBNL1‑AS1 expression was decreased in CRC and was associated with the size of tumors derived from patients with CRC. Functionally, the upregulation of MBNL1‑AS1 suppressed CRC cell proliferation in vitro and inhibited tumor growth in vivo, while knockdown of MBNL1‑AS1 expression caused the opposite effects. MBNL1‑AS1 expression correlated with BVES expression in CRC tissues and MBNL1‑AS1 enhanced the stability of BVES mRNA by functioning as a competing endogenous RNA to sponge miR‑29c‑3p; the latter directly targeted MBNL1‑AS1 and BVES mRNA 3'UTR. Collectively, the results indicated that MBNL1‑AS1 suppressed CRC cell proliferation by regulating miR‑29c‑3p/BVES signaling, suggesting that the MBNL1‑AS1/miR‑29c‑3p/BVES axis may be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Wang-Sheng Chen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xu Zhang
- Department of Geriatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zheng-Fei Zhao
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiang-Ming Che
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| |
Collapse
|
5
|
Yu S, Tang L, Zhang Q, Li W, Yao S, Cai Y, Cheng H. A cuproptosis-related lncRNA signature for predicting prognosis and immunotherapy response of lung adenocarcinoma. Hereditas 2023; 160:31. [PMID: 37482612 PMCID: PMC10364405 DOI: 10.1186/s41065-023-00293-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Copper-induced cell death (cuproptosis) is a new regulatory cell death mechanism. Long noncoding RNAs (lncRNAs) are related to tumor immunity and metastasis. However, the correlation of cuproptosis-related lncRNAs with the immunotherapy response and prognosis of lung adenocarcinoma (LUAD) patients is not clear. METHODS We obtained the clinical characteristics and transcriptome data from TCGA-LUAD dataset (containing 539 LUAD and 59 paracancerous tissues). By utilizing LASSO-penalized Cox regression analysis, we identified a prognostic signature composed of cuproptosis-related lncRNAs. This signature was then utilized to segregate patients into two different risk categories based on their respective risk scores. The identification of differentially expressed genes (DEGs) between high- and low-risk groups was carried out using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We evaluated the immunotherapy response by analyzing tumor mutational burden (TMB), immunocyte infiltration and Tumor Immune Dysfunction and Exclusion (TIDE) web application. The "pRRophetic" R package was utilized to conduct further screening of potential therapeutic drugs for their sensitivity. RESULTS We ultimately identified a prognostic risk signature that includes six cuproptosis-related lncRNAs (AP003778.1, AC011611.2, CRNDE, AL162632.3, LY86-AS1, and AC090948.1). Compared with clinical characteristics, the signature was significantly correlated with prognosis following the control of confounding variables (HR = 2.287, 95% CI = 1.648-3.174, p ˂ 0.001), and correctly predicted 1-, 2-, and 3-year overall survival (OS) rates (AUC value = 0.725, 0.715, and 0.662, respectively) in LUAD patients. In terms of prognosis, patients categorized as low risk exhibited more positive results in comparison to those in the high-risk group. The enrichment analysis showed that the two groups had different immune signaling pathways. Immunotherapy may offer a more appropriate treatment option for high-risk patients due to their higher TMB and lower TIDE scores. The higher risk score may demonstrate increased sensitivity to bexarotene, cisplatin, epothilone B, and vinorelbine. CONCLUSIONS Based on cuproptosis-related lncRNAs, we constructed and validated a novel risk signature that may be used to predict immunotherapy efficacy and prognosis in LUAD patients.
Collapse
Affiliation(s)
- Sheng Yu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
- Shenzhen Clinical Medical School, Southern Medical University, Shenzhen, Guangdong, China
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Lingxue Tang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Qianqian Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Wen Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Senbang Yao
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Yinlian Cai
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Huaidong Cheng
- Shenzhen Clinical Medical School, Southern Medical University, Shenzhen, Guangdong, China.
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, China.
| |
Collapse
|
6
|
Zhang P, Pei S, Liu J, Zhang X, Feng Y, Gong Z, Zeng T, Li J, Wang W. Cuproptosis-related lncRNA signatures: Predicting prognosis and evaluating the tumor immune microenvironment in lung adenocarcinoma. Front Oncol 2023; 12:1088931. [PMID: 36733364 PMCID: PMC9887198 DOI: 10.3389/fonc.2022.1088931] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Background Cuproptosis, a unique kind of cell death, has implications for cancer therapy, particularly lung adenocarcinoma (LUAD). Long non-coding RNAs (lncRNAs) have been demonstrated to influence cancer cell activity by binding to a wide variety of targets, including DNA, RNA, and proteins. Methods Cuproptosis-related lncRNAs (CRlncRNAs) were utilized to build a risk model that classified patients into high-and low-risk groups. Based on the CRlncRNAs in the model, Consensus clustering analysis was used to classify LUAD patients into different subtypes. Next, we explored the differences in overall survival (OS), the tumor immune microenvironment (TIME), and the mutation landscape between different risk groups and molecular subtypes. Finally, the functions of LINC00592 were verified through in vitro experiments. Results Patients in various risk categories and molecular subtypes showed statistically significant variations in terms of OS, immune cell infiltration, pathway activity, and mutation patterns. Cell experiments revealed that LINC00592 knockdown significantly reduced LUAD cell proliferation, invasion, and migration ability. Conclusion The development of a trustworthy prediction model based on CRlncRNAs may significantly aid in the assessment of patient prognosis, molecular features, and therapeutic modalities and may eventually be used in clinical applications.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianlan Liu
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanlong Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeitian Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianyu Zeng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Tianyu Zeng, ; Jun Li, ; Wei Wang,
| | - Jun Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Tianyu Zeng, ; Jun Li, ; Wei Wang,
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Tianyu Zeng, ; Jun Li, ; Wei Wang,
| |
Collapse
|
7
|
Wang M, Zhang Y, Chang W, Zhang L, Syrigos KN, Li P. Noncoding RNA-mediated regulation of pyroptotic cell death in cancer. Front Oncol 2022; 12:1015587. [PMID: 36387211 PMCID: PMC9659888 DOI: 10.3389/fonc.2022.1015587] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Pyroptosis is a newly discovered form of programmed cell death, which is manifested by DNA fragmentation, cell swelling, cell membrane rupture and leakage of cell contents. Previous studies have demonstrated that pyroptosis is tightly associated with the initiation and development of various cancers, whereas the molecular mechanisms underlying pyroptosis remain obscure. Noncoding RNAs (ncRNAs) are a type of heterogeneous transcripts that are broadly expressed in mammalian cells. Owing to their potency of regulating gene expression, ncRNAs play essential roles in physiological and pathological processes. NcRNAs are increasingly acknowledged as important regulators of the pyroptosis process. Importantly, the crosstalk between ncRNAs and pyroptosis affects various hallmarks of cancer, including cell growth, survival, metastasis and therapeutic resistance. The study of the involvement of pyroptosis-associated ncRNAs in cancer pathobiology has become a hot area in recent years, while there are limited reviews on this topic. Herein, we provide an overview of the complicated roles of ncRNAs, mainly including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), in modulating pyroptosis, with a focus on the underlying mechanisms of the ncRNA-pyroptosis axis in cancer pathogenesis. Finally, we discuss the potential applications and challenges of exploiting pyroptosis-regulating ncRNAs as molecular biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Konstantinos N. Syrigos
- Third Department of Internal Medicine and Laboratory, National & Kapodistrian University of Athens, Athens, Greece
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Zhou W, Zhang W. A novel pyroptosis-related lncRNA prognostic signature associated with the immune microenvironment in lung squamous cell carcinoma. BMC Cancer 2022; 22:694. [PMID: 35739504 PMCID: PMC9229145 DOI: 10.1186/s12885-022-09790-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
Background A growing body of evidence suggests that pyroptosis-related lncRNAs (PRncRNAs) are associated with the prognoses of tumor patients and their tumor immune microenvironments. However, the function of PRlncRNAs in lung squamous cell carcinoma (LUSC) remains unclear. Methods We downloaded the transcriptome and clinical information of 551 LUSC samples from the The Cancer Genome Atlas (TCGA) database and randomly separated patients with complete information into two cohorts. Based on the training cohort, we developed a pyroptosis-related signature. We then examined the signature in the test cohort and all retained patients. We also clustered two risk groups in each cohort according to the signature and performed survival analysis, functional analysis, tumor immune microenvironment analysis and drug sensitivity analysis. Results A prognostic signature containing five PRlncRNAs (AP001189.1, PICART1, LINC02555, AC010422.4, and AL606469.1) was developed. A principal component analysis (PCA) indicated better differentiation between patients with different risk scores. Kaplan–Meier (K–M) analysis demonstrated poorer survival among patients with higher risk scores (P < 0.001). A receiver operating characteristic (ROC) curve analysis provided evidence confirming the accuracy of the signature, and univariate (p = 0.005) and multivariate (p = 0.008) Cox regression analyses confirmed the independent value of the risk score in prognoses. Clinical subgroup validation indicated that the signature was more suitable for patients with early-stage LUSC. We also created a nomogram to increase the accuracy of the prediction. Moreover, functional analysis revealed that pathways related to tumor development and pyroptosis were enriched in the high-risk group. Furthermore, the prognostic signature was proven to be a predictor of sensitivity to immunotherapy and chemotherapy. Conclusions We developed a novel pyroptosis-associated signature with independent value for the prognosis of LUSC patients. PRlncRNAs are closely associated with the tumor immune microenvironment in LUSC and might offer new directions for immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09790-z.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, 330006, Nanchang, China.,Jiangxi medical college, Nanchang University, 330006, Nanchang, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, 330006, Nanchang, China.
| |
Collapse
|