1
|
Ghosh M, Lingaraju SM, C R K, Balaram G, Kodandapani R, E V, K V, N S, H D, Patil S, Thungappa SC, Bhattacharjee S, P S S, Dasgupta R, Naseer M, B J S, Rao V, Ramaswamy V, Naik R, Babu G, Ravichandran A, Bahadur U, Murugan K, B M, Reddy L, Basavalinga S A. Comprehensive genomic profiling reveals a unique genomic landscape in solid tumors in an Indian cancer cohort of 1000 patients: a single institutional experience. Sci Rep 2025; 15:12455. [PMID: 40216820 PMCID: PMC11992052 DOI: 10.1038/s41598-025-94762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
The use of Comprehensive Genomic Profiling (CGP) in clinical practice to detect broad-spectrum therapeutic, prognostic, and predictive biomarkers, including tumor mutational burden (TMB), microsatellite instability (MSI), somatic BRCA (sBRCA) and other homologous recombination repair genes (HRRs) provides a more cost-efficient and tissue-preserving approach than serial single-biomarker analysis. A total of 1000 biopsy-proven cancer patients at the HCG cancer center were profiled in an IRB-approved prospective study. The findings were discussed in the multidisciplinary molecular tumor board (MTB), and recommendations were documented in electronic medical records (EMRs) for clinical management and follow-up. A total of 1747 genomic alterations were detected (mean 1.7 mutations/sample), with 80% of patients having genetic alterations with therapeutic and prognostic implications (Tier I-32%, Tier II-50%). CGP revealed a greater number of druggable genes (47%) than did small panels (14%). Tumor-agnostic markers for immunotherapy (IO) were observed in 16% of the current cohort, based on which IO was initiated. In 13.5% of the cohort, alterations in the HRR pathway including sBRCA (5.5%) were detected providing an option for treatment with platinum or PARP inhibitors. Other significant alterations included those in EGFR, KRAS/BRAF, PIK3CA, cKIT, PDGFRA, ARID1A, ARID2, and FGFR. RNA sequencing revealed 55 + RNA alterations, including those in TMPRSS-ERG, RPS6KB1-VMP1, EML4-ALK, NTRK, PDGFRA and EWSR. Clinical outcome data were available via EMR for 618 patients (62%), out of whom 419 patients had druggable mutations (67%; 95% CI 88.9-93.9%) and 39 patients had 1 or more mutations with prognostic implications. However, only 200 patients (44%; 95% CI 39.1-48.1%) were included in the MTB discussion. Based on genomics reports, the treatment regimen was changed for 137 and 61 patients with and without clinical inputs from the MTB, respectively. The overall change in therapy based on CGP in the clinical cohort was 43%, which was greater in patients enrolled for MTB than in patients who had not undergone MTB. At the interim analysis, with a median follow-up of 18 months (range 12-24 months) after the change in therapy as per genomics report, 97 patients (71%) were found to be alive thus establishing the importance of CGP and MTB in personalized genomics-driven treatment.
Collapse
Affiliation(s)
- Mithua Ghosh
- Triesta Sciences, A Unit of HeathCare Global Enterprises Limited, HCG Towers, Tower 1, #8P Kalinga Rao Road, Sampangiram Nagar, Bangalore, Karnataka, 560027, India.
| | - Sheela Mysore Lingaraju
- Triesta Sciences, A Unit of HeathCare Global Enterprises Limited, HCG Towers, Tower 1, #8P Kalinga Rao Road, Sampangiram Nagar, Bangalore, Karnataka, 560027, India
| | - Krishna C R
- Triesta Sciences, A Unit of HeathCare Global Enterprises Limited, HCG Towers, Tower 1, #8P Kalinga Rao Road, Sampangiram Nagar, Bangalore, Karnataka, 560027, India
| | - Gautam Balaram
- Triesta Sciences, A Unit of HeathCare Global Enterprises Limited, HCG Towers, Tower 1, #8P Kalinga Rao Road, Sampangiram Nagar, Bangalore, Karnataka, 560027, India
| | - Ramya Kodandapani
- Triesta Sciences, A Unit of HeathCare Global Enterprises Limited, HCG Towers, Tower 1, #8P Kalinga Rao Road, Sampangiram Nagar, Bangalore, Karnataka, 560027, India
| | - Vijay E
- Triesta Sciences, A Unit of HeathCare Global Enterprises Limited, HCG Towers, Tower 1, #8P Kalinga Rao Road, Sampangiram Nagar, Bangalore, Karnataka, 560027, India
| | - Vijay K
- Triesta Sciences, A Unit of HeathCare Global Enterprises Limited, HCG Towers, Tower 1, #8P Kalinga Rao Road, Sampangiram Nagar, Bangalore, Karnataka, 560027, India
| | - Suhas N
- Triesta Sciences, A Unit of HeathCare Global Enterprises Limited, HCG Towers, Tower 1, #8P Kalinga Rao Road, Sampangiram Nagar, Bangalore, Karnataka, 560027, India
| | - Devika H
- Triesta Sciences, A Unit of HeathCare Global Enterprises Limited, HCG Towers, Tower 1, #8P Kalinga Rao Road, Sampangiram Nagar, Bangalore, Karnataka, 560027, India
| | - Shekar Patil
- HealthCare Global Enterprises Limited, Bangalore, Karnataka, 560027, India
| | | | | | - Sridhar P S
- HealthCare Global Enterprises Limited, Bangalore, Karnataka, 560027, India
| | - Roshni Dasgupta
- HealthCare Global Enterprises Limited, Bangalore, Karnataka, 560027, India
| | - Mohammed Naseer
- HealthCare Global Enterprises Limited, Bangalore, Karnataka, 560027, India
| | - Srinivas B J
- HealthCare Global Enterprises Limited, Bangalore, Karnataka, 560027, India
| | - Vishal Rao
- HealthCare Global Enterprises Limited, Bangalore, Karnataka, 560027, India
| | - Veena Ramaswamy
- Triesta Sciences, A Unit of HeathCare Global Enterprises Limited, HCG Towers, Tower 1, #8P Kalinga Rao Road, Sampangiram Nagar, Bangalore, Karnataka, 560027, India
| | - Radheshyam Naik
- HealthCare Global Enterprises Limited, Bangalore, Karnataka, 560027, India
| | - Govind Babu
- HealthCare Global Enterprises Limited, Bangalore, Karnataka, 560027, India
| | | | | | - Krithika Murugan
- HealthCare Global Enterprises Limited, Bangalore, Karnataka, 560027, India
| | - Mahesh B
- HealthCare Global Enterprises Limited, Bangalore, Karnataka, 560027, India
| | - Lohith Reddy
- HealthCare Global Enterprises Limited, Bangalore, Karnataka, 560027, India
| | | |
Collapse
|
2
|
Kim M, Park GS, Lee KY, Moon SW, Sung YE. Role of TP53 Mutations and EGFR Amplification in Risk Stratification of Early-Stage EGFR-Mutated Non-Small Cell Lung Cancer With Immunohistochemistry as a Surrogate Marker. Thorac Cancer 2025; 16:e70058. [PMID: 40165604 PMCID: PMC11959145 DOI: 10.1111/1759-7714.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/25/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Non-small cell lung carcinoma (NSCLC) is a leading cause of cancer-related mortality, with recurrence risks posing significant challenges in early-stage disease management. While epidermal growth factor receptor (EGFR) mutations are common, the role of concurrent genetic alterations remains underexplored, and findings have often been inconsistent, particularly in early-stage tumors. METHODS We retrospectively analyzed 424 EGFR-mutated NSCLC patients diagnosed from 2017 to 2022. Next-generation sequencing (NGS) was used to identify genetic alterations, and immunohistochemistry (IHC) was employed to correlate TP53 mutations and EGFR amplification with protein expression. Survival outcomes were assessed using Kaplan-Meier and Cox regression analyses, while predictive cutoffs were determined with receiver operating characteristic (ROC) curve analysis. RESULTS TP53 mutations and EGFR amplification were more prevalent in Stages 2-4 compared to Stage 1 (p < 0.001 and 0.005, respectively). In Stage 1, TP53 mutations, particularly exon 4 and frameshift/nonsense types, were associated with worse overall survival (OS) and disease-free survival (DFS). EGFR amplification was linked to shorter DFS in Stage 1 (p = 0.006). Both alterations correlated with aggressive pathological features, including advanced N stage, lymphovascular invasion, and high histological grade. IHC cutoffs of 15% for TP53 and H-score ≥ 180 for EGFR amplification demonstrated high predictive accuracy (AUC = 0.981 and 0.936, respectively). CONCLUSION Specific subtypes of TP53 mutations and EGFR amplification are important prognostic markers in early-stage NSCLC. IHC offers a practical surrogate for genetic testing, aiding in risk stratification and guiding adjuvant therapy decisions for high-risk patients. Larger validation studies are warranted.
Collapse
Affiliation(s)
- Meejeong Kim
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | - Gyeong Sin Park
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | - Kyo Young Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | - Seok Whan Moon
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | - Yeoun Eun Sung
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| |
Collapse
|
3
|
Herbst RS, John T, Grohé C, Goldman JW, Kato T, Laktionov K, Bonanno L, Tiseo M, Majem M, Dómine M, Ahn MJ, Kowalski DM, Pérol M, Sriuranpong V, Özgüroğlu M, Bhetariya P, Markovets A, Rukazenkov Y, Muldoon C, Robichaux J, Hartmaier R, Tsuboi M, Wu YL. Molecular residual disease analysis of adjuvant osimertinib in resected EGFR-mutated stage IB-IIIA non-small-cell lung cancer. Nat Med 2025:10.1038/s41591-025-03577-y. [PMID: 40097663 DOI: 10.1038/s41591-025-03577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
Osimertinib-a third-generation epidermal growth factor receptor-tyrosine kinase inhibitor-is recommended as adjuvant therapy for resected stage IB-IIIA epidermal growth factor receptor-mutated non-small-cell lung cancer, based on significant disease-free survival (DFS) and overall survival improvement shown in the previously reported phase 3 ADAURA trial. A trend toward an increased DFS event rate after completion of 3 years adjuvant treatment in ADAURA suggests that some patients may benefit from longer adjuvant osimertinib treatment. We therefore explored whether tumor-informed, circulating tumor DNA-based, molecular residual disease (MRD) could predict recurrence in an exploratory post hoc analysis of 220 patients (n = 112 osimertinib; n = 108 placebo) from ADAURA. MRD preceded imaging DFS events in this study by a median of 4.7 (95% confidence interval, 2.2-5.6) months. DFS and MRD event-free rate at 36 months was 86% versus 36% for patients in the osimertinib versus placebo groups (hazard ratio, 0.23 (95% confidence interval, 0.15-0.36)). In the osimertinib group, DFS or MRD events were detected in 28 (25%) patients; most events occurred following osimertinib cessation (19 of 28, 68%) and within 12 months of stopping osimertinib (11 of 19, 58%). At 24 months after osimertinib, the DFS and MRD event-free rate was 66%. In this study, MRD preceded DFS events in most patients across both arms. DFS and MRD event-free status was maintained for most patients during adjuvant osimertinib treatment and posttreatment follow-up, with most MRD or DFS events occurring after osimertinib treatment discontinuation or completion. MRD detection could potentially identify patients who may benefit from longer adjuvant osimertinib, although this requires clinical confirmation. ClinicalTrials.gov identifier: NCT02511106 .
Collapse
Affiliation(s)
- Roy S Herbst
- Medical Oncology and Hematology, Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA.
| | - Thomas John
- Department of Medical Oncology and Hematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Christian Grohé
- Klinik für Pneumologie, Evangelische Lungenklinik Berlin Buch, Berlin, Germany
| | - Jonathan W Goldman
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Terufumi Kato
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Konstantin Laktionov
- Federal State Budgetary Institution 'N. N. Blokhin National Medical Research Center of Oncology' of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Laura Bonanno
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Medical Oncology 2, Istituto Oncologico Veneto IOV, IRCCS, Padova, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma and Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Margarita Majem
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Manuel Dómine
- Department of Medical Oncology, Hospital Universitario Fundación Jiménez Díaz, IIS-FJD, Madrid, Spain
| | - Myung-Ju Ahn
- Department of Hemato-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dariusz M Kowalski
- Department of Lung Cancer and Thoracic Tumours, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maurice Pérol
- Department of Medical Oncology, Léon-Bérard Cancer Center, Lyon, France
| | - Virote Sriuranpong
- Department of Medicine, Medical Oncology Unit, Faculty of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Mustafa Özgüroğlu
- Department of Internal Medicine, Division of Medical Oncology, Clinical Trial Unit, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | | | | | - Yuri Rukazenkov
- Late-stage Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | - Ryan Hartmaier
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Masahiro Tsuboi
- Department of Thoracic Surgery and Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Zhang C, Yang C, Shi Q. Effects of Tp53 Gene Mutations on the Survival of Non-Small Cell Lung Cancer (NSCLC); A Short Review. Cancer Manag Res 2025; 17:65-82. [PMID: 39830995 PMCID: PMC11742633 DOI: 10.2147/cmar.s495006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/14/2024] [Indexed: 01/22/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide. Mutations within the TP53 gene represent critical molecular events in NSCLC, contributing to the tumorigenesis in the pulmonary epithelial tissues. TP53 is a widely researched prognostic indicator in NSCLC, and pathological investigations have revealed a weak to mild negative predictive effect for TP53. Mutated p53 protein may have some pro-oncogenic impact, and the variations may change tumor inhibitors into oncogenes. The diverse mutational spectrum of TP53 in NSCLC with different mutations is linked to varied treatment responses. In contrast, first-line chemotherapeutics to this progress are limited, however, randomized trials with new chemotherapeutics have shown significant survival benefits. This review highlighted the critical influence of TP53 gene mutations on pathological-sensitivity and overall survival outcomes in NSCLC. Further research is needed to explore TP53 mutation-specific pathways and their effects on NSCLC progression and treatment effectiveness.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Oncology, Anhui Chest Hospital, Hefei, 230022, People’s Republic of China
- Anhui Medical University Clinical College of Chest, Hefei, 230022, People’s Republic of China
| | - Chao Yang
- Department of Urology, Anhui Provincial Children’s Hospital, Hefei, 230022, People’s Republic of China
| | - Qingming Shi
- Department of Oncology, Anhui Chest Hospital, Hefei, 230022, People’s Republic of China
- Anhui Medical University Clinical College of Chest, Hefei, 230022, People’s Republic of China
| |
Collapse
|
5
|
He J, Wang A, Zhao Q, Zou Y, Zhang Z, Sha N, Hou G, Zhou B, Yang Y, Chen T, Zhao Y, Jiang Y. RNAi screens identify HES4 as a regulator of redox balance supporting pyrimidine synthesis and tumor growth. Nat Struct Mol Biol 2024; 31:1413-1425. [PMID: 38769389 DOI: 10.1038/s41594-024-01309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/08/2024] [Indexed: 05/22/2024]
Abstract
NADH/NAD+ redox balance is pivotal for cellular metabolism. Systematic identification of NAD(H) redox regulators, although currently lacking, would help uncover unknown effectors critically implicated in the coordination of growth metabolism. In this study, we performed a genome-scale RNA interference (RNAi) screen to globally survey the genes involved in redox modulation and identified the HES family bHLH transcription factor HES4 as a negative regulator of NADH/NAD+ ratio. Functionally, HES4 is shown to be crucial for maintaining mitochondrial electron transport chain (ETC) activity and pyrimidine synthesis. More specifically, HES4 directly represses transcription of SLC44A2 and SDS, thereby inhibiting mitochondrial choline oxidation and cytosolic serine deamination, respectively, which, in turn, ensures coenzyme Q reduction capacity for DHODH-mediated UMP synthesis and serine-derived dTMP production. Accordingly, inhibition of choline oxidation preserves mitochondrial serine catabolism and ETC-coupled redox balance. Furthermore, HES4 protein stability is enhanced under EGFR activation, and increased HES4 levels facilitate EGFR-driven tumor growth and predict poor prognosis of lung adenocarcinoma. These findings illustrate an unidentified mechanism, underlying pyrimidine biosynthesis in the intersection between serine and choline catabolism, and underscore the physiological importance of HES4 in tumor metabolism.
Collapse
Affiliation(s)
- Jing He
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aoxue Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Qin Zhao
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yejun Zou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Nannan Sha
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guofang Hou
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Zhou
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Tao Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yuhui Jiang
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Rathor A, Malik PS, Tanwar P, Khurana S, Baskarane H, Pushpam D, Nambirajan A, Jain D. 'Plasma first' approach for detecting epidermal growth factor receptor mutation in advanced non-small cell lung carcinoma. J Cancer Res Clin Oncol 2024; 150:371. [PMID: 39066920 PMCID: PMC11283418 DOI: 10.1007/s00432-024-05828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/31/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION The treatment approach for recently diagnosed advanced non-small cell lung cancer (NSCLC) with EGFR mutations primarily relies on confirming the tissue diagnosis as non-squamous NSCLC. This routine clinical practice of tissue diagnosis imposes several barriers and delays in turnaround time (TAT) for biomarker testing, significantly delaying the time to treatment. The objective of this study is to investigate the 'plasma first' approach for detection of EGFR mutation in advanced stage treatment naïve NSCLC patients. METHODS We prospectively collected blood samples of treatment naïve patients with clinical and radiological suspicion of advanced stage NSCLC prior to obtaining tissue biopsy. Plasma cfDNA was tested for EGFR mutation using two different methods. We compared the sensitivity and TAT of liquid biopsy with tissue biopsy. RESULTS In total, we analyzed plasma cell-free DNA (cfDNA) of 236 patients suspected of having advanced NSCLC for EGFR mutations. We observed a notably shorter turnaround time (TAT) of 3 days, which was significantly quicker compared to the 12-day TAT for tissue biopsy (p < 0.05). The ddPCR method had a sensitivity of 82.8%, which was higher than 66.34% sensitivity of ARMS-PCR. The current study also highlights that there is no significant difference in the clinical outcome of the patients whether treated based on liquid biopsy only or tissue biopsy (median progression-free survival of 11.56 vs. 11.9 months; p = 0.94). CONCLUSIONS Utilizing a 'plasma first' strategy, given its shorter turnaround time, strong positive concordance and comparable outcomes to tissue biopsy, emerges as a highly specific and reliable method for detecting EGFR mutations in advanced-stage NSCLC.
Collapse
Affiliation(s)
- Amber Rathor
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr.B.R.A.IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Department of Laboratory Oncology, Dr.B.R.A.IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Sachin Khurana
- Department of Medical Oncology, Dr.B.R.A.IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Hemavathi Baskarane
- Department of Medical Oncology, Dr.B.R.A.IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Deepam Pushpam
- Department of Medical Oncology, Dr.B.R.A.IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
7
|
Zhang Z, Xue J, Yang Y, Fang W, Huang Y, Zhao S, Luo F, Cao J, Zeng K, Ma W, Zhan J, Lu F, Zhang L, Zhao H. Influence of TP53 mutation on efficacy and survival in advanced EGFR-mutant non-small cell lung cancer patients treated with third-generation EGFR tyrosine kinase inhibitors. MedComm (Beijing) 2024; 5:e586. [PMID: 38832214 PMCID: PMC11144614 DOI: 10.1002/mco2.586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
TP53 comutation is related to poor prognosis of non-small cell lung cancer. However, there is limited study focusing on the structural influence of TP53 mutation on third-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) treatment. We retrospectively analyzed the clinical and molecular data of patients treated with third-generation EGFR-TKIs in two independent cohorts. A total of 117 patients from the Sun Yat-sen University Cancer Center (SYSUCC) and 141 patients from the American Association for Cancer Research Project GENIE database were included. In the SYSUCC cohort, TP53 comutations were found in 59 patients (50.4%) and were associated with poor median progress-free survival (mPFS) and median overall survival (mOS). The additional subtype analysis found that TP53 mutation in the alpha-helix region had shorter mOS compared with those with TP53 mutations in other regions in the SYSUCC cohort (mOS, 12.2 vs. 21.7 months; p = 0.027). Similar findings were confirmed in the GENIE cohort. Specifically, the presence of TP53 mutation in the alpha-helix region was an independent negative predictive factor for PFS [hazard ratio (HR) 2.05(1.01-4.18), p = 0.048] and OS [HR 3.62(1.60-8.17), p = 0.002] in the SYSUCC cohort. TP53 mutation in alpha-helix region was related to inferior clinical outcomes in patients treated with third-generation EGFR-TKIs.
Collapse
Affiliation(s)
- Zhonghan Zhang
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerGuangzhouChina
| | - Jinhui Xue
- Department of Clinical ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouChina
| | - Yunpeng Yang
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouChina
| | - Wenfeng Fang
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouChina
| | - Yan Huang
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouChina
| | - Shen Zhao
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouChina
| | - Fan Luo
- Department of Intensive Care UnitSun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouChina
| | - Jiaxin Cao
- Department of AnesthesiologySun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouChina
| | - Kangmei Zeng
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouChina
| | - Wenjuan Ma
- Department of Intensive Care UnitSun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouChina
| | - Jianhua Zhan
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerGuangzhouChina
| | - Feiteng Lu
- Department of HematologyOncology and Cancer ImmunologyCharité ‐ Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Li Zhang
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouChina
| | - Hongyun Zhao
- Department of Clinical ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouChina
| |
Collapse
|
8
|
Liu Z, Shen Y, Ni L, Jiang X, Tang Z, Xie J, Zheng Z. Study on the Mechanism of Yadanzi Oil in Treating Lung Cancer Based on Network Pharmacology and Molecular Docking Technology. ACS OMEGA 2024; 9:19117-19126. [PMID: 38708221 PMCID: PMC11064188 DOI: 10.1021/acsomega.3c10105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
Brucea javanica oil emulsion (BJOE) is a compound Chinese medicine used for treating various cancers, such as lung cancer. However, the exact mechanism of its antilung cancer active ingredient remains unclear. This study aims to explore and validate the effective active ingredients and mechanism of action of BJOE in the treatment of lung cancer through network pharmacology, molecular docking technology, and cell experiments. The results showed that there were 13 active ingredients, 136 target genes, and 42 disease target-coexpressed genes in BJOE. The molecular docking results indicated that the main active components of the oil emulsion, YD1 (β-sitosterol), YD2 (luteolin), and YD3 (bruceitol), could stably bind to TP53 and MAPK1. Furthermore, the commercially available β-sitosterol luteolin was used as a representative compound to conduct cell experiments to verify its anticancer activity and mechanism. It was found that luteolin can inhibit the proliferation better than β-sitosterol and the activity of lung cancer cells by regulating the expression of related proteins through the P53/MAPK1 signaling pathway. This study combines network pharmacology prediction with experiments to demonstrate the "multicomponent, multitarget, multipathway" approach of B. javanica oil emulsion in treating lung cancer.
Collapse
Affiliation(s)
- Zhoudi Liu
- Department
of Pharmacy, Shaoxing People’s Hospital, Shaoxing, Zhejiang 312035, China
| | - Yiwei Shen
- Chemical
Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lianli Ni
- Chemical
Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiunan Jiang
- Department
of Pharmacy, Dongyang People’s Hospital, Zhejiang, Dongyang 322100, China
| | - Zhihua Tang
- Department
of Pharmacy, Shaoxing People’s Hospital, Shaoxing, Zhejiang 312035, China
| | - Jingwen Xie
- Department
of Health, Chongqing Industry & Trade
Polytechnic, Chongqing 408000, China
| | - Zhiwei Zheng
- Chemical
Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
9
|
Menzel M, Kirchner M, Kluck K, Ball M, Beck S, Allgäuer M, Assmann C, Schnorbach J, Volckmar A, Tay TKY, Goldschmid H, Tan DSW, Thomas M, Kazdal D, Budczies J, Stenzinger A, Christopoulos P. Genomic heterogeneity at baseline is associated with T790M resistance mutations in EGFR-mutated lung cancer treated with the first-/second-generation tyrosine kinase inhibitors. J Pathol Clin Res 2024; 10:e354. [PMID: 38284983 PMCID: PMC10792701 DOI: 10.1002/cjp2.354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024]
Abstract
This study analyzed whether extended molecular profiling can predict the development of epidermal growth factor receptor (EGFR) gene T790M mutation, which is the most frequent resistance alteration in non-small cell lung cancer (NSCLC) after treatment with the first-/second-generation (1G/2G) EGFR inhibitors (tyrosine kinase inhibitors [TKIs]), but only weakly associated with clinical characteristics. Whole exome sequencing (WES) was performed on pretreatment tumor tissue with matched normal samples from NSCLC patients with (n = 25, detected in tissue or blood rebiopsies) or without (n = 14, negative tissue rebiopsies only) subsequent EGFR p.T790M mutation after treatment with 1G/2G EGFR TKI. Several complex genetic biomarkers were assessed using bioinformatic methods. After treatment with first-line afatinib (44%) or erlotinib/gefitinib (56%), median progression-free survival and overall survival were 12.1 and 33.7 months, respectively. Clinical and tumor genetic characteristics, including age (median, 66 years), sex (74% female), smoking (69% never/light smokers), EGFR mutation type (72% exon 19 deletions), and TP53 mutations (41%) were not significantly associated with T790M mutation (p > 0.05). By contrast, complex biomarkers including tumor mutational burden, the clock-like mutation signature SBS1 + 5, tumor ploidy, and markers of subclonality including mutant-allele tumor heterogeneity, subclonal copy number changes, and median tumor-adjusted variant allele frequency were significantly higher at baseline in tumors with subsequent T790M mutation (all p < 0.05). Each marker alone could predict subsequent development of T790M with an area under the curve (AUC) of 0.72-0.77, but the small number of cases did not allow confirmation of better performance for biomarker combinations in leave-one-out cross-validated logistic regression (AUC 0.69, 95% confidence interval: 0.50-0.87). Extended molecular profiling with WES at initial diagnosis reveals several complex biomarkers associated with subsequent development of T790M resistance mutation in NSCLC patients receiving first-/second-generation TKIs as the first-line therapy. Larger prospective studies will be necessary to define a forecasting model.
Collapse
Affiliation(s)
- Michael Menzel
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Martina Kirchner
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Klaus Kluck
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Markus Ball
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Susanne Beck
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Michael Allgäuer
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Christin Assmann
- Translational Lung Research Center (TLRC) HeidelbergMember of the German Center for Lung Research (DZL)HeidelbergGermany
- Department of Thoracic OncologyThoraxklinik and National Center for Tumor Diseases at Heidelberg University HospitalHeidelbergGermany
| | - Johannes Schnorbach
- Translational Lung Research Center (TLRC) HeidelbergMember of the German Center for Lung Research (DZL)HeidelbergGermany
- Department of Thoracic OncologyThoraxklinik and National Center for Tumor Diseases at Heidelberg University HospitalHeidelbergGermany
| | | | - Timothy Kwang Yong Tay
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
- Department of Anatomical PathologySingapore General HospitalSingapore
| | - Hannah Goldschmid
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Daniel SW Tan
- Department of Clinical Trials and Epidemiological SciencesNational Cancer CentreSingapore
| | - Michael Thomas
- Translational Lung Research Center (TLRC) HeidelbergMember of the German Center for Lung Research (DZL)HeidelbergGermany
- Department of Thoracic OncologyThoraxklinik and National Center for Tumor Diseases at Heidelberg University HospitalHeidelbergGermany
| | - Daniel Kazdal
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
- Translational Lung Research Center (TLRC) HeidelbergMember of the German Center for Lung Research (DZL)HeidelbergGermany
| | - Jan Budczies
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Albrecht Stenzinger
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
- Translational Lung Research Center (TLRC) HeidelbergMember of the German Center for Lung Research (DZL)HeidelbergGermany
| | - Petros Christopoulos
- Translational Lung Research Center (TLRC) HeidelbergMember of the German Center for Lung Research (DZL)HeidelbergGermany
- Department of Thoracic OncologyThoraxklinik and National Center for Tumor Diseases at Heidelberg University HospitalHeidelbergGermany
| |
Collapse
|
10
|
Shao J, Olsen RJ, Kasparian S, He C, Bernicker EH, Li Z. Cell-Free DNA 5-Hydroxymethylcytosine Signatures for Lung Cancer Prognosis. Cells 2024; 13:298. [PMID: 38391911 PMCID: PMC10886903 DOI: 10.3390/cells13040298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Accurate prognostic markers are essential for guiding effective lung cancer treatment strategies. The level of 5-hydroxymethylcytosine (5hmC) in tissue is independently associated with overall survival (OS) in lung cancer patients. We explored the prognostic value of cell-free DNA (cfDNA) 5hmC through genome-wide analysis of 5hmC in plasma samples from 97 lung cancer patients. In both training and validation sets, we discovered a cfDNA 5hmC signature significantly associated with OS in lung cancer patients. We built a 5hmC prognostic model and calculated the weighted predictive scores (wp-score) for each sample. Low wp-scores were significantly associated with longer OS compared to high wp-scores in the training [median 22.9 versus 8.2 months; p = 1.30 × 10-10; hazard ratio (HR) 0.04; 95% confidence interval (CI), 0.00-0.16] and validation (median 18.8 versus 5.2 months; p = 0.00059; HR 0.22; 95% CI: 0.09-0.57) sets. The 5hmC signature independently predicted prognosis and outperformed age, sex, smoking, and TNM stage for predicting lung cancer outcomes. Our findings reveal critical genes and signaling pathways with aberrant 5hmC levels, enhancing our understanding of lung cancer pathophysiology. The study underscores the potential of cfDNA 5hmC as a superior prognostic tool for guiding more personalized therapeutic strategies for lung cancer patients.
Collapse
Affiliation(s)
- Jianming Shao
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Randall J. Olsen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Saro Kasparian
- Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | | | - Zejuan Li
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
11
|
Meira DD, de Castro e Caetano MC, Casotti MC, Zetum ASS, Gonçalves AFM, Moreira AR, de Oliveira AH, Pesente F, Santana GM, de Almeida Duque D, Pereira GSC, de Castro GDSC, Pavan IP, Chagas JPS, Bourguignon JHB, de Oliveira JR, Barbosa KRM, Altoé LSC, Louro LS, Merigueti LP, Alves LNR, Machado MRR, Roque MLRO, Prates PS, de Paula Segáua SH, dos Santos Uchiya T, Louro TES, Daleprane VE, Guaitolini YM, Vicente CR, dos Reis Trabach RS, de Araújo BC, dos Santos EDVW, de Paula F, Lopes TJS, de Carvalho EF, Louro ID. Prognostic Factors and Markers in Non-Small Cell Lung Cancer: Recent Progress and Future Challenges. Genes (Basel) 2023; 14:1906. [PMID: 37895255 PMCID: PMC10606762 DOI: 10.3390/genes14101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
Lung cancer is a highly aggressive neoplasm and, despite the development of recent therapies, tumor progression and recurrence following the initial response remains unsolved. Several questions remain unanswered about non-small cell lung cancer (NSCLC): (1) Which patients will actually benefit from therapy? (2) What are the predictive factors of response to MAbs and TKIs? (3) What are the best combination strategies with conventional treatments or new antineoplastic drugs? To answer these questions, an integrative literature review was carried out, searching articles in PUBMED, NCBI-PMC, Google Academic, and others. Here, we will examine the molecular genetics of lung cancer, emphasizing NSCLC, and delineate the primary categories of inhibitors based on their molecular targets, alongside the main treatment alternatives depending on the type of acquired resistance. We highlighted new therapies based on epigenetic information and a single-cell approach as a potential source of new biomarkers. The current and future of NSCLC management hinges upon genotyping correct prognostic markers, as well as on the evolution of precision medicine, which guarantees a tailored drug combination with precise targeting.
Collapse
Affiliation(s)
- Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Maria Clara de Castro e Caetano
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Aléxia Stefani Siqueira Zetum
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - André Felipe Monteiro Gonçalves
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - André Rodrigues Moreira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Augusto Henrique de Oliveira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Fellipe Pesente
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Gabriel Mendonça Santana
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Daniel de Almeida Duque
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Gierleson Santos Cangussu Pereira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Giulia de Souza Cupertino de Castro
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Isabele Pagani Pavan
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - João Pedro Sarcinelli Chagas
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - José Henrique Borges Bourguignon
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Juliana Ribeiro de Oliveira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Karen Ruth Michio Barbosa
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Luana Santos Louro
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Luiza Poppe Merigueti
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Marlon Ramos Rosado Machado
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Maria Luísa Rodrigues Oliveira Roque
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Pedro Santana Prates
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Sayuri Honorio de Paula Segáua
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Taissa dos Santos Uchiya
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Thomas Erik Santos Louro
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória (EMESCAM), Curso de Medicina, Vitória 29027-502, Brazil
| | - Vinicius Eduardo Daleprane
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Yasmin Moreto Guaitolini
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Creuza Rachel Vicente
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória 29090-040, Brazil
| | - Raquel Silva dos Reis Trabach
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Bruno Cancian de Araújo
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Eldamária de Vargas Wolfgramm dos Santos
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Flávia de Paula
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Tiago José S. Lopes
- Department of Reproductive Biology, National Center for Child Health and Development Research Institute, Tokyo 157-8535, Japan
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| |
Collapse
|
12
|
Wang P, Sun S, Lam S, Lockwood WW. New insights into the biology and development of lung cancer in never smokers-implications for early detection and treatment. J Transl Med 2023; 21:585. [PMID: 37653450 PMCID: PMC10472682 DOI: 10.1186/s12967-023-04430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Despite never smokers comprising between 10 and 25% of all cases, lung cancer in never smokers (LCNS) is relatively under characterized from an etiological and biological perspective. The application of multi-omics techniques on large patient cohorts has significantly advanced the current understanding of LCNS tumor biology. By synthesizing the findings of multi-omics studies on LCNS from a clinical perspective, we can directly translate knowledge regarding tumor biology into implications for patient care. Primarily focused on never smokers with lung adenocarcinoma, this review details the predominance of driver mutations, particularly in East Asian patients, as well as the frequency and importance of germline variants in LCNS. The mutational patterns present in LCNS tumors are thoroughly explored, highlighting the high abundance of the APOBEC signature. Moreover, this review recognizes the spectrum of immune profiles present in LCNS tumors and posits how it can be translated to treatment selection. The recurring and novel insights from multi-omics studies on LCNS tumor biology have a wide range of clinical implications. Risk factors such as exposure to outdoor air pollution, second hand smoke, and potentially diet have a genomic imprint in LCNS at varying degrees, and although they do not encompass all LCNS cases, they can be leveraged to stratify risk. Germline variants similarly contribute to a notable proportion of LCNS, which warrants detailed documentation of family history of lung cancer among never smokers and demonstrates value in developing testing for pathogenic variants in never smokers for early detection in the future. Molecular driver subtypes and specific co-mutations and mutational signatures have prognostic value in LCNS and can guide treatment selection. LCNS tumors with no known driver alterations tend to be stem-like and genes contributing to this state may serve as potential therapeutic targets. Overall, the comprehensive findings of multi-omics studies exert a wide influence on clinical management and future research directions in the realm of LCNS.
Collapse
Affiliation(s)
- Peiyao Wang
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Sophie Sun
- Department of Medical Oncology, British Columbia Cancer Agency Vancouver, Vancouver, BC, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada.
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Loh J, Low JL, Sachdeva M, Low PQ, Wong RSJ, Huang Y, Chia PL, Soo RA. Management of Oncogene Driven Locally Advanced Unresectable Non-small Cell Lung Cancer. Expert Rev Anticancer Ther 2023; 23:913-926. [PMID: 37551698 DOI: 10.1080/14737140.2023.2245140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION The current standard of care of locally advanced non-small cell lung cancer (LA-NSCLC) is concurrent chemoradiation, followed by consolidation durvalumab. However, there is evidence that the efficacy of chemoradiation and also immunotherapy in many oncogene-positive LA-NSCLC are attenuated, and dependent on the subgroup. AREAS COVERED We will firstly review the outcomes of standard-of-care therapy in oncogene-driven LA-NSCLC. We looked at various oncogene driven subgroups and the tumor microenvironment that may explain differential response. Finally, we review the role of targeted therapy in the treatment of LA-NSCLC. EXPERT OPINION Each oncogene-positive subgroup should be treated as its own entity, and continued efforts should be undertaken to incorporate targeted therapy, which is likely to yield superior survival outcomes if trial design can be optimized and toxicities can be managed.
Collapse
Affiliation(s)
- Jerold Loh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Jia Li Low
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Manavi Sachdeva
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Peter Qj Low
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Rachel Su Jen Wong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Yiqing Huang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Puey Ling Chia
- Department of Medical Oncology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| |
Collapse
|
14
|
Soeroso NN, Ananda FR, Sitanggang JS, Vinolina NS. The role of oncogenes and tumor suppressor genes in determining survival rates of lung cancer patients in the population of North Sumatra, Indonesia. F1000Res 2023; 11:853. [PMID: 37427014 PMCID: PMC10329197 DOI: 10.12688/f1000research.113303.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Background: Gaining a better understanding of molecular alterations in the pathogenesis of lung cancer reveals a significant change in approach to the management and prognosis of lung cancer. Several oncogenes and tumor suppressor genes have been identified and have different roles related to survival rates in lung cancer patients. This study aims to determine the role of KRAS, EGFR, and TP53 mutations in the survival rate of lung cancer patients in the population of North Sumatra. Methods: This is a retrospective cohort study involving 108 subjects diagnosed with lung cancer from histopathology specimens. DNA extractions were performed using FFPE followed by PCR examinations for assessing the expressions of EGFR, RAS, and TP53 protein. Sequencing analysis was carried out to determine the mutations of EGFR exon 19 and 21, RAS protein exon 2, and TP53 exon 5-6 and 8-9. Data input and analysis were conducted using statistical analysis software for Windows. The survival rate analysis was presented with Kaplan Meier. Results: 52 subjects completed all procedures in this study. Most of the subjects are male (75%), above 60 years old (53.8%), heavy smokers (75%), and suffer from adenocarcinoma type of lung cancer (69.2%). No subjects showed KRAS exon 2 mutations. Overall survival rates increased in patients with EGFR mutations (15 months compared to 8 months; p=0.001) and decreased in patients with TP53 mutations (7 months compared to 9 months; p=0.148). Also, there was increasing Progression-Free Survival in patients with EGFR mutations (6 months compared to 3 months) ( p=0.19) and decreasing PFS in patients with TP53 mutations (3 months compared to 6 months) ( p=0.07). Conclusions: There were no KRAS mutations in this study. EGFR mutations showed a higher survival rate, while TP53 mutations showed a lower survival rate in overall survival and progression-free survival.
Collapse
Affiliation(s)
- Noni Novisari Soeroso
- Thoracic Oncology Division, Department of Pulmonology and Respiratory Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, 20155, Indonesia
| | - Fannie Rizki Ananda
- Department of Pulmonology and Respiratory Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, 20155, Indonesia
| | | | | |
Collapse
|
15
|
Wang YS, Young MJ, Liu CY, Chen YC, Hung JJ. Tp53 haploinsufficiency is involved in hotspot mutations and cytoskeletal remodeling in gefitinib-induced drug-resistant EGFR L858R-lung cancer mice. Cell Death Discov 2023; 9:96. [PMID: 36918558 PMCID: PMC10015023 DOI: 10.1038/s41420-023-01393-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Tumor heterogeneity is the major factor for inducing drug resistance. p53 is the major defender to maintain genomic stability, which is a high proportion mutated in most of the cancer types. In this study, we established in vivo animal models of gefitinib-induced drug-resistant lung cancer containing EGFRL858R and EGFRL858R*Tp53+/- mice to explore the molecular mechanisms of drug resistance by studying the genomic integrity and global gene expression. The cellular morphology of the lung tumors between gefitinib-induced drug-resistant mice and drug-sensitive mice were very different. In addition, in drug-resistant mice, the expression of many cytoskeleton-related genes were changed, accompanied by decreased amounts of actin filaments and increased amounts of microtubule, indicating that significant cytoskeletal remodeling is induced in gefitinib-induced drug-resistant EGFRL858R and EGFRL858R*Tp53+/- lung cancer mice. The gene expression profiles and involved pathways were different in gefitinib-sensitive, gefitinib-resistant and Tp53+/--mice. Increases in drug resistance and nuclear size (N/C ratio) were found in EGFRL858R*Tp53+/- drug-resistant mice. Mutational hotspot regions for drug resistance via Tp53+/+- and Tp53+/--mediated pathways are located on chromosome 1 and chromosome 11, respectively, and are related to prognosis of lung cancer cohorts. This study not only builds up a gefitinib-induced drug-resistant EGFRL858R lung cancer animal model, but also provides a novel mutation profile in a Tp53+/+- or Tp53+/--mediated manner and induced cytoskeleton remodeling during drug resistance, which could contribute to the prevention of drug resistance during cancer therapy.
Collapse
Affiliation(s)
- Yi-Shiang Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yu Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Ching Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jan-Jong Hung
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. .,Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
16
|
Machado-Rugolo J, Baldavira CM, Prieto TG, Olivieri EHR, Fabro AT, Rainho CA, Castelli EC, Ribolla PEM, Ab'Saber AM, Takagaki T, Nagai MA, Capelozzi VL. Concomitant TP53 mutation in early-stage resected EGFR-mutated non-small cell lung cancer: a narrative approach in a genetically admixed Brazilian cohort. Braz J Med Biol Res 2023; 56:e12488. [PMID: 37042869 PMCID: PMC10085757 DOI: 10.1590/1414-431x2023e12488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 04/13/2023] Open
Abstract
TP53 mutations are frequent in non-small cell lung cancer (NSCLC) and have been associated with poor outcome. The prognostic and predictive relevance of EGFR/TP53 co-mutations in NSCLC is controversial. We analyzed lung tissue specimens from 70 patients with NSCLC using next-generation sequencing to determine EGFR and TP53 status and the association between these status with baseline patient and tumor characteristics, adjuvant treatments, relapse, and progression-free (PFS) and overall survival (OS) after surgical resection. We found the EGFR mutation in 32.9% of patients (20% classical mutations and 12.9% uncommon mutations). TP53 missense mutations occurred in 25.7% and TP53/EGFR co-mutations occurred in 43.5% of patients. Stage after surgical resection was significantly associated with OS (P=0.028). We identified an association between progression-free survival and poor outcome in patients with distant metastases (P=0.007). We found a marginally significant difference in OS between genders (P=0.057) and between mutant and wild type TP53 (P=0.079). In univariate analysis, distant metastases (P=0.027), pathological stage (IIIA-IIIB vs I-II; P=0.028), and TP53 status (borderline significance between wild type and mutant; P=0.079) influenced OS. In multivariable analysis, a significant model for high risk of death and poor OS (P=0.029) selected patients in stage IIIA-IIIB, with relapse and distant metastases, non-responsive to platin-based chemotherapy and erlotinib, with tumors harboring EGFR uncommon mutations, with TP53 mutant, and with EGFR/TP53 co-mutations. Our study suggested that TP53 mutation tends to confer poor survival and a potentially negative predictive effect associated with a non-response to platinum-based chemotherapy and erlotinib in early-stage resected EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- J Machado-Rugolo
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Centro de Avaliação de Tecnologias em Saúde, Hospital das Clínicas da Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - C M Baldavira
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - T G Prieto
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E H R Olivieri
- Centro Internacional de Pesquisa/CIPE, AC Camargo Cancer Center, São Paulo, São Paulo, SP, Brasil
| | - A T Fabro
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Departamento de Patologia e Medicina Legal, Laboratório de Medicina Respiratória, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - C A Rainho
- Instituto de Biociências, Departamento de Ciências Químicas e Biológicas, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - E C Castelli
- Laboratório de Genética Molecular e Bioinformática, Unidade de Pesquisa Experimental, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP, Brasil
- Departamento de Patologia, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - P E M Ribolla
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, SP, Brasil
- Instituto de Biociências, Departamento de Bioestatística, Biologia Vegetal, Parasitologia e Zoologia, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - A M Ab'Saber
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - T Takagaki
- Divisão de Pneumologia, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M A Nagai
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Laboratório de Genética Molecular, Centro de Pesquisa Translacional em Oncologia, Instituto do Câncer de São Paulo, São Paulo, SP, Brasil
| | - V L Capelozzi
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
17
|
Utility of Next-Generation Sequencing in the Reconstruction of Clonal Architecture in a Patient with an EGFR Mutated Advanced Non-Small Cell Lung Cancer: A Case Report. Diagnostics (Basel) 2022; 12:diagnostics12051266. [PMID: 35626421 PMCID: PMC9141594 DOI: 10.3390/diagnostics12051266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
EGFR tyrosine kinase inhibitors (EGFR-TKIs) have revolutionized the treatment of non-small cell lung cancer (NSCLC) patients with activating EGFR mutations. However, targeted therapies impose a strong selective pressure against the coexisting tumor populations that lead to the emergence of resistant clones. Molecular characterization of the disease is essential for the clinical management of the patient, both at diagnosis and after progression. Next-generation sequencing (NGS) has been established as a technique capable of providing clinically useful molecular profiling of the disease in tissue samples and in non-invasive liquid biopsy samples (LB). Here, we describe a case report of a patient with metastatic NSCLC harboring EGFR mutation who developed two independent resistance mechanisms (EGFR-T790M and TP53 + RB1 mutations) to dacomitinib. Osimertinib given as a second-line treatment eliminated the EGFR-T790M population and simultaneously consolidated the proliferation of the TP53 + RB1 clone that eventually led to the histologic transformation to small-cell lung cancer (SCLC). Comprehensive NGS profiling revealed the presence of the TP53 + RB1 clone in the pretreatment biopsy, while EGFR-T790M was only detected after progression on dacomitinib. Implementation of NGS studies in routine molecular diagnosis of tissue and LB samples provides a more comprehensive view of the clonal architecture of the disease in order to guide therapeutic decision-making.
Collapse
|