1
|
Ye F, Li Q, Huang L, Liao N. Reliable high-PAP-1-loaded polymeric micelles for cancer therapy: preparation, characterization, and evaluation of anti-tumor efficacy. Drug Deliv 2025; 32:2490269. [PMID: 40207975 PMCID: PMC11986873 DOI: 10.1080/10717544.2025.2490269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
The mitochondrial potassium channel Kv1.3 is a critical therapeutic target, as its blockade induces cancer cell apoptosis, highlighting its therapeutic potential. PAP-1, a potent and selective membrane-permeant Kv1.3 inhibitor, faces solubility challenges affecting its bioavailability and antitumor efficacy. To circumvent these challenges, we developed a tumor-targeting drug delivery system by encapsulating PAP-1 within pH-responsive mPEG-PAE polymeric micelles. These self-assembled micelles exhibited high entrapment efficiency (91.35%) and drug loading level (8.30%). As pH decreased, the micelles exhibited a significant increase in particle size and zeta potential, accompanied by a surge in PAP-1 release. Molecular simulations revealed that PAE's tertiary amine protonation affected the self-assembly process, modifying hydrophobicity and resulting in larger, loosely packed particles. Furthermore, compared to free PAP-1 or PAP-1 combined with MDR inhibitors, PAP-1-loaded micelles significantly enhanced cytotoxicity and apoptosis induction in Jurkat and B16F10 cells, through mechanisms involving decreased mitochondrial membrane potential and elevated caspase-3 activity. In vivo, while free PAP-1 failed to reduce tumor size in a B16F10 melanoma mouse model, PAP-1-loaded micelles substantially suppressed tumors, reducing volume by up to 94.26%. Fluorescent-marked micelles effectively accumulated in mouse tumors, confirming their targeting efficiency. This strategy holds promise for significantly improving PAP-1's antitumor efficacy in tumor therapy.
Collapse
Affiliation(s)
- Fang Ye
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Qi Li
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, P. R. China
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Longping Huang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, P. R. China
- Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Naikai Liao
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, P. R. China
| |
Collapse
|
2
|
Li B, Gao Y, Han H, Wang Z, Zhang Y, Yu L, Ling Y. Pharmacological inhibition of Kv1.3 channel reduces sevoflurane-induced cognitive impairment through NLRP3-dependent microglial modulation. Brain Res Bull 2025; 225:111351. [PMID: 40252702 DOI: 10.1016/j.brainresbull.2025.111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Sevoflurane anesthesia is frequently linked to cognitive dysfunction in elderly individuals, with neuroinflammation, particularly microglial activation, playing a critical role in this pathology. Although the potassium channel Kv1.3 has been shown to regulate microglial activation, its involvement in sevoflurane-induced cognitive dysfunction remains poorly understood. In this study, cognitive dysfunction was induced in 17-month-old C57BL/6J mice by exposing them to 3 % sevoflurane for 5 h. Kv1.3 expression and cellular distribution were analyzed using RT-qPCR, Western blot, and immunofluorescence. To investigate the mechanisms underlying this process, mice were pretreated with the selective Kv1.3 inhibitor 5-(4-phenoxybutoxy)psoralen (PAP-1) or the NLRP3 inflammasome inhibitor MCC950 prior to sevoflurane exposure. Behavioral tests, hematoxylin-eosin (H&E) staining, nissl staining, immunohistochemistry, immunofluorescence, Western blot and enzyme-linked immunosorbent assay (ELISA) were performed for further assessment. Sevoflurane exposure led to a significant increase in Kv1.3 expression, which was strongly correlated with cognitive impairments and neuronal damage. Pharmacological inhibition of Kv1.3 with PAP-1 alleviated learning and memory deficits, reduced neuronal damage, and inhibited microglial activation. PAP-1 treatment also promoted the transition of microglia from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype and suppressed NLRP3 inflammasome activation. Furthermore, the NLRP3 inflammasome inhibitor MCC950 also reduced microglial activation and phenotypic shift following sevoflurane exposure. These results suggest that Kv1.3 channel play a critical role in sevoflurane-induced cognitive dysfunction in aged mice through NLRP3-dependent microglial modulation. Targeting Kv1.3 could provide a potential therapeutic strategy for alleviating postoperative cognitive dysfunction associated with sevoflurane anesthesia.
Collapse
Affiliation(s)
- Bowen Li
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu 233030, China
| | - Ying Gao
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Huiyue Han
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China; Brain and Neurological Research Laboratory, Bengbu Medical University, Bengbu 233030, China
| | - Zhu Wang
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China; Brain and Neurological Research Laboratory, Bengbu Medical University, Bengbu 233030, China
| | - Yang Zhang
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Li Yu
- School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, China.
| | - Yunzhi Ling
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China; Brain and Neurological Research Laboratory, Bengbu Medical University, Bengbu 233030, China.
| |
Collapse
|
3
|
Dragan Z, Pollock CA, Huang C. Insight into a multifunctional potassium channel Kv1.3 and its novel implication in chronic kidney disease. Life Sci 2025; 362:123338. [PMID: 39730039 DOI: 10.1016/j.lfs.2024.123338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
Chronic kidney disease (CKD), a global public health problem, causes substantial morbidity and mortality worldwide. Innovative therapeutic strategies to mitigate the progression of CKD are needed due to the limitations of existing treatments. Kv1.3, a voltage-gated potassium ion channel, plays a crucial role in multiple biological processes, including cell proliferation, apoptosis, energy homeostasis, and migration. Inhibition of the Kv1.3 channels has shown beneficial effects in the therapy of a wide range of human diseases such as cancer, autoimmune and neuroinflammatory diseases. Increasing evidence reveals a close link between Kv1.3 and CKD. This review summarises the most recent insights into the physiological functions of the Kv1.3 channel and its pharmacological modulators. Furthermore, the therapeutic potential of targeting Kv1.3 for CKD is also discussed. Collectively, these studies suggested that Kv1.3 channels may serve as a novel target for CKD therapy.
Collapse
Affiliation(s)
- Zac Dragan
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Carol A Pollock
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Chunling Huang
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| |
Collapse
|
4
|
Kour D, Bowen CA, Srivastava U, Nguyen HM, Kumari R, Kumar P, Brandelli AD, Bitarafan S, Tobin BR, Wood L, Seyfried NT, Wulff H, Rangaraju S. Identification of novel Kv1.3 channel-interacting proteins using proximity labelling in T-cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633279. [PMID: 39868101 PMCID: PMC11760797 DOI: 10.1101/2025.01.16.633279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Potassium channels regulate membrane potential, calcium flux, cellular activation and effector functions of adaptive and innate immune cells. The voltage-activated Kv1.3 channel is an important regulator of T cell-mediated autoimmunity and microglia-mediated neuroinflammation. Kv1.3 channels, via protein-protein interactions, are localized with key immune proteins and pathways, enabling functional coupling between K+ efflux and immune mechanisms. To gain insights into proteins and pathways that interact with Kv1.3 channels, we applied a proximity-labeling proteomics approach to characterize protein interactors of the Kv1.3 channel in activated T-cells. Biotin ligase TurboID was fused to either N or C termini of Kv1.3, stably expressed in Jurkat T cells and biotinylated proteins in proximity to Kv1.3 were enriched and quantified by mass spectrometry. We identified over 1,800 Kv1.3 interactors including known interactors (beta-integrins, Stat1) although majority were novel. We found that the N-terminus of Kv1.3 preferentially interacts with protein synthesis and protein trafficking machinery, while the C-terminus interacts with immune signaling and cell junction proteins. T-cell Kv1.3 interactors included 335 cell surface, T-cell receptor complex, mitochondrial, calcium and cytokine-mediated signaling pathway and lymphocyte migration proteins. 178 Kv1.3 interactors in T-cells also represent genetic risk factors of T cell-mediated autoimmunity, including STIM1, which was further validated using co-immunoprecipitation. Our studies reveal novel proteins and molecular pathways that interact with Kv1.3 channels in adaptive (T-cell) and innate immune (microglia), providing a foundation for how Kv1.3 channels may regulate immune mechanisms in autoimmune and neurological diseases.
Collapse
Affiliation(s)
- Dilpreet Kour
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Christine A. Bowen
- Center for Neurodegenerative Diseases, Emory University, Atlanta (GA), USA
- Department of Biochemistry, Emory University, Atlanta (GA), USA
| | - Upasna Srivastava
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Hai M. Nguyen
- Department of Pharmacology, University of California – Davis, Davis (CA), USA
| | - Rashmi Kumari
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Prateek Kumar
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Amanda D. Brandelli
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Sara Bitarafan
- Parker H. Petit Institute for Bioengineering, Georgia Institute of Technology, Atlanta (GA), USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
| | - Brendan R Tobin
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta (GA), USA
| | - Levi Wood
- Parker H. Petit Institute for Bioengineering, Georgia Institute of Technology, Atlanta (GA), USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
| | - Nicholas T. Seyfried
- Center for Neurodegenerative Diseases, Emory University, Atlanta (GA), USA
- Department of Biochemistry, Emory University, Atlanta (GA), USA
| | - Heike Wulff
- Department of Pharmacology, University of California – Davis, Davis (CA), USA
| | - Srikant Rangaraju
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| |
Collapse
|
5
|
Prosdocimi E, Carpanese V, Todesca LM, Varanita T, Bachmann M, Festa M, Bonesso D, Perez-Verdaguer M, Carrer A, Velle A, Peruzzo R, Muccioli S, Doni D, Leanza L, Costantini P, Stein F, Rettel M, Felipe A, Edwards MJ, Gulbins E, Cendron L, Romualdi C, Checchetto V, Szabo I. BioID-based intact cell interactome of the Kv1.3 potassium channel identifies a Kv1.3-STAT3-p53 cellular signaling pathway. SCIENCE ADVANCES 2024; 10:eadn9361. [PMID: 39231216 PMCID: PMC11373599 DOI: 10.1126/sciadv.adn9361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
Kv1.3 is a multifunctional potassium channel implicated in multiple pathologies, including cancer. However, how it is involved in disease progression is not fully clear. We interrogated the interactome of Kv1.3 in intact cells using BioID proximity labeling, revealing that Kv1.3 interacts with STAT3- and p53-linked pathways. To prove the relevance of Kv1.3 and of its interactome in the context of tumorigenesis, we generated stable melanoma clones, in which ablation of Kv1.3 remodeled gene expression, reduced proliferation and colony formation, yielded fourfold smaller tumors, and decreased metastasis in vivo in comparison to WT cells. Kv1.3 deletion or pharmacological inhibition of mitochondrial Kv1.3 increased mitochondrial Reactive Oxygen Species release, decreased STAT3 phosphorylation, stabilized the p53 tumor suppressor, promoted metabolic switch, and altered the expression of several BioID-identified Kv1.3-networking proteins in tumor tissues. Collectively, our work revealed the tumor-promoting Kv1.3-interactome landscape, thus opening the way to target Kv1.3 not only as an ion-conducting entity but also as a signaling hub.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrea Carrer
- Department of Biology, University of Padova, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Angelo Velle
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Davide Doni
- Department of Biology, University of Padova, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | - Antonio Felipe
- Molecular Physiology Laboratory, Department de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | | | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Bowen CA, Nguyen HM, Lin Y, Bagchi P, Natu A, Espinosa-Garcia C, Werner E, Kumari R, Brandelli AD, Kumar P, Tobin BR, Wood L, Faundez V, Wulff H, Seyfried NT, Rangaraju S. Proximity Labeling Proteomics Reveals Kv1.3 Potassium Channel Immune Interactors in Microglia. Mol Cell Proteomics 2024; 23:100809. [PMID: 38936775 PMCID: PMC11780389 DOI: 10.1016/j.mcpro.2024.100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
Microglia are resident immune cells of the brain and regulate its inflammatory state. In neurodegenerative diseases, microglia transition from a homeostatic state to a state referred to as disease-associated microglia (DAM). DAM express higher levels of proinflammatory signaling molecules, like STAT1 and TLR2, and show transitions in mitochondrial activity toward a more glycolytic response. Inhibition of Kv1.3 decreases the proinflammatory signature of DAM, though how Kv1.3 influences the response is unknown. Our goal was to identify the potential proteins interacting with Kv1.3 during transition to DAM. We utilized TurboID, a biotin ligase, fused to Kv1.3 to evaluate potential interacting proteins with Kv1.3 via mass spectrometry in BV-2 microglia following TLR4-mediated activation. Electrophysiology, Western blotting, and flow cytometry were used to evaluate Kv1.3 channel presence and TurboID biotinylation activity. We hypothesized that Kv1.3 contains domain-specific interactors that vary during a TLR4-induced inflammatory response, some of which are dependent on the PDZ-binding domain on the C terminus. We determined that the N terminus of Kv1.3 is responsible for trafficking Kv1.3 to the cell surface and mitochondria (e.g., NUDC, TIMM50). Whereas, the C terminus interacts with immune signaling proteins in a lipopolysaccharide-induced inflammatory response (e.g., STAT1, TLR2, and C3). There are 70 proteins that rely on the C-terminal PDZ-binding domain to interact with Kv1.3 (e.g., ND3, Snx3, and Sun1). Furthermore, we used Kv1.3 blockade to verify functional coupling between Kv1.3 and interferon-mediated STAT1 activation. Overall, we highlight that the Kv1.3 potassium channel functions beyond conducting the outward flux of potassium ions in an inflammatory context and that Kv1.3 modulates the activity of key immune signaling proteins, such as STAT1 and C3.
Collapse
Affiliation(s)
- Christine A Bowen
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Hai M Nguyen
- Department of Pharmacology, University of California - Davis, Davis, California, USA
| | - Young Lin
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Pritha Bagchi
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA; Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, USA
| | - Aditya Natu
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | | | - Erica Werner
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | - Rashmi Kumari
- School of Medicine, Yale University, New Haven, Connecticut, USA
| | | | - Prateek Kumar
- School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Brendan R Tobin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Levi Wood
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Enigneering, and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | - Heike Wulff
- Department of Pharmacology, University of California - Davis, Davis, California, USA
| | - Nicholas T Seyfried
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Srikant Rangaraju
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; School of Medicine, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
7
|
Ratano P, Cocozza G, Pinchera C, Busdraghi LM, Cantando I, Martinello K, Scioli M, Rosito M, Bezzi P, Fucile S, Wulff H, Limatola C, D’Alessandro G. Reduction of inflammation and mitochondrial degeneration in mutant SOD1 mice through inhibition of voltage-gated potassium channel Kv1.3. Front Mol Neurosci 2024; 16:1333745. [PMID: 38292023 PMCID: PMC10824952 DOI: 10.3389/fnmol.2023.1333745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no effective therapy, causing progressive loss of motor neurons in the spinal cord, brainstem, and motor cortex. Regardless of its genetic or sporadic origin, there is currently no cure for ALS or therapy that can reverse or control its progression. In the present study, taking advantage of a human superoxide dismutase-1 mutant (hSOD1-G93A) mouse that recapitulates key pathological features of human ALS, we investigated the possible role of voltage-gated potassium channel Kv1.3 in disease progression. We found that chronic administration of the brain-penetrant Kv1.3 inhibitor, PAP-1 (40 mg/Kg), in early symptomatic mice (i) improves motor deficits and prolongs survival of diseased mice (ii) reduces astrocyte reactivity, microglial Kv1.3 expression, and serum pro-inflammatory soluble factors (iii) improves structural mitochondrial deficits in motor neuron mitochondria (iv) restores mitochondrial respiratory dysfunction. Taken together, these findings underscore the potential significance of Kv1.3 activity as a contributing factor to the metabolic disturbances observed in ALS. Consequently, targeting Kv1.3 presents a promising avenue for modulating disease progression, shedding new light on potential therapeutic strategies for ALS.
Collapse
Affiliation(s)
| | - Germana Cocozza
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | | | | | - Iva Cantando
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | | | - Maria Rosito
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - Paola Bezzi
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Sergio Fucile
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, Health Sciences Drive, Davis, CA, United States
| | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur, Sapienza University, Rome, Italy
| | - Giuseppina D’Alessandro
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
8
|
Cammann C, Kulla J, Wiebusch L, Walz C, Zhao F, Lowinus T, Topfstedt E, Mishra N, Henklein P, Bommhardt U, Bossaller L, Hagemeier C, Schadendorf D, Schmidt B, Paschen A, Seifert U. Proteasome inhibition potentiates Kv1.3 potassium channel expression as therapeutic target in drug-sensitive and -resistant human melanoma cells. Biomed Pharmacother 2023; 168:115635. [PMID: 37816303 DOI: 10.1016/j.biopha.2023.115635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Primary and acquired therapy resistance is a major problem in patients with BRAF-mutant melanomas being treated with BRAF and MEK inhibitors (BRAFI, MEKi). Therefore, development of alternative therapy regimes is still required. In this regard, new drug combinations targeting different pathways to induce apoptosis could offer promising alternative approaches. Here, we investigated the combination of proteasome and Kv1.3 potassium channel inhibition on chemo-resistant, BRAF inhibitor-resistant as well as sensitive human melanoma cells. Our experiments demonstrated that all analyzed melanoma cell lines were sensitive to proteasome inhibitor treatment at concentrations that are not toxic to primary human fibroblasts. To further reduce proteasome inhibitor-associated side effects, and to foster apoptosis, potassium channels, which are other targets to induce pro-apoptotic effects in cancer cells, were blocked. In support, combined exposure of melanoma cells to proteasome and Kv1.3 channel inhibitor resulted in synergistic effects and significantly reduced cell viability. On the molecular level, enhanced apoptosis correlated with an increase of intracellular Kv1.3 channels and pro-apoptotic proteins such as Noxa and Bak and a reduction of anti-apoptotic proteins. Thus, use of combined therapeutic strategies triggering different apoptotic pathways may efficiently prevent the outgrowth of drug-resistant and -sensitive BRAF-mutant melanoma cells. In addition, this could be the basis for an alternative approach to treat other tumors expressing mutated BRAF such as non-small-cell lung cancer.
Collapse
Affiliation(s)
- Clemens Cammann
- Friedrich Loeffler - Institute of Medical Microbiology - Virology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Jonas Kulla
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Lüder Wiebusch
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Christian Walz
- Clemens Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Alarich Weiss-Straße 4-8, 64287 Darmstadt, Germany
| | - Fang Zhao
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Theresa Lowinus
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler - Institute of Medical Microbiology - Virology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Neha Mishra
- Section of Rheumatology, Clinic and Policlinic of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Petra Henklein
- Institute of Molecular Biology and Biochemistry, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Lukas Bossaller
- Section of Rheumatology, Clinic and Policlinic of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Christian Hagemeier
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Boris Schmidt
- Clemens Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Alarich Weiss-Straße 4-8, 64287 Darmstadt, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Ulrike Seifert
- Friedrich Loeffler - Institute of Medical Microbiology - Virology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| |
Collapse
|
9
|
Navarro-Pérez M, Estadella I, Benavente-Garcia A, Orellana-Fernández R, Petit A, Ferreres JC, Felipe A. The Phosphorylation of Kv1.3: A Modulatory Mechanism for a Multifunctional Ion Channel. Cancers (Basel) 2023; 15:2716. [PMID: 37345053 DOI: 10.3390/cancers15102716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
The voltage-gated potassium channel Kv1.3 plays a pivotal role in a myriad of biological processes, including cell proliferation, differentiation, and apoptosis. Kv1.3 undergoes fine-tuned regulation, and its altered expression or function correlates with tumorigenesis and cancer progression. Moreover, posttranslational modifications (PTMs), such as phosphorylation, have evolved as rapid switch-like moieties that tightly modulate channel activity. In addition, kinases are promising targets in anticancer therapies. The diverse serine/threonine and tyrosine kinases function on Kv1.3 and the effects of its phosphorylation vary depending on multiple factors. For instance, Kv1.3 regulatory subunits (KCNE4 and Kvβ) can be phosphorylated, increasing the complexity of channel modulation. Scaffold proteins allow the Kv1.3 channelosome and kinase to form protein complexes, thereby favoring the attachment of phosphate groups. This review compiles the network triggers and signaling pathways that culminate in Kv1.3 phosphorylation. Alterations to Kv1.3 expression and its phosphorylation are detailed, emphasizing the importance of this channel as an anticancer target. Overall, further research on Kv1.3 kinase-dependent effects should be addressed to develop effective antineoplastic drugs while minimizing side effects. This promising field encourages basic cancer research while inspiring new therapy development.
Collapse
Affiliation(s)
- María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Anna Benavente-Garcia
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | | | - Anna Petit
- Departament de Patologia, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Joan Carles Ferreres
- Servei d'Anatomia Patològica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), 08208 Sabadell, Spain
- Departament de Ciències Morfològiques, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Abstract
Mitochondria are involved in multiple cellular tasks, such as ATP synthesis, metabolism, metabolite and ion transport, regulation of apoptosis, inflammation, signaling, and inheritance of mitochondrial DNA. The majority of the correct functioning of mitochondria is based on the large electrochemical proton gradient, whose component, the inner mitochondrial membrane potential, is strictly controlled by ion transport through mitochondrial membranes. Consequently, mitochondrial function is critically dependent on ion homeostasis, the disturbance of which leads to abnormal cell functions. Therefore, the discovery of mitochondrial ion channels influencing ion permeability through the membrane has defined a new dimension of the function of ion channels in different cell types, mainly linked to the important tasks that mitochondrial ion channels perform in cell life and death. This review summarizes studies on animal mitochondrial ion channels with special focus on their biophysical properties, molecular identity, and regulation. Additionally, the potential of mitochondrial ion channels as therapeutic targets for several diseases is briefly discussed.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy;
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland;
| |
Collapse
|
11
|
Angi B, Muccioli S, Szabò I, Leanza L. A Meta-Analysis Study to Infer Voltage-Gated K+ Channels Prognostic Value in Different Cancer Types. Antioxidants (Basel) 2023; 12:antiox12030573. [PMID: 36978819 PMCID: PMC10045123 DOI: 10.3390/antiox12030573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Potassium channels are often highly expressed in cancer cells with respect to healthy ones, as they provide proliferative advantages through modulating membrane potential, calcium homeostasis, and various signaling pathways. Among potassium channels, Shaker type voltage-gated Kv channels are emerging as promising pharmacological targets in oncology. Here, we queried publicly available cancer patient databases to highlight if a correlation exists between Kv channel expression and survival rate in five different cancer types. By multiple gene comparison analysis, we found a predominant expression of KCNA2, KCNA3, and KCNA5 with respect to the other KCNA genes in skin cutaneous melanoma (SKCM), uterine corpus endometrial carcinoma (UCEC), stomach adenocarcinoma (STAD), lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC). This analysis highlighted a prognostic role of KCNA3 and KCNA5 in SKCM, LUAD, LUSC, and STAD, respectively. Interestingly, KCNA3 was associated with a positive prognosis in SKCM and LUAD but not in LUSC. Results obtained by the analysis of KCNA3-related differentially expressed genes (DEGs); tumor immune cell infiltration highlighted differences that may account for such differential prognosis. A meta-analysis study was conducted to investigate the role of KCNA channels in cancer using cancer patients’ datasets. Our study underlines a promising correlation between Kv channel expression in tumor cells, in infiltrating immune cells, and survival rate.
Collapse
|
12
|
Varanita T, Angi B, Scattolini V, Szabo I. Kv1.3 K + Channel Physiology Assessed by Genetic and Pharmacological Modulation. Physiology (Bethesda) 2023; 38:0. [PMID: 35998249 DOI: 10.1152/physiol.00010.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Potassium channels are widespread over all kingdoms and play an important role in the maintenance of cellular ionic homeostasis. Kv1.3 is a voltage-gated potassium channel of the Shaker family with a wide tissue expression and a well-defined pharmacology. In recent decades, experiments mainly based on pharmacological modulation of Kv1.3 have highlighted its crucial contribution to different fundamental processes such as regulation of proliferation, apoptosis, and metabolism. These findings link channel function to various pathologies ranging from autoimmune diseases to obesity and cancer. In the present review, we briefly summarize studies employing Kv1.3 knockout animal models to confirm such roles and discuss the findings in comparison to the results obtained by pharmacological modulation of Kv1.3 in various pathophysiological settings. We also underline how these studies contributed to our understanding of channel function in vivo and propose possible future directions.
Collapse
Affiliation(s)
| | - Beatrice Angi
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Bulk E, Todesca LM, Bachmann M, Szabo I, Rieke M, Schwab A. Functional expression of mitochondrial K Ca3.1 channels in non-small cell lung cancer cells. Pflugers Arch 2022; 474:1147-1157. [PMID: 36152073 PMCID: PMC9560933 DOI: 10.1007/s00424-022-02748-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022]
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide. The Ca2+-activated K+ channel KCa3.1 contributes to the progression of non-small cell lung cancer (NSCLC). Recently, KCa3.1 channels were found in the inner membrane of mitochondria in different cancer cells. Mitochondria are the main sources for the generation of reactive oxygen species (ROS) that affect the progression of cancer cells. Here, we combined Western blotting, immunofluorescence, and fluorescent live-cell imaging to investigate the expression and function of KCa3.1 channels in the mitochondria of NSCLC cells. Western blotting revealed KCa3.1 expression in mitochondrial lysates from different NSCLC cells. Using immunofluorescence, we demonstrate a co-localization of KCa3.1 channels with mitochondria of NSCLC cells. Measurements of the mitochondrial membrane potential with TMRM reveal a hyperpolarization following the inhibition of KCa3.1 channels with the cell-permeable blocker senicapoc. This is not the case when cells are treated with the cell-impermeable peptidic toxin maurotoxin. The hyperpolarization of the mitochondrial membrane potential is accompanied by an increased generation of ROS in NSCLC cells. Collectively, our results provide firm evidence for the functional expression of KCa3.1 channels in the inner membrane of mitochondria of NSCLC cells.
Collapse
Affiliation(s)
- Etmar Bulk
- Institute of Physiology II, University of Münster, 48149, Münster, Germany.
| | | | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padua, Italy
| | - Marius Rieke
- Institute of Physiology II, University of Münster, 48149, Münster, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, 48149, Münster, Germany
| |
Collapse
|
14
|
Kulawiak B, Szewczyk A. Current Challenges of Mitochondrial Potassium Channel Research. Front Physiol 2022; 13:907015. [PMID: 35711307 PMCID: PMC9193220 DOI: 10.3389/fphys.2022.907015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
In this paper, the current challenges of mitochondrial potassium channels research were critically reviewed. Even though recent progress in understanding K+ traffic in mitochondria has been substantial, some basic issues of this process remain unresolved. Here, we focused on the critical discussion of the molecular identity of various mitochondrial potassium channels. This point helps to clarify why there are different potassium channels in specific mitochondria. We also described interactions of mitochondrial potassium channel subunits with other mitochondrial proteins. Posttranslational modifications of mitochondrial potassium channels and their import are essential but unexplored research areas. Additionally, problems with the pharmacological targeting of mitochondrial potassium channel were illustrated. Finally, the limitation of the techniques used to measure mitochondrial potassium channels was explained. We believe that recognizing these problems may be interesting for readers but will also help to progress the field of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|