1
|
Yang Z, Zhang T, Zhu X, Zhang X. Ferroptosis-Related Transcriptional Level Changes and the Role of CIRBP in Glioblastoma Cells Ferroptosis. Biomedicines 2024; 13:41. [PMID: 39857625 PMCID: PMC11761263 DOI: 10.3390/biomedicines13010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVE We aimed to elucidate the roles of ferroptosis-associated differentially expressed genes (DEGs) in glioblastoma and provide a comprehensive resource for researchers in the field of glioblastoma cell ferroptosis. METHODS We used RNA sequencing to identify the DEGs associated with erastin-induced ferroptosis in glioblastoma cells. We further unraveled the biological functions and clinical implications of cold-inducible RNA-binding protein (CIRBP) in the context of glioblastoma by using a multifaceted approach, encompassing gene expression profiling, survival analysis, and functional assays to elucidate its role in glioblastoma cell mortality and its potential influence on patient prognosis. RESULTS We identified and validated the gene encoding CIRBP, the expression of which is altered during glioblastoma ferroptosis. Our findings highlight the relationship between CIRBP expression and ferroptosis in glioblastoma cells. We demonstrated that CIRBP modulates key aspects of cell death, thereby altering the sensitivity of glioblastoma cells to erastin-induced ferroptosis. A prognostic model, constructed based on CIRBP expression levels, revealed an association between lower CIRBP levels and poorer prognosis in glioma patients; this finding was corroborated by our comprehensive in vitro and in vivo assays that highlighted the impact of modulating CIRBP expression on glioblastoma cell viability and ferroptotic response. CONCLUSION Our research unravels the complex molecular dynamics of ferroptosis in glioblastoma and underscores CIRBP as a potential biomarker and therapeutic target. This improved understanding of the role of CIRBP in ferroptosis paves the way for more precise and efficacious treatments for glioblastoma, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Zijiang Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
| | - Ting Zhang
- Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical University, Jiangyin 214400, China;
| | - Xuanlin Zhu
- School of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai 200433, China;
| | - Xiaobiao Zhang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Digital Medical Research Center, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Osman EEA, Neamati N. Ironing Out the Mechanism of gp130 Signaling. Pharmacol Rev 2024; 76:1399-1443. [PMID: 39414364 DOI: 10.1124/pharmrev.124.001245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 10/18/2024] Open
Abstract
gp130 functions as a shared signal-transducing subunit not only for interleukin (IL)-6 but also for eight other human cytokine receptor complexes. The IL-6 signaling pathway mediated through gp130 encompasses classical, trans, or cluster signaling, intricately regulated by a diverse array of modulators affecting IL-6, its receptor, and gp130. Currently, only a limited number of small molecule antagonists and agonists for gp130 are known. This review aims to comprehensively examine the current knowledge of these modulators and provide insights into their pharmacological properties, particularly in the context of cancer and other diseases. Notably, the prominent gp130 modulators SC144, bazedoxifene, and raloxifene are discussed in detail, with a specific focus on the discovery of SC144's iron-chelating properties. This adds a new dimension to the understanding of its pharmacological effects and therapeutic potential in conditions where iron homeostasis is significant. Our bioinformatic analysis of gp130 and genes related to iron homeostasis reveals insightful correlations, implicating the role of iron in the gp130 signaling pathway. Overall, this review contributes to the evolving understanding of gp130 modulation and its potential therapeutic applications in various disease contexts. SIGNIFICANCE STATEMENT: This perspective provides a timely and comprehensive analysis of advancements in gp130 signaling research, emphasizing the therapeutic implications of the currently available modulators. Bioinformatic analysis demonstrates potential interplay between gp130 and genes that regulate iron homeostasis, suggesting new therapeutic avenues. By combining original research findings with a broader discussion of gp130's therapeutic potential, this perspective significantly contributes to the field.
Collapse
Affiliation(s)
- Essam Eldin A Osman
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan (E.E.A.O., N.N.) and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt (E.E.A.O.)
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan (E.E.A.O., N.N.) and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt (E.E.A.O.)
| |
Collapse
|
3
|
Jiang Y, Li L, Li W, Liu K, Wu Y, Wang Z. NFS1 inhibits ferroptosis in gastric cancer by regulating the STAT3 pathway. J Bioenerg Biomembr 2024; 56:573-587. [PMID: 39254861 DOI: 10.1007/s10863-024-10038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Cysteine desulfurase (NFS1) is highly expressed in a variety of tumors, which is closely related to ferroptosis of tumor cells and affects prognosis. The relationship between NFS1 and the development of gastric cancer (GC) remains unknown. Here we showed that NFS1 expression was significantly higher in GC tissues compared to adjacent normal tissues. Patients with high expression of NFS1 in GC tissues had a lower overall survival rate than those with low expression. NFS1 was highly expressed in cultured GC cells compared to normal gastric cells. Knockdown of NFS1 expression reduced the viability, migration and invasion of GC cells. In cultured GC cells, NFS1 deficiency promoted ferroptosis. Mechanistically, NFS1 inhibited ferroptosis by upregulating the signal transduction and activator of transcription 3 (STAT3) signaling pathway in cultured GC cells. NFS1 knockdown using siRNA inhibited the STAT3 pathway, reduced the expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and elevated intracellular levels of reactive oxygen species (ROS), ferrous ion (Fe2+), and malondialdehyde (MDA) in cultured GC cells. A specific STAT3 activator significantly reversed the inhibitory effect of NFS1 deficiency on ferroptosis in cultured GC cells. These in vitro results were further confirmed by experiments in vivo using a mouse xenograft tumor model. Collectively, THESE RESULTS INDICATE THAT NFS1 is overexpressed in human GC tissues and correlated with prognosis. NFS1 inhibits ferroptosis by activating the STAT3 pathway in GC cells. These results suggest that NFS1 may be a potential prognostic biomarker and therapeutic target to treat GC.
Collapse
Affiliation(s)
- You Jiang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, 230022, Anhui Province, P.R. China
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, P.R. China
| | - Liqiang Li
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, P.R. China
| | - Wenbo Li
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, 230022, Anhui Province, P.R. China
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, P.R. China
| | - Kun Liu
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, P.R. China
| | - Yuee Wu
- Department of Electrocardiogram Diagnosis, Second Affiliated Hospital of Anhui Medical University, Hefei, 230060, Anhui, P.R. China
| | - Zhengguang Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, 230022, Anhui Province, P.R. China.
| |
Collapse
|
4
|
Jiang Y, Li W, Zhang J, Liu K, Wu Y, Wang Z. NFS1 as a Candidate Prognostic Biomarker for Gastric Cancer Correlated with Immune Infiltrates. Int J Gen Med 2024; 17:3855-3868. [PMID: 39253726 PMCID: PMC11382660 DOI: 10.2147/ijgm.s444443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024] Open
Abstract
Background Cysteine desulfurase (NFS1) is closely associated with the occurrence and development of human tumors, but its relationship with the prognosis and immunity of gastric cancer (GC) patients remains unclear. Methods To study the relationship between NFS1 and GC, GC-related data of TCGA were downloaded and analyzed. At the same time, Tumor Immune Estimation Resource (TIMER) and Kaplan‒Meier Plotter were used for relevant online analysis. Clinical samples were collected for immunohistochemical testing to validate the results. Results The mRNA and protein levels of NFS1 in GC tissues were significantly higher than those in normal tissues. In terms of the operating characteristic curve (ROC), the area under the curve (AUC) was 0.793, indicating that NFS1 had a high diagnostic value for GC. Further analysis showed that NFS1 expression was highly correlated with the depth of tumor invasion, lymph node metastasis, and tumor stage. Survival analysis showed that patients with high expression of NFS1 had a poorer prognosis, and NFS1 was an independent risk factor. Enrichment analysis by GO, KEGG, and GSEA showed that NFS1 was enriched in immune-related pathways. The expression of NFS1 was significantly positively correlated with the proportion of macrophages M0 and plasma cells but negatively correlated with the proportion of B cells memory, monocytes, and mast cells resting. In addition, NFS1 expression was significantly correlated with TMB levels and responses to immunotherapy. Conclusion Our results suggest that NFS1 may be a potential biomarker for the diagnosis and prediction of prognosis and immunotherapy efficacy in GC.
Collapse
Affiliation(s)
- You Jiang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230011, People's Republic of China
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People's Republic of China
| | - Wenbo Li
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230011, People's Republic of China
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People's Republic of China
| | - Jun Zhang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230011, People's Republic of China
| | - Kun Liu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230011, People's Republic of China
| | - Yuee Wu
- Department of Electrocardiogram Diagnosis, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230060, People's Republic of China
| | - Zhengguang Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230011, People's Republic of China
| |
Collapse
|
5
|
Yang Y, Hao L, Guiyang L, Haozhe P. Multifaceted bioinformatic analysis of m6A-related ferroptosis and its link with gene signatures and tumour-infiltrating immune cells in gliomas. J Cell Mol Med 2024; 28:e70060. [PMID: 39248438 PMCID: PMC11382363 DOI: 10.1111/jcmm.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Whether N6-Methyladenosine (m6A)- and ferroptosis-related genes act on immune responses to regulate glioma progression remains unanswered. Data of glioma and corresponding normal brain tissues were fetched from the TCGA database and GTEx. Differentially expressed genes (DEGs) were identified for GO and KEGG enrichment analyses. The FerrDb database was based to yield ferroptosis-related DEGs. Hub genes were then screened out using the cytoHubba database and validated in clinical samples. Immune cells infiltrating into the glioma tissues were analysed using the CIBERSORT R script. The association of gene signature underlying the m6A-related ferroptosis with tumour-infiltrating immune cells and immune checkpoints in low-grade gliomas was analysed. Of 6298 DEGs enriched in mRNA modifications, 144 were ferroptosis-related; NFE2L2 and METTL16 showed the strongest positive correlation. METTL16 knockdown inhibited the migrative and invasive abilities of glioma cells and induced ferroptosis in vitro. NFE2L2 was enriched in the anti-m6A antibody. Moreover, METTL16 knockdown reduced the mRNA stability and level of NFE2L2 (both p < 0.05). Proportions of CD8+ T lymphocytes, activated mast cells and M2 macrophages differed between low-grade gliomas and normal tissues. METTL16 expression was negatively correlated with CD8+ T lymphocytes, while that of NFE2L2 was positively correlated with M2 macrophages and immune checkpoints in low-grade gliomas. Gene signatures involved in the m6A-related ferroptosis in gliomas were identified via bioinformatic analyses. NFE2L2 interacted with METTL16 to regulate the immune response in low-grade gliomas, and both molecules may be novel therapeutic targets for gliomas.
Collapse
Affiliation(s)
- Yang Yang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
- TCM Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Liu Hao
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Liu Guiyang
- Department of Neurosurgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, People's Republic of China
| | - Piao Haozhe
- Department of Neurosurgery, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
6
|
Lin G, Cai H, Hong Y, Yao M, Ye W, Li W, Liang W, Feng S, Lv Y, Ye H, Cai C, Cai G. Implications of m 5C modifications in ribosomal proteins on oxidative stress, metabolic reprogramming, and immune responses in patients with mid-to-late-stage head and neck squamous cell carcinoma: Insights from nanopore sequencing. Heliyon 2024; 10:e34529. [PMID: 39149042 PMCID: PMC11324834 DOI: 10.1016/j.heliyon.2024.e34529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Background Head and Neck Squamous Cell Carcinoma (HNSCC) is a malignancy characterized by a high incidence and recurrence rate. 5-methylcytosine (m5C) RNA modification is a common alteration affecting cancer progression; however, how m5C operates within the tumor microenvironment of HNSCC remains to be elucidated. Methods We conducted Nanopore sequencing on 3 pairs of cancer and paracancerous tissues from mid- and late-stage HNSCC, obtaining 132 upregulated genes (transcriptomically upregulated, m5C elevated) and 129 downregulated genes (transcriptomically downregulated, m5C reduced). Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed; a differential gene interaction network (PPI) was constructed, revealing the interactions of each gene with others in the network. Co-expression analysis was performed on the genes within the PPI, unveiling their expression and regulatory relationships. Through GSVA analysis, variations in related pathways under different states were identified. Furthermore, results of m5C in lncRNA were screened, followed by target gene prediction. Results Sequencing results from the 3 pairs of mid- and late-stage HNSCC cancer and paracancerous tissues demonstrated that RPS27A, RPL8, and the lncRNAs including differentiation antagonizing nonprotein coding RNA (DANCR), DCST1 antisense RNA 1 (CCDC144NL-AS1), Growth Arrest-Specific Transcript 5 (GAS5), Nuclear Paraspeckle Assembly Transcript 1 (NEAT1), and Small Nucleolar RNA Host Gene 3 (SNHG3), etc., under m5Cregulation, have close connections with surrounding genes. The differentially m5Cmodified genes are primarily involved in ribosomal protein synthesis, oxidative stress response, metabolic reprogramming, immunity, and other life processes; pathways like mitochondrial protein import and photodynamic therapy induced unfolded protein response are upregulated in the tumor, while pathways, including the classic P53, are suppressed. Analysis on m5C-regulated long non-coding RNAs (lncRNAs) revealed tight associations with RPS27A and RPL8 as well. Conclusion Our study identifies the key factors and signaling pathways involving m5C in HNSCC. The findings suggest that ribosome-related genes might regulate ribosomal protein synthesis, oxidative stress response, metabolic reprogramming, and immune response through m5C RNA modification by means like hypoxia and ferroptosis, thereby playing a pivotal role in the onset and progression of HNSCC. Hence, attention should be paid to the role of ribosomes in HNSCC. These findings may facilitate the precision and individualized treatment of patients with mid- and late-stage HNSCC in clinical settings.
Collapse
Affiliation(s)
- Gongbiao Lin
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, China
| | - Haoxi Cai
- School of Stomatology, Ningxia Medical University, China
| | - Yihong Hong
- Community Health Service Center of Xidu Street, Fengxian District, Shanghai, China
| | - Min Yao
- Department of Otolaryngology-Head and Neck Surgery, Haicang Hospital of Xiamen, Affiliated Haicang Hospital of Xiamen Medical College, The Sixth Hospital of Xiamen City, China
| | - Weiwei Ye
- Department of Otolaryngology-Head and Neck Surgery, Haicang Hospital of Xiamen, Affiliated Haicang Hospital of Xiamen Medical College, The Sixth Hospital of Xiamen City, China
| | - Wenzhi Li
- Department of Otolaryngology-Head and Neck Surgery, Haicang Hospital of Xiamen, Affiliated Haicang Hospital of Xiamen Medical College, The Sixth Hospital of Xiamen City, China
| | - Wentao Liang
- Department of Otolaryngology-Head and Neck Surgery, Haicang Hospital of Xiamen, Affiliated Haicang Hospital of Xiamen Medical College, The Sixth Hospital of Xiamen City, China
| | - Shiqiang Feng
- Department of Otolaryngology-Head and Neck Surgery, Haicang Hospital of Xiamen, Affiliated Haicang Hospital of Xiamen Medical College, The Sixth Hospital of Xiamen City, China
| | - Yunxia Lv
- Department of Thyroid and Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, China
| | - Hui Ye
- Department of Otolaryngology-Head and Neck Surgery, Haicang Hospital of Xiamen, Affiliated Haicang Hospital of Xiamen Medical College, The Sixth Hospital of Xiamen City, China
| | - Chengfu Cai
- Department of Otolaryngology-Head and Neck Surgery, Haicang Hospital of Xiamen, Affiliated Haicang Hospital of Xiamen Medical College, The Sixth Hospital of Xiamen City, China
- Department of Clinical Medical, Fujian Medical University, China
| | - Gengming Cai
- Department of Otolaryngology-Head and Neck Surgery, Haicang Hospital of Xiamen, Affiliated Haicang Hospital of Xiamen Medical College, The Sixth Hospital of Xiamen City, China
- Department of Clinical Medical, Fujian Medical University, China
| |
Collapse
|
7
|
Liu Y, Hu H, Han Y, Li Z, Yang J, Zhang X, Chen L, Chen F, Li W, Huang G. Development and external validation of a novel score for predicting postoperative 30‑day mortality in tumor craniotomy patients: A cross‑sectional diagnostic study. Oncol Lett 2024; 27:205. [PMID: 38516688 PMCID: PMC10956384 DOI: 10.3892/ol.2024.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
The identification of patients with craniotomy at high risk for postoperative 30-day mortality may contribute to achieving targeted delivery of interventions. The present study aimed to develop a personalized nomogram and scoring system for predicting the risk of postoperative 30-day mortality in such patients. In this retrospective cross-sectional study, 18,642 patients with craniotomy were stratified into a training cohort (n=7,800; year of surgery, 2012-2013) and an external validation cohort (n=10,842; year of surgery, 2014-2015). The least absolute shrinkage and selection operator (LASSO) model was used to select the most important variables among the candidate variables. Furthermore, a stepwise logistic regression model was established to screen out the risk factors based on the predictors chosen by the LASSO model. The model and a nomogram were constructed. The area under the receiver operating characteristic (ROC) curve (AUC) and calibration plot analysis were used to assess the model's discrimination ability and accuracy. The associated risk factors were categorized according to clinical cutoff points to create a scoring model for postoperative 30-day mortality. The total score was divided into four risk categories: Extremely high, high, intermediate and low risk. The postoperative 30-day mortality rates were 2.43 and 2.58% in the training and validation cohort, respectively. A simple nomogram and scoring system were developed for predicting the risk of postoperative 30-day mortality according to the white blood cell count; hematocrit and blood urea nitrogen levels; age range; functional health status; and incidence of disseminated cancer cells. The ROC AUC of the nomogram was 0.795 (95% CI: 0.764 to 0.826) in the training cohort and it was 0.738 (95% CI: 0.7091 to 0.7674) in the validation cohort. The calibration demonstrated a perfect fit between the predicted 30-day mortality risk and the observed 30-day mortality risk. Low, intermediate, high and extremely high risk statuses for 30-day mortality were associated with total scores of (-1.5 to -1), (-0.5 to 0.5), (1 to 2) and (2.5 to 9), respectively. A personalized nomogram and scoring system for predicting postoperative 30-day mortality in adult patients who underwent craniotomy were developed and validated, and individuals at high risk of 30-day mortality were able to be identified.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Haofei Hu
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Yong Han
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
- Department of Emergency, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Zongyang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Jihu Yang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Xiejun Zhang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Lei Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Weiping Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
8
|
Jia X, Tian J, Fu Y, Wang Y, Yang Y, Zhang M, Yang C, Liu Y. Identification of AURKA as a Biomarker Associated with Cuproptosis and Ferroptosis in HNSCC. Int J Mol Sci 2024; 25:4372. [PMID: 38673957 PMCID: PMC11050640 DOI: 10.3390/ijms25084372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Cuproptosis and ferroptosis represent copper- and iron-dependent forms of cell death, respectively, and both are known to play pivotal roles in head and neck squamous cell carcinoma (HNSCC). However, few studies have explored the prognostic signatures related to cuproptosis and ferroptosis in HNSCC. Our objective was to construct a prognostic model based on genes associated with cuproptosis and ferroptosis. We randomly assigned 502 HSNCC samples from The Cancer Genome Atlas (TCGA) into training and testing sets. Pearson correlation analysis was utilized to identify cuproptosis-associated ferroptosis genes in the training set. Cox proportional hazards (COX) regression and least absolute shrinkage operator (LASSO) were employed to construct the prognostic model. The performance of the prognostic model was internally validated using single-factor COX regression, multifactor COX regression, Kaplan-Meier analysis, principal component analysis (PCA), and receiver operating curve (ROC) analysis. Additionally, we obtained 97 samples from the Gene Expression Omnibus (GEO) database for external validation. The constructed model, based on 12 cuproptosis-associated ferroptosis genes, proved to be an independent predictor of HNSCC prognosis. Among these genes, the increased expression of aurora kinase A (AURKA) has been implicated in various cancers. To further investigate, we employed small interfering RNAs (siRNAs) to knock down AURKA expression and conducted functional experiments. The results demonstrated that AURKA knockdown significantly inhibited the proliferation and migration of HNSCC cells (Cal27 and CNE2). Therefore, AURKA may serve as a potential biomarker in HNSCC.
Collapse
Affiliation(s)
- Xiao Jia
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (X.J.); (J.T.); (Y.F.); (Y.W.); (Y.Y.)
- Key Laboratory of Evidence Science, China University of Political Science and Law University, Beijing 100088, China
- Collaborative Innovation Center of Judicial Civilization, China University of Political Science and Law, Beijing 100088, China
| | - Jiao Tian
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (X.J.); (J.T.); (Y.F.); (Y.W.); (Y.Y.)
| | - Yueyue Fu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (X.J.); (J.T.); (Y.F.); (Y.W.); (Y.Y.)
| | - Yiqi Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (X.J.); (J.T.); (Y.F.); (Y.W.); (Y.Y.)
| | - Yang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (X.J.); (J.T.); (Y.F.); (Y.W.); (Y.Y.)
| | - Mengzhou Zhang
- Key Laboratory of Evidence Science, China University of Political Science and Law University, Beijing 100088, China
- Collaborative Innovation Center of Judicial Civilization, China University of Political Science and Law, Beijing 100088, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (X.J.); (J.T.); (Y.F.); (Y.W.); (Y.Y.)
| | - Yijin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300000, China; (X.J.); (J.T.); (Y.F.); (Y.W.); (Y.Y.)
| |
Collapse
|
9
|
Zhang Y, Wu X, Zhu J, Lu R, Ouyang Y. Knockdown of SLC39A14 inhibits glioma progression by promoting erastin-induced ferroptosis SLC39A14 knockdown inhibits glioma progression. BMC Cancer 2023; 23:1120. [PMID: 37978473 PMCID: PMC10655456 DOI: 10.1186/s12885-023-11637-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Ferroptosis is a newly classified form of regulated cell death with implications in various tumor progression pathways. However, the roles and mechanisms of ferroptosis-related genes in glioma remain unclear. METHODS Bioinformatics analysis was employed to identify differentially expressed ferroptosis-related genes in glioma. The expression levels of hub genes were assessed using real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). To explore the role of SLC39A14 in glioma, a series of in vitro assays were conducted, including cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, wound healing, and Transwell assays. Enzyme-linked immunosorbent assay (ELISA) was utilized to measure the levels of indicators associated with ferroptosis. Hematoxylin-eosin (HE) and immunohistochemistry (IHC) staining were performed to illustrate the clinicopathological features of the mouse transplantation tumor model. Additionally, Western blot analysis was used to assess the expression of the cGMP-PKG pathway-related proteins. RESULTS Seven ferroptosis-related hub genes, namely SLC39A14, WWTR1, STEAP3, NOTCH2, IREB2, HIF1A, and FANCD2, were identified, all of which were highly expressed in glioma. Knockdown of SLC39A14 inhibited glioma cell proliferation, migration, and invasion, while promoting apoptosis. Moreover, SLC39A14 knockdown also facilitated erastin-induced ferroptosis, leading to the suppression of mouse transplantation tumor growth. Mechanistically, SLC39A14 knockdown inhibited the cGMP-PKG signaling pathway activation. CONCLUSION Silencing SLC39A14 inhibits ferroptosis and tumor progression, potentially involving the regulation of the cGMP-PKG signaling pathway.
Collapse
Affiliation(s)
- Yunwen Zhang
- Department of Neurosurgery, First Clinical Medical College of Gannan Medical University, No.1 Xueyuan Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Xinghai Wu
- Department of Neurosurgery, Zhangye People's Hospital Affiliated to Hexi University, No. 67 Xihuan Road, Ganzhou District, Zhangye City, 734000, Gansu Province, China
| | - Jiyong Zhu
- Department of Neurosurgery, Guilin Municipal Hospital of Traditional Chinese Medicine, Guangxi Zhuang Autonomous Region, No. 2 Lingui Road, Xiangshan District, Guilin City, 541002, China
| | - Ruibin Lu
- Department of Neurosurgery, First Clinical Medical College of Gannan Medical University, No.1 Xueyuan Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Yian Ouyang
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, No.23 Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China.
| |
Collapse
|
10
|
Li H, Liu J, Qin X, Sun J, Liu Y, Jin F. Function of Long Noncoding RNAs in Glioma Progression and Treatment Based on the Wnt/β-Catenin and PI3K/AKT Signaling Pathways. Cell Mol Neurobiol 2023; 43:3929-3942. [PMID: 37747595 PMCID: PMC11407728 DOI: 10.1007/s10571-023-01414-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
Gliomas are a deadly primary malignant tumor of the central nervous system, with glioblastoma (GBM) representing the most aggressive type. The clinical prognosis of GBM patients remains bleak despite the availability of multiple options for therapy, which has needed us to explore new therapeutic methods to face the rapid progression, short survival, and therapy resistance of glioblastomas. As the Human Genome Project advances, long noncoding RNAs (lncRNAs) have attracted the attention of researchers and clinicians in cancer research. Numerous studies have found aberrant expression of signaling pathways in glioma cells. For example, lncRNAs not only play an integral role in the drug resistance process by regulating the Wnt/β-catenin or PI3K/Akt signaling but are also involved in a variety of malignant biological behaviors such as glioma proliferation, migration, invasion, and tumor apoptosis. Therefore, the present review systematically assesses the existing research evidence on the malignant progression and drug resistance of glioma, focusing on the critical role and potential function of lncRNAs in the Wnt/β-catenin and PI3K/Akt classical pathways to promote and encourage further research in this field.
Collapse
Affiliation(s)
- Hanyun Li
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jilan Liu
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Xianyun Qin
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Jikui Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250014, China.
| | - Yan Liu
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- School of Mental Health, Jining Medical University, Jining, 272013, China.
| | - Feng Jin
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China.
| |
Collapse
|
11
|
Tong S, Hong Y, Xu Y, Sun Q, Ye L, Cai J, Ye Z, Chen Q, Tian D. TFR2 regulates ferroptosis and enhances temozolomide chemo-sensitization in gliomas. Exp Cell Res 2023; 424:113474. [PMID: 36702193 DOI: 10.1016/j.yexcr.2023.113474] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/24/2023]
Abstract
Glioma is a common type of brain tumor with high incidence and mortality rates. Iron plays an important role in various physiological and pathological processes. Iron entry into the cell is promoted by binding the transferrin receptor 2 (TFR2) to the iron-transferrin complex. This study was designed to assess the association between TFR2 and ferroptosis in glioma. Lipid peroxidation levels in glioma cells were assessed by determination of lipid reactive oxygen species (ROS), glutathione content, and mitochondrial membrane potential. The effect of TFR2 on TMZ sensitivity was examined by cell viability assays, flow cytometry, and colony formation assays. We found that Low TFR2 expression predicted a better prognosis for glioma patients. And overexpression of TFR2 promoted the production of reactive oxygen species and lipid peroxidation in glioma cells, thereby further promoting ferroptosis. This could be reversed by the ferroptosis inhibitors Fer-1 and DFO (both inhibitors of ferroptosis). Moreover, TFR2 potentiated the cytotoxic effect of TMZ (temozolomide) via activating ferroptosis. In conclusion, we found that TFR2 induced ferroptosis and enhanced TMZ sensitivity in gliomas. Our findings might provide a new treatment strategy for glioma patients and improve their prognosis.
Collapse
Affiliation(s)
- Shiao Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Yu Hong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Jiayang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Zhang Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China.
| | - Daofeng Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China.
| |
Collapse
|
12
|
Chi H, Li B, Wang Q, Gao Z, Feng B, Xue H, Li G. Opportunities and challenges related to ferroptosis in glioma and neuroblastoma. Front Oncol 2023; 13:1065994. [PMID: 36937406 PMCID: PMC10021024 DOI: 10.3389/fonc.2023.1065994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
A newly identified form of cell death known as ferroptosis is characterized by the peroxidation of lipids in response to iron. Rapid progress in research on ferroptosis in glioma and neuroblastoma has promoted the exploitation of ferroptosis in related therapy. This manuscript provides a review of the findings on ferroptosis-related therapy in glioblastoma and neuroblastoma and outlines the mechanisms involved in ferroptosis in glioma and neuroblastoma. We summarize some recent data on traditional drugs, natural compounds and nanomedicines used as ferroptosis inducers in glioma and neuroblastoma, as well as some bioinformatic analyses of genes involved in ferroptosis. Moreover, we summarize some data on the associations of ferroptosis with the tumor immunotherapy and TMZ drug resistance. Finally, we discuss future directions for ferroptosis research in glioma and neuroblastoma and currently unresolved issues.
Collapse
Affiliation(s)
- Huizhong Chi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Qingtong Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Bowen Feng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
- *Correspondence: Hao Xue, ; Gang Li,
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
- *Correspondence: Hao Xue, ; Gang Li,
| |
Collapse
|
13
|
Dai J, Pan Y, Chen Y, Yao S. A panel of seven immune-related genes can serve as a good predictive biomarker for cervical squamous cell carcinoma. Front Genet 2022; 13:1024508. [PMID: 36406134 PMCID: PMC9667556 DOI: 10.3389/fgene.2022.1024508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/12/2022] [Indexed: 09/15/2023] Open
Abstract
Objective: Cervical cancer is one of the most common gynecological malignancies. The interaction between tumor microenvironment and immune infiltration is closely related to the progression of cervical squamous cell carcinoma (CSCC) and patients' prognosis. Herein, a panel of immune-related genes was established for more accurate prognostic prediction. Methods: The transcriptome information of tumor and normal samples were obtained from TCGA-CSCC and GTEx. Differentially expressed genes (DEGs) were defined from it. Immune-related genes (IRGs) were retrieved from the ImmPort database. After removing the transcriptome data which not mentioned in GSE44001, IR-DEGs were preliminarily identified. Then, TCGA-CSCC samples were divided into training and testing set (3:1) randomly. Univariate Cox analysis, LASSO regression analysis and multivariate Cox analysis were used in turn to construct the signature to predict the overall survival (OS) and disease-free survival (DFS). External validation was performed in GSE44001, and initial clinical validation was performed by qRT-PCR. Function enrichment analysis, immune infiltration analysis and establishment of nomogram were conducted as well. Results: A prognostic prediction signature consisting of seven IR-DEGs was established. High expression of NRP1, IGF2R, SERPINA3, TNF and low expression of ICOS, DES, HCK suggested that CSCC patients had shorter OS (POS<0.001) and DFS (PDFS<0.001). AUC values of 1-, 3-, five- year OS were 0.800, 0.831 and 0.809. Analyses in other validation sets showed good consistency with the results in training set. The signature can serve as an independent prognostic factor for OS (HR = 1.166, p < 0.001). AUC values of 1-, 3-, five- year OS based on the nomogram were 0.769, 0.820 and 0.807. Functional enrichment analysis suggested that these IR-DEGs were associated with receptor interaction and immune cell activity. Immune infiltration analysis indicated that patients in high-risk group had lower immune infiltration, weaker immune function, and were more likely to benefit from immune checkpoint inhibitor therapy. Through qRT-PCR on clinical samples, expression of NRP1, IGF2R, SERPINA3 and TNF were significantly upregulated in tumor tissue, while ICOS and DES were significantly downregulated. Conclusion: To conclude, the immune-related signature can provide strong support for exploration of immune infiltration, prediction of prognosis and response to immunotherapy through stratify CSCC patients into subgroups.
Collapse
Affiliation(s)
| | | | | | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Wang X, Xu Y, Dai L, Yu Z, Wang M, Chan S, Sun R, Han Q, Chen J, Zuo X, Wang Z, Hu X, Yang Y, Zhao H, Hu K, Zhang H, Chen W. A novel oxidative stress- and ferroptosis-related gene prognostic signature for distinguishing cold and hot tumors in colorectal cancer. Front Immunol 2022; 13:1043738. [PMID: 36389694 PMCID: PMC9660228 DOI: 10.3389/fimmu.2022.1043738] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/17/2022] [Indexed: 08/10/2023] Open
Abstract
Oxidative stress and ferroptosis exhibit crosstalk in many types of human diseases, including malignant tumors. We aimed to develop an oxidative stress- and ferroptosis-related gene (OFRG) prognostic signature to predict the prognosis and therapeutic response in patients with colorectal cancer (CRC). Thirty-four insertion genes between oxidative stress-related genes and ferroptosis-related genes were identified as OFRGs. We then performed bioinformatics analysis of the expression profiles of 34 OFRGs and clinical information of patients obtained from multiple datasets. Patients with CRC were divided into three OFRG clusters, and differentially expressed genes (DEGs) between clusters were identified. OFRG clusters correlated with patient survival and immune cell infiltration. Prognosis-related DEGs in three clusters were used to calculate the risk score, and a prognostic signature was constructed according to the risk score. In this study, patients in the low-risk group had better prognosis, higher immune cell infiltration levels, and better responses to fluorouracil-based chemotherapy and immune checkpoint blockade therapy than high-risk patients; these results were successfully validated with multiple independent datasets. Thus, low-risk CRC could be defined as hot tumors and high-risk CRC could be defined as cold tumors. To further identify potential biomarkers for CRC, the expression levels of five signature genes in CRC and adjacent normal tissues were further verified via an in vitro experiment. In conclusion, we identified 34 OFRGs and constructed an OFRG-related prognostic signature, which showed excellent performance in predicting survival and therapeutic responses for patients with CRC. This could help to distinguish cold and hot tumors in CRC, and the results might be helpful for precise treatment protocols in clinical practice.
Collapse
Affiliation(s)
- Xu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuanmin Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Longfei Dai
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhen Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ming Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Rui Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qijun Han
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiajie Chen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaomin Zuo
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhenglin Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xianyu Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hu Zhao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kongwang Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Huabing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- The First Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, Anhui, China
| | - Wei Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
15
|
Yuan YS, Jin X, Chen L, Liao JM, Zhang Y, Yu KW, Li WK, Cao SW, Huang XZ, Kang CM. A novel model based on necroptosis-related genes for predicting immune status and prognosis in glioma. Front Immunol 2022; 13:1027794. [PMID: 36389690 PMCID: PMC9640834 DOI: 10.3389/fimmu.2022.1027794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/11/2022] [Indexed: 01/10/2025] Open
Abstract
BACKGROUND Glioma is a highly aggressive brain cancer with a poor prognosis. Necroptosis is a form of programmed cell death occurring during tumor development and in immune microenvironments. The prognostic value of necroptosis in glioma is unclear. This study aimed to develop a prognostic glioma model based on necroptosis. METHODS A necroptosis-related risk model was constructed by Cox regression analysis based on The Cancer Genome Atlas (TCGA) training set, validated in two Chinese Glioma Genome Atlas (CGGA) validation sets. We explored the differences in immune infiltration and immune checkpoint genes between low and high risk groups and constructed a nomogram. Moreover, we compiled a third validation cohort including 43 glioma patients. The expression of necroptosis-related genes was verified in matched tissues using immunochemical staining in the third cohort, and we analyzed their relationship to clinicopathological features. RESULTS Three necroptosis-related differentially expressed genes (EZH2, LEF1, and CASP1) were selected to construct the prognostic model. Glioma patients with a high risk score in the TCGA and CGGA cohorts had significantly shorter overall survival. The necroptosis-related risk model and nomogram exhibited good predictive performance in the TCGA training set and the CGGA validation sets. Furthermore, patients in the high risk group had higher immune infiltration status and higher expression of immune checkpoint genes, which was positively correlated with poorer outcomes. In the third validation cohort, the expression levels of the three proteins encoded by EZH2, LEF1, and CASP1 in glioma tissues were significantly higher than those from paracancerous tissues. They were also closely associated with disease severity and prognosis. CONCLUSIONS Our necroptosis-related risk model can be used to predict the prognosis of glioma patients and improve prognostic accuracy, which may provide potential therapeutic targets and a theoretical basis for treatment.
Collapse
Affiliation(s)
- Ying-Shi Yuan
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xin Jin
- Department of Neurosurgery, Guangdong 999 Brain Hospital, Guangzhou, Guangdong, China
| | - Lu Chen
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jia-Min Liao
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yang Zhang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ke-Wei Yu
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei-Kang Li
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shun-Wang Cao
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xian-Zhang Huang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chun-Min Kang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|