1
|
Alhosani F, Alhamidi RS, Ilce BY, Altaie AM, Ali N, Hamad AM, Künstner A, Khandanpour C, Busch H, Al-Ramadi B, Harati R, Sayed K, AlFazari A, Bendardaf R, Hamoudi R. Transcriptome-Wide Analysis and Experimental Validation from FFPE Tissue Identifies Stage-Specific Gene Expression Profiles Differentiating Adenoma, Carcinoma In-Situ and Adenocarcinoma in Colorectal Cancer Progression. Int J Mol Sci 2025; 26:4194. [PMID: 40362431 PMCID: PMC12071244 DOI: 10.3390/ijms26094194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/20/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Colorectal cancer (CRC) progression occurs through three stages: adenoma (pre-cancerous lesion), carcinoma in situ (CIS) and adenocarcinoma, with tumor stage playing a pivotal role in the prognosis and treatment outcomes. Despite therapeutic advancements, the lack of stage-specific biomarkers hinders the development of accurate diagnostic tools and effective therapeutic strategies. This study aims to identify stage-specific gene expression profiles and key molecular mechanisms in CRC providing insights into molecular alterations across disease progression. Our methodological approach integrates the use of absolute gene set enrichment analysis (absGSEA) on formalin-fixed paraffin-embedded (FFPE)-derived transcriptomic data, combined with large-scale clinical validation and experimental confirmation. A comparative whole transcriptomic analysis (RNA-seq) was performed on FFPE samples including adenoma (n = 10), carcinoma in situ (CIS) (n = 8) and adenocarcinoma (n = 11) samples. Using absGSEA, we identified significant cellular pathways and putative molecular biomarkers associated with each stage of CRC progression. Key findings were then validated in a large independent CRC patient cohort (n = 1926), with survival analysis conducted from 1336 patients to assess the prognostic relevance of the candidate biomarkers. The key differentially expressed genes were experimentally validated using real-time PCR (RT-qPCR). Pathway analysis revealed that in CIS, apoptotic processes and Wnt signaling pathways were more prominent than in adenoma samples, while in adenocarcinoma, transcriptional co-regulatory mechanisms and protein kinase activity, which are critical for tumor growth and metastasis, were significantly enriched compared to adenoma. Additionally, extracellular matrix organization pathways were significantly enriched in adenocarcinoma compared to CIS. Distinct gene signatures were identified across CRC stages that differentiate between adenoma, CIS and adenocarcinoma. In adenoma, ARRB1, CTBP1 and CTBP2 were overexpressed, suggesting their involvement in early tumorigenesis, whereas in CIS, RPS3A and COL4A5 were overexpressed, suggesting their involvement in the transition from benign to malignant stage. In adenocarcinoma, COL1A2, CEBPZ, MED10 and PAWR were overexpressed, suggesting their involvement in advanced disease progression. Functional analysis confirmed that ARRB1 and CTBP1/2 were associated with early tumor development, while COL1A2 and CEBPZ were involved in extracellular matrix remodeling and transcriptional regulation, respectively. Experimental validation with RT-qPCR confirmed the differential expression of the candidate biomarkers (ARRB1, RPS3A, COL4A5, COL1A2 and MED10) across the three CRC stages reinforcing their potential as stage-specific biomarkers in CRC progression. These findings provide a foundation to distinguish between the CRC stages and for the development of accurate stage-specific diagnostic and prognostic biomarkers, which helps in the development of more effective therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Faisal Alhosani
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (R.S.A.); (B.Y.I.); (A.M.A.); (N.A.); (R.H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
- Forensic Laboratory Department, Sharjah Police Headquarters, Sharjah P.O. Box 1965, United Arab Emirates
| | - Reem Sami Alhamidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (R.S.A.); (B.Y.I.); (A.M.A.); (N.A.); (R.H.)
| | - Burcu Yener Ilce
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (R.S.A.); (B.Y.I.); (A.M.A.); (N.A.); (R.H.)
| | - Alaa Muayad Altaie
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (R.S.A.); (B.Y.I.); (A.M.A.); (N.A.); (R.H.)
| | - Nival Ali
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (R.S.A.); (B.Y.I.); (A.M.A.); (N.A.); (R.H.)
| | - Alaa Mohamed Hamad
- College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates;
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
| | - Cyrus Khandanpour
- Department of Hematology and Oncology, University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, University of Lübeck, 23562 Lübeck, Germany;
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Rania Harati
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (R.S.A.); (B.Y.I.); (A.M.A.); (N.A.); (R.H.)
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Kadria Sayed
- Department of Pathology and Laboratory Medicine, American Hospital Dubai, Dubai P.O. Box 3050, United Arab Emirates;
| | - Ali AlFazari
- Mediclinic Welcare Hospital, Dubai P.O. Box 31500, United Arab Emirates;
| | - Riyad Bendardaf
- Oncology Unit, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates;
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (R.S.A.); (B.Y.I.); (A.M.A.); (N.A.); (R.H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Center of Excellence for Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
| |
Collapse
|
2
|
Cuesta-Borràs E, Salvans C, Arqués O, Chicote I, Ramírez L, Cabellos L, Martínez-Quintanilla J, Mur-Espinosa A, García-Álvarez A, Hernando J, Tejedor JR, Mirallas O, Élez E, Fraga MF, Tabernero J, Nuciforo P, Capdevila J, Palmer HG, Puig I. DPPA3-HIF1α axis controls colorectal cancer chemoresistance by imposing a slow cell-cycle phenotype. Cell Rep 2023; 42:112927. [PMID: 37537841 DOI: 10.1016/j.celrep.2023.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
Tumor relapse is linked to rapid chemoresistance and represents a bottleneck for cancer therapy success. Engagement of a reduced proliferation state is a non-mutational mechanism exploited by cancer cells to bypass therapy-induced cell death. Through combining functional pulse-chase experiments in engineered cells and transcriptomic analyses, we identify DPPA3 as a master regulator of slow-cycling and chemoresistant phenotype in colorectal cancer (CRC). We find a vicious DPPA3-HIF1α feedback loop that downregulates FOXM1 expression via DNA methylation, thereby delaying cell-cycle progression. Moreover, downregulation of HIF1α partially restores a chemosensitive proliferative phenotype in DPPA3-overexpressing cancer cells. In cohorts of CRC patient samples, DPPA3 overexpression acts as a predictive biomarker of chemotherapeutic resistance that subsequently requires reduction in its expression to allow metastatic outgrowth. Our work demonstrates that slow-cycling cancer cells exploit a DPPA3/HIF1α axis to support tumor persistence under therapeutic stress and provides insights on the molecular regulation of disease progression.
Collapse
Affiliation(s)
- Estefania Cuesta-Borràs
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Cándida Salvans
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Oriol Arqués
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Irene Chicote
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; CIBERONC, 08029 Madrid, Spain
| | - Lorena Ramírez
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Laia Cabellos
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | | | - Alex Mur-Espinosa
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Alejandro García-Álvarez
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Jorge Hernando
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Juan Ramón Tejedor
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), Health Research Institute of the Principality of Asturias (ISPA), Spanish Biomedical Research Network in Rare Diseases (CIBERER), Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Asturias, Spain
| | - Oriol Mirallas
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Elena Élez
- CIBERONC, 08029 Madrid, Spain; Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), Health Research Institute of the Principality of Asturias (ISPA), Spanish Biomedical Research Network in Rare Diseases (CIBERER), Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Asturias, Spain
| | - Josep Tabernero
- CIBERONC, 08029 Madrid, Spain; Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; UVic-UCC, IOB-Quiron, 08023 Barcelona, Spain
| | - Paolo Nuciforo
- CIBERONC, 08029 Madrid, Spain; Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jaume Capdevila
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; IOB-Teknon, 08023 Barcelona, Spain
| | - Héctor G Palmer
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; CIBERONC, 08029 Madrid, Spain.
| | - Isabel Puig
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; CIBERONC, 08029 Madrid, Spain.
| |
Collapse
|
3
|
SALLEH ELYNAMIELA, LEE YEONGYEH, ZAKARIA ANDEEDZULKARNAEN, JALIL NURASYILLACHE, MUSA MARAHAINI. Cancer-associated fibroblasts of colorectal cancer: Translational prospects in liquid biopsy and targeted therapy. BIOCELL 2023; 47:2233-2244. [DOI: 10.32604/biocell.2023.030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 10/21/2024]
|
4
|
Ding JT, Zhou HN, Huang YF, Peng J, Huang HY, Yi H, Zong Z, Ning ZK. TGF-β Pathways Stratify Colorectal Cancer into Two Subtypes with Distinct Cartilage Oligomeric Matrix Protein (COMP) Expression-Related Characteristics. Biomolecules 2022; 12:1877. [PMID: 36551305 PMCID: PMC9775768 DOI: 10.3390/biom12121877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Colorectal cancers (CRCs) continue to be the leading cause of cancer-related deaths worldwide. The exact landscape of the molecular features of TGF-β pathway-inducing CRCs remains uncharacterized. METHODS Unsupervised hierarchical clustering was performed to stratify samples into two clusters based on the differences in TGF-β pathways. Weighted gene co-expression network analysis was applied to identify the key gene modules mediating the different characteristics between two subtypes. An algorithm integrating the least absolute shrinkage and selection operator (LASSO), XGBoost, and random forest regression was performed to narrow down the candidate genes. Further bioinformatic analyses were performed focusing on COMP-related immune infiltration and functions. RESULTS The integrated machine learning algorithm identified COMP as the hub gene, which exhibited a significant predictive value for two subtypes with an area under the curve (AUC) value equaling 0.91. Further bioinformatic analysis revealed that COMP was significantly upregulated in various cancers, especially in advanced CRCs, and regulated the immune infiltration, especially M2 macrophages and cancer-associated fibroblasts in CRCs. CONCLUSIONS Comprehensive immune analysis and experimental validation demonstrate that COMP is a reliable signature for subtype prediction. Our results could provide a new point for TGFβ-targeted anticancer drugs and contribute to guiding clinical decision making for CRC patients.
Collapse
Affiliation(s)
- Jia-Tong Ding
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medicine School, Nanchang University, Nanchang 330006, China
| | - Hao-Nan Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Ying-Feng Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jie Peng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medicine School, Nanchang University, Nanchang 330006, China
| | - Hao-Yu Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Hao Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhi-Kun Ning
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
5
|
Zhao C, Zhang Z, Jing T. A novel signature of combing cuproptosis- with ferroptosis-related genes for prediction of prognosis, immunologic therapy responses and drug sensitivity in hepatocellular carcinoma. Front Oncol 2022; 12:1000993. [PMID: 36249031 PMCID: PMC9562991 DOI: 10.3389/fonc.2022.1000993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Our study aimed to construct a novel signature (CRFs) of combing cuproptosis-related genes with ferroptosis-related genes for the prediction of the prognosis, responses of immunological therapy, and drug sensitivity of hepatocellular carcinoma (HCC) patients. METHODS The RNA sequencing and corresponding clinical data of patients with HCC were downloaded from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), GSE76427, GSE144269, GSE140580, Cancer Cell Line Encyclopedia (CCLE), and IMvigor210 cohorts. CRFs was constructed using the least absolute shrinkage and selection operator (LASSO) algorithm. The analyses involved in the prognosis, response to immunologic therapy, efficacy of transcatheter arterial chemoembolization (TACE) therapy, and drug sensitivity were performed. Furthermore, the molecular function, somatic mutation, and stemness analyses were further performed between the low- and high-risk groups, respectively. In this study, the statistical analyses were performed by using the diverse packages of R 4.1.3 software and Cytoscape 3.8.0. RESULTS CRFs included seven genes (G6PD, NRAS, RRM2, SQSTM1, SRXN1, TXNRD1, and ZFP69B). Multivariate Cox regression analyses demonstrated that CRFs were an independent risk factor for prognosis. In addition, these patients in the high-risk group presented with worse prognoses and a significant state of immunosuppression. Moreover, patients in the high-risk group might achieve greater outcomes after receiving immunologic therapy, while patients in the low-risk group are sensitive to TACE. Furthermore, we discovered that patients in the high-risk group may benefit from the administration of sunitinib. In addition, enhanced mRANsi and tumor mutation burden (TMB) yielded in the high-risk group. Additionally, the functions enriched in the low-risk group differed from those in the other group. CONCLUSION In summary, CRFs may be regarded not only as a novel biomarker of worse prognosis, but also as an excellent predictor of immunotherapy response, efficacy of TACE and drug sensitivity in HCC, which is worthy of clinical promotion.
Collapse
|