1
|
Yan D, Hou Y, Lei X, Xiao H, Zeng Z, Xiong W, Fan C. The Impact of Polyunsaturated Fatty Acids in Cancer and Therapeutic Strategies. Curr Nutr Rep 2025; 14:46. [PMID: 40085324 DOI: 10.1007/s13668-025-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
PURPOSE OF REVIEW Cancer is a disease influenced by both genetic and environmental factors, with dietary lipids being a significant contributing factor. This review summarizes the role of polyunsaturated fatty acids (PUFAs) in the mechanism of tumor occurrence and development, and elucidate the role of PUFAs in tumor treatment. RECENT FINDINGS PUFAs exert their impact on cancer through altering lipid composition in cell membranes, interacting with cell membrane lipid receptors, directly modulating gene expression in the cell nucleus, and participating in the metabolism of lipid mediators. Most omega-3 PUFAs are believed to inhibit cell proliferation, promote cancer cell death, suppress cancer metastasis, alter energy metabolism, inhibit tumor microenvironment inflammation, and regulate immune responses involving macrophages, T cells, NK cells, and others. However, certain omega-6 PUFAs exhibit weaker anti-tumor effects and may even promote tumor development, such as by fostering inflammatory tumor microenvironment and enhancing tumor cell proliferation. PUFAs play important roles in hallmarks of cancer including tumor cell proliferation, cell death, migration and invasion, energy metabolism remodeling, epigenetics, and immunity. These findings provide insights into the mechanisms of cancer development and offers options for dietary management of cancer.
Collapse
Affiliation(s)
- Dong Yan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Yingshan Hou
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Xinyi Lei
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Hao Xiao
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Zhaoyang Zeng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
- Department of Histology and Embryology, School of Basic Medicine Sciences, Central South University, Changsha, 410013, Hunan Province, China.
| |
Collapse
|
2
|
Chen K, Shen S, Lv Z, Guo M, Shao Y, Li C. Lytic coelomocyte death is tuned by cleavage but not phosphorylation of MLKL in echinoderms. PLoS Pathog 2025; 21:e1012991. [PMID: 40085533 PMCID: PMC11932488 DOI: 10.1371/journal.ppat.1012991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/24/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
Lytic cell death including necroptosis and pyroptosis is induced by mixed lineage kinase domain-like protein (MLKL) phosphorylation and inflammatory caspase specific cleavage Gasdermins in higher mammals, respectively. In this study, we identified a novel MLKL homolog containing a tetrapeptide recognition motif (14-LVAD-17) of inflammatory caspase from Apostichopus japonicus,which was absent of Gasdermins member by genome screening. Functional analysis revealed that AjMLKL was involved in the regulation of Vibrio splendidus AJ01 infection induced lytic coelomocyte death in a cleavage-dependent manner, but not through RIPK3-dependent phosphorylation as mammals. Mechanistically, the activated form of cysteine-aspartic specific proteases-1 (AjCASP-1) bound to the tetrapeptide site of AjMLKL and cleaved it at Asp17. Cleaved AjMLKL18-491 displayed higher binding affinities towards phosphatidylinositol phosphate and cardiolipin compared to those of un-cleaved form. In addition, cleaved AjMLKL18-491 exerted stronger ability in disrupting the membrane integrity of liposome. More importantly, AjMLKL18-491 caused a large non-selective ionic coelomocyte pore and could directly kill the invasive AJ01. Moreover, activation of inflammatory AjCASP-1 was further found to be dependent on forming an inflammasome-like complex via CASc domain of AjCASP-1 and the N-terminal Ig domains of internalized AjNLRC4. All our results proved first evidence that lytic cell death was activated through MLKL cleavage, not MLKL phosphorylation in echinoderm, which offered insights into the functional, evolutionary mechanisms of lytic cell death in invertebrates.
Collapse
Affiliation(s)
- Kaiyu Chen
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Sikou Shen
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Zhimeng Lv
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Ming Guo
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Yina Shao
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Chenghua Li
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
3
|
Liu S, Joshi K, Zhang L, Li W, Mack R, Runde A, Hagen PA, Barton K, Breslin P, Ji HL, Kini AR, Wang Z, Zhang J. Caspase 8 deletion causes infection/inflammation-induced bone marrow failure and MDS-like disease in mice. Cell Death Dis 2024; 15:278. [PMID: 38637559 PMCID: PMC11026525 DOI: 10.1038/s41419-024-06660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of pre-leukemic hematopoietic disorders characterized by cytopenia in peripheral blood due to ineffective hematopoiesis and normo- or hypercellularity and morphologic dysplasia in bone marrow (BM). An inflammatory BM microenvironment and programmed cell death of hematopoietic stem/progenitor cells (HSPCs) are thought to be the major causes of ineffective hematopoiesis in MDS. Pyroptosis, apoptosis and necroptosis (collectively, PANoptosis) are observed in BM tissues of MDS patients, suggesting an important role of PANoptosis in MDS pathogenesis. Caspase 8 (Casp8) is a master regulator of PANoptosis, which is downregulated in HSPCs from most MDS patients and abnormally spliced in HSPCs from MDS patients with SRSF2 mutation. To study the role of PANoptosis in hematopoiesis, we generated inducible Casp8 knockout mice (Casp8-/-). Mx1-Cre-Casp8-/- mice died of BM failure within 10 days of polyI:C injections due to depletion of HSPCs. Rosa-ERT2Cre-Casp8-/- mice are healthy without significant changes in BM hematopoiesis within the first 1.5 months after Casp8 deletion. Such mice developed BM failure upon infection or low dose polyI:C/LPS injections due to the hypersensitivity of Casp8-/- HSPCs to infection or inflammation-induced necroptosis which can be prevented by Ripk3 deletion. However, impaired self-renewal capacity of Casp8-/- HSPCs cannot be rescued by Ripk3 deletion due to activation of Ripk1-Tbk1 signaling. Most importantly, mice transplanted with Casp8-/- BM cells developed MDS-like disease within 4 months of transplantation as demonstrated by anemia, thrombocytopenia and myelodysplasia. Our study suggests an essential role for a balance in Casp8, Ripk3-Mlkl and Ripk1-Tbk1 activities in the regulation of survival and self-renewal of HSPCs, the disruption of which induces inflammation and BM failure, resulting in MDS-like disease.
Collapse
Affiliation(s)
- Shanhui Liu
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou, Gansu, 730030, China
| | - Kanak Joshi
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Lei Zhang
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, 215123, China
| | - Wenyan Li
- Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou, Gansu, 730030, China
| | - Ryan Mack
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Austin Runde
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Patrick A Hagen
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Medicine, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Kevin Barton
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Medicine, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Departments of Biology and Molecular/Cellular Physiology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Hong-Long Ji
- Department of Surgery, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Ameet R Kini
- Departments of Pathology and Radiation Oncology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Zhiping Wang
- Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou, Gansu, 730030, China.
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA.
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA.
- Departments of Pathology and Radiation Oncology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
4
|
Kwak MS, Choi S, Kim J, Lee H, Park IH, Oh J, Mai DN, Cho NH, Nam KT, Shin JS. SARS-CoV-2 Infection Induces HMGB1 Secretion Through Post-Translational Modification and PANoptosis. Immune Netw 2023; 23:e26. [PMID: 37416931 PMCID: PMC10320423 DOI: 10.4110/in.2023.23.e26] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 07/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces excessive pro-inflammatory cytokine release and cell death, leading to organ damage and mortality. High-mobility group box 1 (HMGB1) is one of the damage-associated molecular patterns that can be secreted by pro-inflammatory stimuli, including viral infections, and its excessive secretion levels are related to a variety of inflammatory diseases. Here, the aim of the study was to show that SARS-CoV-2 infection induced HMGB1 secretion via active and passive release. Active HMGB1 secretion was mediated by post-translational modifications, such as acetylation, phosphorylation, and oxidation in HEK293E/ACE2-C-GFP and Calu-3 cells during SARS-CoV-2 infection. Passive release of HMGB1 has been linked to various types of cell death; however, we demonstrated for the first time that PANoptosis, which integrates other cell death pathways, including pyroptosis, apoptosis, and necroptosis, is related to passive HMGB1 release during SARS-CoV-2 infection. In addition, cytoplasmic translocation and extracellular secretion or release of HMGB1 were confirmed via immunohistochemistry and immunofluorescence in the lung tissues of humans and angiotensin-converting enzyme 2-overexpressing mice infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Man Sup Kwak
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seoyeon Choi
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jiseon Kim
- Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hoojung Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - In Ho Park
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jooyeon Oh
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Duong Ngoc Mai
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Pediatrics, University of Medicine and Pharmacy, Ho Chi Minh 700000, Vietnam
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ki Taek Nam
- Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|