1
|
Qin W, Chen B, Li X, Zhao W, Wang L, Zhang N, Wang X, Luo D, Liang Y, Li Y, Chen X, Chen T, Yang Q. Cancer-associated fibroblasts secrete CSF3 to promote TNBC progression via enhancing PGM2L1-dependent glycolysis reprogramming. Cell Death Dis 2025; 16:249. [PMID: 40185722 PMCID: PMC11971334 DOI: 10.1038/s41419-025-07580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/28/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025]
Abstract
Triple-negative breast cancer (TNBC) is characterized by a pronounced hypoxic tumor microenvironment, with cancer-associated fibroblasts (CAFs) serving as the predominant cellular component and playing crucial roles in regulating tumor progression. However, the mechanism by which CAFs affect the biological behavior of tumor cells in hypoxic environment remain elusive. This study employed a bead-based multiplex immunoassay to analyze a panel of cytokines/chemokines and identified colony stimulating factor 3 (CSF3) as a significantly elevated component in the secretome of hypoxic CAFs. We found that CSF3 promoted the invasive behavior of TNBC cells by activating the downstream signaling pathway of its receptor, CSF3R. RNA sequencing analysis further revealed that phosphoglucomutase 2-like 1 (PGM2L1) is a downstream target of the CSF3/CSF3R signaling, enhancing the glycolysis pathway and providing energy to support the malignant phenotype of breast cancer. In vivo, we further confirmed that CSF3 promotes TNBC progression by targeting PGM2L1. These findings suggest that targeting CSF3/CSF3R may represent a potential therapeutic approach for TNBC.
Collapse
Affiliation(s)
- Wenqi Qin
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Bing Chen
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xin Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Wenjing Zhao
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Lijuan Wang
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Dan Luo
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xi Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Tong Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
- Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
2
|
Costa A, Breccia M. SOHO State of the Art Updates and Next Questions. Atypical Chronic Myeloid Leukemia: Pathogenesis, Diagnostic Challenges, and Therapeutic Strategies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025:S2152-2650(25)00110-7. [PMID: 40288921 DOI: 10.1016/j.clml.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025]
Abstract
Atypical chronic myeloid leukemia (aCML) is a rare and challenging clonal hematopoietic disorder within the myelodysplastic/myeloproliferative neoplasm (MDS/MPN) spectrum. Over the past two decades, substantial progress has been made in understanding the genetic mechanisms driving aCML, revealing a complex and heterogeneous mutational landscape. Key ancestral mutations, such as ASXL1 and ETNK1, have been identified, providing a foundation for the pathogenesis and for the possible emergence of secondary abnormalities, particularly in epigenetic regulation (eg, SETBP1), and in splicing process (eg, SRSF2). These molecular insights have been integrated into current diagnostic classifications, refining disease characterization and offering potential targets for precision therapies. Despite these advances, significant clinical challenges persist due to the disease's rarity and the lack of randomized clinical trials. Therapeutic strategies remain inadequately defined, with allogeneic stem cell transplantation being the only curative option. This review provides an overview of the molecular, clinical, and therapeutic information that may pave the way for essential advancements in the proper management of this disease.
Collapse
Affiliation(s)
- Alessandro Costa
- Hematology Unit, Businco Hospital, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy.
| |
Collapse
|
3
|
Geng P, Meng X, Hao X, Tang X, Xing J, Sheng X, Zhan W, Dalmo RA, Chi H. G-CSF modulates innate and adaptive immunity via the ligand-receptor pathway of binding GCSFR in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110160. [PMID: 39880324 DOI: 10.1016/j.fsi.2025.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/18/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Granulocyte colony stimulating factor (G-CSF) has been shown in mammalia to activate a series of signal transduction systems and exert various biological effects, such as controlling the differentiation, proliferation, and survival of granulocytes, promoting the movement of hematopoietic stem cells from the bone marrow to the bloodstream, and triggering the development of T cells, dendritic cells, and immune tolerance in transplants. In this study, the mRNA of flounder G-CSF (PoG-CSF) and its receptor (PoGCSFR) were detected and widely expressed in all examined tissues with the highest expression in peritoneal cells. G-CSF+ and GCSFR+ cells were observed to be abundantly distributed in the leukocytes from the peritoneal cavity, followed by head kidney. PoG-CSF was detected in IgM+, CD4+, MHCII+ and CD83+ cells which indicated that flounder lymphocytes, dendritic cells and other MHCII positive cells may produce G-CSF protein. PoGCSFR was expressed in the MPO+ cells, suggesting that PoGCSFR is mainly expressed in flounder granulocytes. In addition, rPoG-CSF demonstrated a capacity to enhance the phagocytosis of peritoneal cells and HK leukocytes in vitro. In vivo, the percentage of IgM+, CD4+, MHCII+, CD83+ and GCSFR+ cells in the peritoneal cavity increased after rPoG-CSF i.p. stimulation. It seemed that rPoG-CSF promoted the migration of innate cells from the head kidney into the peritoneal cavity. Meanwhile, administration of rPoG-CSF increased the expression levels of the inflammatory cytokines. Finally, drawing of the interfaces of G-CSF and GCSFR showed the principal hydrogen-bonding linkages. This study suggests that G-CSF as a pleiotropic growth factor binding to GCSFR may be involved in the regulation of innate and adaptive responses.
Collapse
Affiliation(s)
- Panqiu Geng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Xianghu Meng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Xiaokai Hao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, PR China
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø - The Artic University of Norway, Tromsø, Norway
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
4
|
O'Neill CG, Sawaya AP, Mehdizadeh S, Brooks SR, Hasneen K, Nayak S, Overmiller AM, Morasso MI. SOX2-Dependent Wound Repair Signature Triggers Prohealing Outcome in Hyperglycemic Wounds. J Invest Dermatol 2025; 145:451-455.e5. [PMID: 39127091 PMCID: PMC11745936 DOI: 10.1016/j.jid.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Affiliation(s)
- Christopher G O'Neill
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew P Sawaya
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Spencer Mehdizadeh
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kowser Hasneen
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Subhashree Nayak
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew M Overmiller
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
5
|
Maffei R, Paolini A, Conte B, Riva G, Nasillo V, Cretì F, Martinelli S, Giacobbi F, Corradini G, Pilato F, Bernabei D, Lancellotti C, Debbia G, Morselli M, Potenza L, Giusti D, Colaci E, Bettelli F, Bresciani P, Cuoghi A, Gilioli A, Messerotti A, Pioli V, Maccaferri M, Leonardi G, Manfredini R, Marasca R, Eccher A, Luppi M, Forghieri F, Candoni A, Tagliafico E. Distribution of different classes of CSF3R mutations and co-mutational pattern in 360 myeloid neoplasia. Ann Hematol 2025; 104:263-274. [PMID: 39907800 PMCID: PMC11868254 DOI: 10.1007/s00277-025-06232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/26/2025] [Indexed: 02/06/2025]
Abstract
The colony-stimulating factor 3 receptor (CSF3R) plays an essential role in differentiation, growth, and survival of granulocytes. Driver mutations in CSF3R gene represent a diagnostic marker of chronic neutrophilic leukemia (CNL). Less commonly, these mutations are observed in other myeloid neoplasms but their pathogenetic and prognostic role is still unclear. Here, we analyzed a large cohort of myeloid neoplasms to evaluate the incidence of CSF3R mutations and co-mutational profile. Mutational analysis was performed using targeted NGS myeloid panel in a consecutive cohort of 360 patients with myeloid neoplasms. Mutations in CSF3R were identified in 20/360 (5.6%) cases. A CSF3R gene mutation was present in 13/179 AML cases (7.3%), in 2/27 (7.4%) CMML cases, in 1/94 (1.1%) MDS cases and in 4/60 (6.7%) other myeloid neoplasms. The frequencies of patients with CSF3R mutations lowered to 2.8% in all cases and 3.4% in AML, excluding cases with variants of uncertain significance (VUS). A total of 23 mutations of CSF3R gene were detected, half localized in the extracellular domain, 5 in the transmembrane region (type I) and 6 mutations in the cytoplasmic domain (type II). In AML, CSF3R mutations were more frequent in patients harboring CBF alterations (25.0%) and CEBPA mutations (11.8%). Two cases with AML harboring pathogenic CSF3R variants were primary refractory to induction therapy. CMML cases with T618I variant showed a myeloproliferative phenotype. Overall, our findings support the notion that CSF3R variants, particularly type I and II pathogenic mutations, may modulate the phenotypic features of leukemic cells in myeloid neoplasia.
Collapse
Affiliation(s)
- Rossana Maffei
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy.
| | - Ambra Paolini
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
| | - Benedetta Conte
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
| | - Vincenzo Nasillo
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
| | - Federica Cretì
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Silvia Martinelli
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
| | - Francesca Giacobbi
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
| | - Giorgia Corradini
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
| | - Flora Pilato
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
| | - Daniela Bernabei
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
| | - Cesare Lancellotti
- Pathology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Giulia Debbia
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Monica Morselli
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Leonardo Potenza
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Davide Giusti
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Elisabetta Colaci
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Francesca Bettelli
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Paola Bresciani
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Angela Cuoghi
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Andrea Gilioli
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Andrea Messerotti
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Valeria Pioli
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Monica Maccaferri
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Giovanna Leonardi
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Rossella Manfredini
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Marasca
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Albino Eccher
- Pathology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Mario Luppi
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Fabio Forghieri
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Anna Candoni
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Enrico Tagliafico
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| |
Collapse
|
6
|
Li AL, Sugiura K, Nishiwaki N, Suzuki K, Sadeghian D, Zhao J, Maitra A, Falvo D, Chandwani R, Pitarresi JR, Sims PA, Rustgi AK. FRA1 controls acinar cell plasticity during murine Kras G12D-induced pancreatic acinar to ductal metaplasia. Dev Cell 2024; 59:3025-3042.e7. [PMID: 39178842 PMCID: PMC11576252 DOI: 10.1016/j.devcel.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/17/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Acinar cells have been proposed as a cell-of-origin for pancreatic ductal adenocarcinoma (PDAC) after undergoing acinar-to-ductal metaplasia (ADM). ADM can be triggered by pancreatitis, causing acinar cells to de-differentiate to a ductal-like state. We identify FRA1 (gene name Fosl1) as the most active transcription factor during KrasG12D acute pancreatitis-mediated injury, and we have elucidated a functional role of FRA1 by generating an acinar-specific Fosl1 knockout mouse expressing KrasG12D. Using a gene regulatory network and pseudotime trajectory inferred from single-nuclei ATAC-seq and bulk RNA sequencing (RNA-seq), we hypothesized a regulatory model of the acinar-ADM-pancreatic intraepithelial neoplasia (PanIN) continuum and experimentally validated that Fosl1 knockout mice are delayed in the onset of ADM and neoplastic transformation. Our study also identifies that pro-inflammatory cytokines, such as granulocyte colony stimulating factor (G-CSF), can regulate FRA1 activity to modulate ADM. Our findings identify that FRA1 is a mediator of acinar cell plasticity and is critical for acinar cell de-differentiation and transformation.
Collapse
Affiliation(s)
- Alina L Li
- Divison of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kensuke Sugiura
- Divison of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Noriyuki Nishiwaki
- Divison of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kensuke Suzuki
- Divison of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of General Surgery, Chiba University, Chiba 260-0856, Japan
| | - Dorsay Sadeghian
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Zhao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Falvo
- Department of Surgery and of Cell and Developmental Biology, Meyer Cancer Center, Weill-Cornell Medicine, New York, NY 10065, USA
| | - Rohit Chandwani
- Department of Surgery and of Cell and Developmental Biology, Meyer Cancer Center, Weill-Cornell Medicine, New York, NY 10065, USA
| | - Jason R Pitarresi
- Division of Hematology-Oncology, Department of Medicine, University of Massachusetts Chan School of Medicine, Worchester, MA 01655, USA
| | - Peter A Sims
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anil K Rustgi
- Divison of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
7
|
Ullrich T, Klimenkova O, Pollmann C, Lasram A, Hatskovska V, Maksymenko K, Milijaš-Jotić M, Schenk L, Lengerke C, Hartmann MD, Piehler J, Skokowa J, ElGamacy M. A strategy to design protein-based antagonists against type I cytokine receptors. PLoS Biol 2024; 22:e3002883. [PMID: 39591631 PMCID: PMC11596305 DOI: 10.1371/journal.pbio.3002883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/06/2024] [Indexed: 11/28/2024] Open
Abstract
Excessive cytokine signaling resulting from dysregulation of a cytokine or its receptor can be a main driver of cancer, autoimmune, or hematopoietic disorders. Here, we leverage protein design to create tailored cytokine receptor blockers with idealized properties. Specifically, we aimed to tackle the granulocyte-colony stimulating factor receptor (G-CSFR), a mediator of different types of leukemia and autoinflammatory diseases. By modifying designed G-CSFR binders, we engineered hyper-stable proteins that function as nanomolar signaling antagonists. X-ray crystallography showed atomic-level agreement with the experimental structure of an exemplary design. Furthermore, the most potent design blocks G-CSFR in acute myeloid leukemia cells and primary human hematopoietic stem cells. Thus, the resulting designs can be used for inhibiting or homing to G-CSFR-expressing cells. Our results also demonstrate that similarly designed cytokine mimics can be used to derive antagonists to tackle other type I cytokine receptors.
Collapse
Affiliation(s)
- Timo Ullrich
- Max Planck Institute for Biology, Department of Protein Evolution, Tübingen, Germany
| | - Olga Klimenkova
- Translational Oncology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Christoph Pollmann
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Asma Lasram
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Valeriia Hatskovska
- Max Planck Institute for Biology, Department of Protein Evolution, Tübingen, Germany
- Translational Oncology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Kateryna Maksymenko
- Max Planck Institute for Biology, Department of Protein Evolution, Tübingen, Germany
| | - Matej Milijaš-Jotić
- Max Planck Institute for Biology, Department of Protein Evolution, Tübingen, Germany
| | - Lukas Schenk
- Translational Oncology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Claudia Lengerke
- Translational Oncology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Marcus D. Hartmann
- Max Planck Institute for Biology, Department of Protein Evolution, Tübingen, Germany
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Julia Skokowa
- Translational Oncology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Mohammad ElGamacy
- Max Planck Institute for Biology, Department of Protein Evolution, Tübingen, Germany
- Translational Oncology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Kim SY, Song IC, Kim J, Kwon GC. Analysis of CSF3R mutations in atypical chronic myeloid leukemia and other myeloid malignancies. Ann Diagn Pathol 2024; 71:152317. [PMID: 38642470 DOI: 10.1016/j.anndiagpath.2024.152317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
We report a series of patients with CSF3R-mutant (CSF3Rmut) atypical chronic myeloid leukemia (aCML), chronic neutrophilic leukemia (CNL) or other hematologic malignancies. We included 25 patients: 5 aCML and 4 CNL CSF3Rmut patients; 1 aCML, 2 CNL, and 2 myelodysplastic/myeloproliferative neoplasm, not otherwise specified patients without CSF3R mutation; and 11 CSF3Rmut patients with other diseases [8 acute myeloid leukemia (AML), 1 chronic myelomonocytic leukemia (CMML), 1 myelodysplastic syndrome (MDS), and 1 acute lymphoblastic leukemia (ALL)]. Patients with aCML or CNL were tested by Sanger sequencing and pyrosequencing to identify CSF3R T618I. Twenty-two patients underwent gene panel analysis. CSF3R mutations, mostly T618I (8/9), were found at high frequencies in both aCML and CNL patients [5/6 aCML and 4/6 CNL]. Two aCML patients in early adulthood with CSF3R T618I and biallelic or homozygous CEBPA mutations without other mutations presented with increased blasts and exhibited remission for >6 years after transplantation. The other 7 CSF3Rmut aCML or CNL patients were elderly adults who all had ASXL1 mutations and frequently presented with SEBP1 and SRSF2 mutations. Five AML patients had CSF3R exon 14 or 15 point mutations, and 6 other patients (3 AML, 1 CMML, 1 MDS, and 1 ALL) had truncating mutations, demonstrating differences in leukocyte counts and mutation status. In conclusion, CSF3R mutations were found at a higher frequency in aCML patients than in previous studies, which might reflect ethnic differences. Additional studies are needed to confirm these findings and the relationship between CSF3R and CEBPA mutations.
Collapse
MESH Headings
- Humans
- Receptors, Colony-Stimulating Factor/genetics
- Male
- Female
- Mutation
- Middle Aged
- Aged
- Adult
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/pathology
- Aged, 80 and over
- Leukemia, Neutrophilic, Chronic/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
Collapse
Affiliation(s)
- Seon Young Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jimyung Kim
- Department of Laboratory Medicine, Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Gye Cheol Kwon
- Department of Laboratory Medicine, Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
9
|
Esmaeili N, Bakheet A, Tse W, Liu S, Han X. Interaction of the intestinal cytokines-JAKs-STAT3 and 5 axes with RNA N6-methyladenosine to promote chronic inflammation-induced colorectal cancer. Front Oncol 2024; 14:1352845. [PMID: 39136000 PMCID: PMC11317299 DOI: 10.3389/fonc.2024.1352845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers, with a high mortality rate worldwide. Mounting evidence indicates that mRNA modifications are crucial in RNA metabolism, transcription, processing, splicing, degradation, and translation. Studies show that N6-methyladenosine (m6A) is mammalians' most common epi-transcriptomic modification. It has been demonstrated that m6A is involved in cancer formation, progression, invasion, and metastasis, suggesting it could be a potential biomarker for CRC diagnosis and developing therapeutics. Cytokines, growth factors, and hormones function in JAK/STAT3/5 signaling pathway, and they could regulate the intestinal response to infection, inflammation, and tumorigenesis. Reports show that the JAK/STAT3/5 pathway is involved in CRC development. However, the underlying mechanism is still unclear. Signal Transducer and Activator of Transcription 3/5 (STAT3, STAT5) can act as oncogenes or tumor suppressors in the context of tissue types. Also, epigenetic modifications and mutations could alter the balance between pro-oncogenic and tumor suppressor activities of the STAT3/5 signaling pathway. Thus, exploring the interaction of cytokines-JAKs-STAT3 and/or STAT5 with mRNA m6A is of great interest. This review provides a comprehensive overview of the characteristics and functions of m6A and JAKs-STAT3/5 and their relationship with gastrointestinal (GI) cancers.
Collapse
Affiliation(s)
- Nardana Esmaeili
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - Ahmed Bakheet
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - William Tse
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - Shujun Liu
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - Xiaonan Han
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Cancer Genomics and Epigenomics Program, Case Comprehensive Cancer Center, Case Western Reserve University (CWRU), Cleveland, OH, United States
| |
Collapse
|
10
|
Rashid MM, Selvarajoo K. Advancing drug-response prediction using multi-modal and -omics machine learning integration (MOMLIN): a case study on breast cancer clinical data. Brief Bioinform 2024; 25:bbae300. [PMID: 38904542 PMCID: PMC11190965 DOI: 10.1093/bib/bbae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
The inherent heterogeneity of cancer contributes to highly variable responses to any anticancer treatments. This underscores the need to first identify precise biomarkers through complex multi-omics datasets that are now available. Although much research has focused on this aspect, identifying biomarkers associated with distinct drug responders still remains a major challenge. Here, we develop MOMLIN, a multi-modal and -omics machine learning integration framework, to enhance drug-response prediction. MOMLIN jointly utilizes sparse correlation algorithms and class-specific feature selection algorithms, which identifies multi-modal and -omics-associated interpretable components. MOMLIN was applied to 147 patients' breast cancer datasets (clinical, mutation, gene expression, tumor microenvironment cells and molecular pathways) to analyze drug-response class predictions for non-responders and variable responders. Notably, MOMLIN achieves an average AUC of 0.989, which is at least 10% greater when compared with current state-of-the-art (data integration analysis for biomarker discovery using latent components, multi-omics factor analysis, sparse canonical correlation analysis). Moreover, MOMLIN not only detects known individual biomarkers such as genes at mutation/expression level, most importantly, it correlates multi-modal and -omics network biomarkers for each response class. For example, an interaction between ER-negative-HMCN1-COL5A1 mutations-FBXO2-CSF3R expression-CD8 emerge as a multimodal biomarker for responders, potentially affecting antimicrobial peptides and FLT3 signaling pathways. In contrast, for resistance cases, a distinct combination of lymph node-TP53 mutation-PON3-ENSG00000261116 lncRNA expression-HLA-E-T-cell exclusions emerged as multimodal biomarkers, possibly impacting neurotransmitter release cycle pathway. MOMLIN, therefore, is expected advance precision medicine, such as to detect context-specific multi-omics network biomarkers and better predict drug-response classifications.
Collapse
Affiliation(s)
- Md Mamunur Rashid
- Biomolecular Sequence to Function Division, BII, (ASTAR), Singapore 138671, Republic of Singapore
| | - Kumar Selvarajoo
- Biomolecular Sequence to Function Division, BII, (ASTAR), Singapore 138671, Republic of Singapore
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, NUS, Singapore 117456, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| |
Collapse
|
11
|
Bark SA, Dalmolin M, Malafaia O, Roesler R, Fernandes MAC, Isolan GR. Gene Expression of CSF3R/CD114 Is Associated with Poorer Patient Survival in Glioma. Int J Mol Sci 2024; 25:3020. [PMID: 38474265 DOI: 10.3390/ijms25053020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Gliomas comprise most cases of central nervous system (CNS) tumors. Gliomas afflict both adults and children, and glioblastoma (GBM) in adults represents the clinically most important type of malignant brain cancer, with a very poor prognosis. The cell surface glycoprotein CD114, which is encoded by the CSF3R gene, acts as the receptor for the granulocyte colony stimulating factor (GCSF), and is thus also called GCSFR or CSFR. CD114 is a marker of cancer stem cells (CSCs), and its expression has been reported in several cancer types. In addition, CD114 may represent one among various cases where brain tumors hijack molecular mechanisms involved in neuronal survival and synaptic plasticity. Here, we describe CSF3R mRNA expression in human gliomas and their association with patient prognosis as assessed by overall survival (OS). We found that the levels of CSF3R/CD114 transcripts are higher in a few different types of gliomas, namely astrocytoma, pilocytic astrocytoma, and GBM, in comparison to non-tumoral neural tissue. We also observed that higher expression of CSF3R/CD114 in gliomas is associated with poorer outcome as measured by a shorter OS. Our findings provide early evidence suggesting that CSF3R/CD114 shows a potential role as a prognosis marker of OS in patients with GBM.
Collapse
Affiliation(s)
- Samir Ale Bark
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
| | - Matheus Dalmolin
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Osvaldo Malafaia
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil
| | - Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Marcelo A C Fernandes
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Gustavo R Isolan
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| |
Collapse
|
12
|
High Neutrophil-to-Lymphocyte Ratio Facilitates Cancer Growth-Currently Marketed Drugs Tadalafil, Isotretinoin, Colchicine, and Omega-3 to Reduce It: The TICO Regimen. Cancers (Basel) 2022; 14:cancers14194965. [PMID: 36230888 PMCID: PMC9564173 DOI: 10.3390/cancers14194965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Several elements that are composed of, or related to, neutrophils, have been shown to inhibit strong immune responses to cancer and promote cancers’ growth. This paper presents the collected data showing these elements and how their coordinated actions as an ensemble facilitate growth in the common cancers. The paper goes on to present a drug regimen, TICO, designed to reduce the cancer growth enhancing effects of the neutrophil related elements. TICO uses four already marketed, readily available generic drugs, repurposed to inhibit neutrophil centered growth facilitation of cancer. Abstract This paper presents remarkably uniform data showing that higher NLR is a robust prognostic indicator of shorter overall survival across the common metastatic cancers. Myeloid derived suppressor cells, the NLRP3 inflammasome, neutrophil extracellular traps, and absolute neutrophil count tend to all be directly related to the NLR. They, individually and as an ensemble, contribute to cancer growth and metastasis. The multidrug regimen presented in this paper, TICO, was designed to decrease the NLR with potential to also reduce the other neutrophil related elements favoring malignant growth. TICO is comprised of already marketed generic drugs: the phosphodiesterase 5 inhibitor tadalafil, used to treat inadequate erections; isotretinoin, the retinoid used for acne treatment; colchicine, a standard gout (podagra) treatment; and the common fish oil supplement omega-3 polyunsaturated fatty acids. These individually impose low side effect burdens. The drugs of TICO are old, cheap, well known, and available worldwide. They all have evidence of lowering the NLR or the growth contributing elements related to the NLR when clinically used in general medicine as reviewed in this paper.
Collapse
|