1
|
Peng L, Ma W, Zhang X, Zhang F, Ma F, Ai K, Ma X, Jia Y, Ou-Yang H, Pei S, Wang T, Zhu Y, Wang L. Predictive value of combined DCE-MRI perfusion parameters and clinical features nomogram for microsatellite instability in colorectal cancer. Discov Oncol 2025; 16:892. [PMID: 40410525 PMCID: PMC12102045 DOI: 10.1007/s12672-025-02705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/13/2025] [Indexed: 05/25/2025] Open
Abstract
OBJECTIVES To develop a nomogram that combines dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) perfusion parameters, ADC values and clinical features to preoperatively identify microsatellite instability (MSI) in patients with colorectal cancer (CRC). METHODS This retrospective study included 63 CRC patients who underwent preoperative DCE-MRI and had immunohistochemistry results available. Two radiologists, in a double-blind manner, placed two circular regions of interests in the area with the highest perfusion intensity on the DCE-MRI perfusion map and the corresponding area on the ADC map. Perfusion parameters and ADC values were measured, and the average values from both radiologists were used for subsequent analysis. Univariate analysis was performed to identify independent risk factors for MSI. A nomogram was then constructed by combining the most significant clinical risk factors with DCE-MRI perfusion parameters. The model's performance was evaluated using receiver operating characteristic (ROC) curves. Calibration curves, decision curve analysis (DCA), and clinical impact curves (CIC) were used to assess the nomogram's clinical utility and net benefit. RESULTS The nomogram prediction model, which combined PLT, LNM, Ktrans, Kep, iAUC, and ADC, demonstrated good predictive performance. The combined model had an AUC of 0.951 (95% CI: 0.903-0.998), an accuracy of 0.873, a sensitivity of 1.000, and a specificity of 0.818. Both the DCA and CIC demonstrated good clinical applicability and net benefit. CONCLUSION The nomogram method demonstrated good potential in the preoperative individualized identification of MSI status in CRC patients. This tool can assist clinicians in adopting appropriate treatment strategies and optimizing personalized stratification for CRC patients.
Collapse
Affiliation(s)
- Leping Peng
- Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Wenting Ma
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, China
| | - Xiuling Zhang
- Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Fan Zhang
- Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Fang Ma
- Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Kai Ai
- Department of Clinical and Technical Support, Philips Healthcare, Xi'an, 710065, Shanxi, China
| | - Xiaomei Ma
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, China
| | - Yingmei Jia
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, China
| | - Hong Ou-Yang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, China
| | - Shengting Pei
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, China
| | - Tao Wang
- Department of Colorectal Surgery, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, China
| | - Yuanhui Zhu
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, China.
| | - Lili Wang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
2
|
Tian Y, Zong Y, Pang Y, Zheng Z, Ma Y, Zhang C, Gao J. Platelets and diseases: signal transduction and advances in targeted therapy. Signal Transduct Target Ther 2025; 10:159. [PMID: 40374650 DOI: 10.1038/s41392-025-02198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/18/2024] [Accepted: 02/24/2025] [Indexed: 05/17/2025] Open
Abstract
Platelets are essential anucleate blood cells that play pivotal roles in hemostasis, tissue repair, and immune modulation. Originating from megakaryocytes in the bone marrow, platelets are small in size but possess a highly specialized structure that enables them to execute a wide range of physiological functions. The platelet cytoplasm is enriched with functional proteins, organelles, and granules that facilitate their activation and participation in tissue repair processes. Platelet membranes are densely populated with a variety of receptors, which, upon activation, initiate complex intracellular signaling cascades. These signaling pathways govern platelet activation, aggregation, and the release of bioactive molecules, including growth factors, cytokines, and chemokines. Through these mechanisms, platelets are integral to critical physiological processes such as thrombosis, wound healing, and immune surveillance. However, dysregulated platelet function can contribute to pathological conditions, including cancer metastasis, atherosclerosis, and chronic inflammation. Due to their central involvement in both normal physiology and disease, platelets have become prominent targets for therapeutic intervention. Current treatments primarily aim to modulate platelet signaling to prevent thrombosis in cardiovascular diseases or to reduce excessive platelet aggregation in other pathological conditions. Antiplatelet therapies are widely employed in clinical practice to mitigate clot formation in high-risk patients. As platelet biology continues to evolve, emerging therapeutic strategies focus on refining platelet modulation to enhance clinical outcomes and prevent complications associated with platelet dysfunction. This review explores the structure, signaling pathways, biological functions, and therapeutic potential of platelets, highlighting their roles in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Yuchen Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Wang J, An H, Tao N. Association of non-insulin-based insulin resistance indices, mean platelet volume and prostate cancer: a cross-sectional study. BMC Cancer 2025; 25:795. [PMID: 40295970 PMCID: PMC12039131 DOI: 10.1186/s12885-025-13839-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/28/2025] [Indexed: 04/30/2025] Open
Abstract
PURPOSE Insulin resistance and prostate cancer (PCa) association results remain controversial. However, few studies have compared the role of various non-insulin-based insulin resistance (NI-IR) indices and mean platelet volume (MPV) in PCa. METHODS We conducted a cross-sectional study, the case group included 354 patients with PCa, and the control group included 1,498 non-PCa participants. We performed inverse probability weighting to reduce the impact of differences in baseline information between the case and control groups on results. Weighted logistic regression analysis for assessing the relationship between NI-IR indices and PCa risk. Fitting 4-point restricted cubic spline (RCS) plots to show the trend of NI-IR indices with PCa risk. The interaction between insulin resistance and platelet volume based on generalized additive model (GAM) to reveal the impact of the interaction between insulin resistance and cardiovascular risk on PCa. In the end, we performed three sensitivity analyses to verify the stability of results. RESULTS Weighted logistic regression analysis revealed that all NI-IR indices were associated with PCa. When NI-IR indices were evaluated as continuous variables, in the all variables adjusted model (model 3), the adjusted OR of ZJU index was 1.337 (95%CI: 1.296-1.379), the adjusted OR of TyG index was 5.300 (95%CI:4.208-6.675), the adjusted OR of TG/HDL-c was 1.431 (95%CI:1.335-1.534), and the adjusted OR of METS-IR was 1.129 (95%CI:1.110-1.149). When NI-IR indices were analyzed as categorical variables, also in model 3, using Q1 as reference, the adjusted OR of ZJU index in Q5 was 15.592 (95%CI:10.809-22.492), the adjusted OR of TyG index in Q5 was 7.306 (95%CI:5.182-10.301), the adjusted OR of TG/HDL-c in Q5 was 4.790 (95%CI:3.459-6.632), and the adjusted OR of METS-IR in Q5 was 9.844 (95%CI:6.862-14.121). RCS displayed that PCa risk tended to increase as the ZJU index, TyG index, TG/HDL-c, and METS-IR increased. The interaction test based on the GAM indicated that the value of the interaction between TG/HDL-c and MPV on the PCa risk was χ2 = 6.924(P = 0.009). With the increase in TG/HDL-c and the decrease in MPV, the PCa risk progressively increases. The sensitivity analysis further confirmed the robustness of the results. CONCLUSIONS NI-IR indices were associated with an increased PCa risk. The interaction between MPV and insulin resistance may further contribute to the PCa risk.
Collapse
Affiliation(s)
- Jinru Wang
- College of Public Health, Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Hengqing An
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, China.
| | - Ning Tao
- College of Public Health, Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, China.
| |
Collapse
|
4
|
Sumitomo R, Tsuji K, Katsuragawa H, Fukui T, Menju T, Kobayashi M, Sakai H, Date H. Pretreatment platelet level is associated with tumor proliferation and prognosis in malignant pleural mesothelioma. Gen Thorac Cardiovasc Surg 2025:10.1007/s11748-025-02148-9. [PMID: 40232673 DOI: 10.1007/s11748-025-02148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
OBJECTIVE The present study aimed to investigate the relationship between serum-based inflammatory biomarkers and MPM tumor biology and prognosis. METHODS A total of 83 patients with MPM who were diagnosed and started treatment between January 1998 and December 2010 were studied. Clinicopathological variables were evaluated, including age, sex, clinical stage, histology, surgical resection, and chemotherapy. The cut-off values for pretreatment levels of white blood cell count, neutrophil count, lymphocyte count, platelet count, C-reactive protein, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index were determined using receiver operating characteristic curve analysis for predicting 5-year survival. Univariate and multivariate Cox regression analyses were performed to estimate the prognostic impact on 5-year overall survival. RESULTS The mean Ki-67 proliferation index in MPM cells was 35.1 ± 29.5% and the median overall survival of patients was 15.0 months. The Ki-67 proliferation index in MPM cells was significantly higher in the platelet-high group compared with that in the platelet-low group (42.1 ± 31.9 vs. 27.7 ± 25.1%; P = 0.027). Multivariate Cox regression analyses identified platelet count (hazard ratio = 1.929; P = 0.022) and PLR (hazard ratio = 1.776; P = 0.040) as significant prognostic factors. CONCLUSION Pretreatment platelet level may be a useful prognostic marker for 5-year overall survival related to tumor proliferation in patients with MPM.
Collapse
Affiliation(s)
- Ryota Sumitomo
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo, Kyoto, 606‑8507, Japan.
| | - Kentaro Tsuji
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606‑8507, Japan
| | - Hiroyuki Katsuragawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606‑8507, Japan
| | - Tetsuya Fukui
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo, Kyoto, 606‑8507, Japan
| | - Toshi Menju
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo, Kyoto, 606‑8507, Japan
| | - Masashi Kobayashi
- Department of Thoracic Surgery, Kurashiki Central Hospital, Kurashiki, Okayama, 710-0052, Japan
| | - Hiroaki Sakai
- Department of Thoracic Surgery, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo, 660-8550, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo, Kyoto, 606‑8507, Japan
| |
Collapse
|
5
|
Wang Y, Jiang L, Wang J, Huang Y, Dong Y. Utilization of TEP miRNAs in tumor proliferation, diagnostic evaluation, therapeutic intervention, and prognostic assessment. Mol Biol Rep 2025; 52:343. [PMID: 40140156 DOI: 10.1007/s11033-025-10433-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025]
Abstract
According to the most recent 2022 statistics, China accounts for 4.82 million cancer patients, leading globally in prevalence. Early detection and intervention remain the most effective strategies for tumor prevention, treatment, and mortality reduction. There is an urgent need to enhance capabilities in cancer diagnosis and prevention. This study examines the association between tumor-educated platelet (TEP) microRNAs (miRNAs) and malignancies, as well as the role of TEP miRNAs in common cancers. TEP miRNAs offer significant advantages over tissue biopsies, conventional tumor biomarkers, and circulating miRNAs, including simplified sampling procedures, efficient monitoring, and longitudinal assessment of therapeutic dynamics. These advantages are instrumental in advancing tumor screening, diagnosis, treatment, and monitoring.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Clinical Laboratory, Luzhou Longmatan District People's Hospital, Luzhou, 646000, China
| | - Ling Jiang
- Department of Transfusion, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jie Wang
- Department of Transfusion, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yuanshuai Huang
- Department of Transfusion, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ya Dong
- Department of Oncology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Chunhui Road 182#, Longmatan District, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
6
|
Umihanic S, Novakovic L, Alidzanovic L, Kuduzovic MB, Sehic A, Muhic A, Kovcic A, Selak N. Prognostic Value of Systemic Immune Inflammation Index in Squamous Cell Lung Cancer. J Clin Med 2025; 14:2219. [PMID: 40217669 PMCID: PMC11989392 DOI: 10.3390/jcm14072219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Squamous cell lung cancer (SCC) presents a significant treatment challenge due to its poor prognosis and limited therapeutic options. In many resource-limited countries, access to advanced molecular testing is often unavailable, making the identification of novel and reliable prognostic markers crucial for improving patient selection for systemic treatments. Methods: This single-center, retrospective study investigated the prognostic value of inflammatory biomarkers, including the systemic immune-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR), in 134 patients diagnosed with SCC. Patients were stratified into groups based on optimal cut-off values determined by ROC analysis for each biomarker. Results: Elevated levels of the SII, NLR, and PLR were significantly associated with shorter overall survival in patients with SCC (all p < 0.05). Conclusions: These easily accessible and cost-effective laboratory parameters are particularly valuable in settings where molecular testing is not available, aiding in the identification of high-risk patients and optimizing treatment selection for chemotherapy.
Collapse
Affiliation(s)
- Sefika Umihanic
- Clinic for Oncology and Radiotherapy, University Clinical Center Tuzla, 75000 Tuzla, Bosnia and Herzegovina; (S.U.); (L.A.); (A.S.); (A.M.); (A.K.)
| | - Lora Novakovic
- Clinic for Pulmology, University Clinical Center Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Lejla Alidzanovic
- Clinic for Oncology and Radiotherapy, University Clinical Center Tuzla, 75000 Tuzla, Bosnia and Herzegovina; (S.U.); (L.A.); (A.S.); (A.M.); (A.K.)
| | | | - Anida Sehic
- Clinic for Oncology and Radiotherapy, University Clinical Center Tuzla, 75000 Tuzla, Bosnia and Herzegovina; (S.U.); (L.A.); (A.S.); (A.M.); (A.K.)
| | - Almedina Muhic
- Clinic for Oncology and Radiotherapy, University Clinical Center Tuzla, 75000 Tuzla, Bosnia and Herzegovina; (S.U.); (L.A.); (A.S.); (A.M.); (A.K.)
| | - Amila Kovcic
- Clinic for Oncology and Radiotherapy, University Clinical Center Tuzla, 75000 Tuzla, Bosnia and Herzegovina; (S.U.); (L.A.); (A.S.); (A.M.); (A.K.)
| | - Nejra Selak
- Pathology Department, University Clinical Center Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| |
Collapse
|
7
|
Sahin TK, Guven DC, Durukan M, Baş O, Kaygusuz Y, Arik Z, Dizdar O, Erman M, Yalcin S, Aksoy S. The association between HALP score and survival in patients treated with immune checkpoint inhibitors. Expert Rev Anticancer Ther 2025; 25:81-89. [PMID: 39773218 DOI: 10.1080/14737140.2025.2451079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
BACKGROUND The hemoglobin, albumin, lymphocyte, and platelet (HALP) score could be a prognostic biomarker in patients with cancer as a reflector of nutritional and inflammatory status, although the data is limited in patients treated with immune-checkpoint inhibitors (ICIs). Therefore, we sought to investigate the relationship between HALP score and survival in ICI-treated patients. METHODS We included adult patients with advanced cancer treated with ICIs between June 2016 and January 2024. Receiver operating characteristic (ROC) curve analysis was employed to identify the optimal HALP score cutoff point for survival prediction. The Kaplan-Meier method was utilized to create survival curves, and Cox regression was employed for multivariate analysis. RESULTS A total of 456 patients were included. The median age was 62 years, and 64.7% were male. The optimal HALP cutoff value for survival prediction was 22.8 in ROC analyses (AUC: 0.624, 95% CI: 0.570-0.679, p < 0.001). Multivariate analysis revealed that patients with low HALP scores had significantly shorter OS (HR: 1.394, 95% CI: 1.077-1.805, p = 0.012) and PFS (HR: 1.388, 95% CI: 1.129-1.706, p = 0.002). CONCLUSIONS Our study results pointed out the possible use of the HALP score as a prognostic marker in ICI-treated patients. If validated in prospective cohorts, the HALP score could enhance prognosis prediction in ICI-treated patients.
Collapse
Affiliation(s)
- Taha Koray Sahin
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Mert Durukan
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Onur Baş
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Yunus Kaygusuz
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Zafer Arik
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Omer Dizdar
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Mustafa Erman
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Suayib Yalcin
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
8
|
Yao W, Zhao K, Li X. Platelet stimulation-regulated expression of ILK and ITGB3 contributes to intrahepatic cholangiocarcinoma progression through FAK/PI3K/AKT pathway activation. Cell Mol Life Sci 2024; 82:19. [PMID: 39725790 DOI: 10.1007/s00018-024-05526-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal hepatobiliary malignancy with an increasing incidence annually. Extensive research has elucidated the existence of a reciprocal interaction between platelets and cancer cells, which promotes tumor proliferation and metastasis. This study aims to investigate the function and mechanism underlying iCCA progression driven by the interplay between platelets and tumor cells, aiming to provide novel therapeutic strategies for iCCA. METHODS The associations between platelets and cancer development were investigated by analyzing the peripheral blood platelet count, degree of platelet activation and infiltration in the microenvironment of patients with iCCA. By co-culturing tumor cells with platelets, the influence of platelet stimulation on the epithelial-mesenchymal transition (EMT), proliferation, and metastasis of iCCA cells was assessed through in vitro and in vivo experiments. Quantitative proteomic profiling was conducted to identify key downstream targets that were altered in tumor cells following platelet stimulation. The RNA interference technique was utilized to investigate the impacts of gene silencing on the malignant biological behaviors of tumor cells. RESULTS Compared with healthy adults, patients with iCCA presented significantly higher levels of peripheral blood platelet counts, platelet activation and infiltration degrees, which were also found to be correlated with patient prognosis. Platelet stimulation greatly facilitated the EMT of iCCA cells, leading to enhanced proliferative and metastatic capabilities. Mechanistically, proteomic profiling identified a total of 67 up-regulated and 40 down-regulated proteins in iCCA cells co-cultured with platelets. Among these proteins, two elevated targets ILK and ITGB3, were further demonstrated to be partially responsible for platelet-induced iCCA progression, which might depend on their regulatory effects on FAK/PI3K/AKT signaling transduction. CONCLUSIONS Our data revealed that platelet-related indices were abnormally ascendant in iCCA patients compared to healthy adults. Co-culturing with platelets enhanced the progression of EMT, and the motility and viability of iCCA cells in vitro and in vivo. Proteomic profiling discovered that platelets promoted the development of iCCA through FAK/PI3K/AKT pathway by means of elevating the expression of ILK and ITGB3, indicating that both proteins are promising therapeutic targets for iCCA with the guidance of platelet-related indices.
Collapse
Affiliation(s)
- Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Kai Zhao
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Xiangyu Li
- Department of Thoracic Surgery Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
9
|
Zhuang T, Wang S, Yu X, He X, Guo H, Ou C. Current status and future perspectives of platelet-derived extracellular vesicles in cancer diagnosis and treatment. Biomark Res 2024; 12:88. [PMID: 39183323 PMCID: PMC11346179 DOI: 10.1186/s40364-024-00639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
Platelets are a significant component of the cell population in the tumour microenvironment (TME). Platelets influence other immune cells and perform cross-talk with tumour cells, playing an important role in tumour development. Extracellular vesicles (EVs) are small membrane vesicles released from the cells into the TME. They can transfer biological information, including proteins, nucleic acids, and metabolites, from secretory cells to target receptor cells. This process affects the progression of various human diseases, particularly cancer. In recent years, several studies have demonstrated that platelet-derived extracellular vesicles (PEVs) can help regulate the malignant biological behaviours of tumours, including malignant proliferation, resistance to cell death, invasion and metastasis, metabolic reprogramming, immunity, and angiogenesis. Consequently, PEVs have been identified as key regulators of tumour progression. Therefore, targeting PEVs is a potential strategy for tumour treatment. Furthermore, the extensive use of nanomaterials in medical research has indicated that engineered PEVs are ideal delivery systems for therapeutic drugs. Recent studies have demonstrated that PEV engineering technologies play a pivotal role in the treatment of tumours by combining photothermal therapy, immunotherapy, and chemotherapy. In addition, aberrant changes in PEVs are closely associated with the clinicopathological features of patients with tumours, which may serve as liquid biopsy markers for early diagnosis, monitoring disease progression, and the prognostic assessment of patients with tumours. A comprehensive investigation into the role and potential mechanisms of PEVs in tumourigenesis may provide novel diagnostic biomarkers and potential therapeutic strategies for treating human tumours.
Collapse
Affiliation(s)
- Tongtao Zhuang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shenrong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoqian Yu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hongbin Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
10
|
Shah NN, Dave BP, Shah KC, Shah DD, Maheshwari KG, Chorawala MR, Parekh PS, Jani M. Disabled-2, a versatile tissue matrix multifunctional scaffold protein with multifaceted signaling: Unveiling its potential in the cancer battle. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5533-5557. [PMID: 38502243 DOI: 10.1007/s00210-024-03037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
A multifunctional scaffold protein termed Disabled-2 (Dab2) has recently gained attention in the scientific community and has emerged as a promising candidate in the realm of cancer research. Dab2 protein is involved in a variety of signaling pathways, due to which its significance in the pathogenesis of several carcinomas has drawn considerable attention. Dab2 is essential for controlling the advancement of cancer because it engages in essential signaling pathways such as the Wnt/β-catenin, epidermal growth factor receptor (EGFR), and transforming growth factor-beta (TGF-β) pathways. Dab2 can also repress epithelial-mesenchymal transition (EMT) which is involved in tumor progression with metastatic expansion and adds another layer of significance to its possible impact on cancer spread. Furthermore, the role of Dab2 in processes such as cell growth, differentiation, apoptosis, invasion, and metastasis has been explored in certain investigative studies suggesting its significance. The present review examines the role of Dab2 in the pathogenesis of various cancer subtypes including breast cancer, ovarian cancer, gastric cancer, prostate cancer, and bladder urothelial carcinoma and also sheds some light on its potential to act as a therapeutic target and a prognostic marker in the treatment of various carcinomas. By deciphering this protein's diverse signaling, we hope to provide useful insights that may pave the way for novel therapeutic techniques and tailored treatment approaches in cancer management. Preclinical and clinical trial data on the impact of Dab2 regulation in cancer have also been included, allowing us to delineate role of Dab2 in tumor suppressor function, as well as its correlation with disease stage classification and potential therapy options. However, we observed that there is very scarce data in the form of studies on the evaluation of Dab2 role and treatment function in carcinomas, and further research into this matter could prove beneficial in the generation of novel therapeutic agents for patient-centric and tailored therapy, as well as early prognosis of carcinomas.
Collapse
Affiliation(s)
- Nidhi N Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kunal G Maheshwari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Maharsh Jani
- Anand Niketan Shilaj, Ahmedabad, 380059, Gujarat, India
| |
Collapse
|
11
|
Gill JS, Bansal B, Poojary R, Singh H, Huang F, Weis J, Herman K, Schultz B, Coban E, Guo K, Mathur R. Immunological Signatures for Early Detection of Human Head and Neck Squamous Cell Carcinoma through RNA Transcriptome Analysis of Blood Platelets. Cancers (Basel) 2024; 16:2399. [PMID: 39001461 PMCID: PMC11240534 DOI: 10.3390/cancers16132399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Although there has been a reduction in head and neck squamous cell carcinoma occurrence, it continues to be a serious global health concern. The lack of precise early diagnostic biomarkers and postponed diagnosis in the later stages are notable constraints that contribute to poor survival rates and emphasize the need for innovative diagnostic methods. In this study, we employed machine learning alongside weighted gene co-expression network analysis (WGCNA) and network biology to investigate the gene expression patterns of blood platelets, identifying transcriptomic markers for HNSCC diagnosis. Our comprehensive examination of publicly available gene expression datasets revealed nine genes with significantly elevated expression in samples from individuals diagnosed with HNSCC. These potential diagnostic markers were further assessed using TCGA and GTEx datasets, demonstrating high accuracy in distinguishing between HNSCC and non-cancerous samples. The findings indicate that these gene signatures could revolutionize early HNSCC identification. Additionally, the study highlights the significance of tumor-educated platelets (TEPs), which carry RNA signatures indicative of tumor-derived material, offering a non-invasive source for early-detection biomarkers. Despite using platelet and tumor samples from different individuals, our results suggest that TEPs reflect the transcriptomic and epigenetic landscape of tumors. Future research should aim to directly correlate tumor and platelet samples from the same patients to further elucidate this relationship. This study underscores the potential of these biomarkers in transforming early diagnosis and personalized treatment strategies for HNSCC, advocating for further research to validate their predictive and therapeutic potential.
Collapse
Affiliation(s)
- Jappreet Singh Gill
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Benu Bansal
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Rayansh Poojary
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Harpreet Singh
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Fang Huang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Jett Weis
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Kristian Herman
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Brock Schultz
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Emre Coban
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Kai Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ramkumar Mathur
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| |
Collapse
|
12
|
Tutuianu A, Anene CA, Shelton M, Speirs V, Whitelaw DC, Thorpe J, Roberts W, Boyne JR. Platelet-derived microvesicles isolated from type-2 diabetes mellitus patients harbour an altered miRNA signature and drive MDA-MB-231 triple-negative breast cancer cell invasion. PLoS One 2024; 19:e0304870. [PMID: 38900754 PMCID: PMC11189239 DOI: 10.1371/journal.pone.0304870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
The underlying causes of breast cancer are diverse, however, there is a striking association between type 2 diabetes and poor patient outcomes. Platelet activation is a common feature of both type 2 diabetes and breast cancer and has been implicated in tumourigenesis through a multitude of pathways. Here transcriptomic analysis of type 2 diabetes patient-derived platelet microvesicles revealed an altered miRNA signature compared with normoglycaemic control patients. Interestingly, interrogation of these data identifies a shift towards an oncogenic signature in type 2 diabetes-derived platelet microvesicles, with increased levels of miRNAs implicated in breast cancer progression and poor prognosis. Functional studies demonstrate that platelet microvesicles isolated from type 2 diabetes patient blood are internalised by triple-negative breast cancer cells in vitro, and that co-incubation with type 2 diabetes patient-derived platelet microvesicles led to significantly increased expression of epithelial to mesenchymal transition markers and triple-negative breast cancer cell invasion compared with platelet microvesicles from healthy volunteers. Together, these data suggest that circulating PMVs in type 2 diabetes patients may contribute to the progression of triple-negative breast cancer.
Collapse
Affiliation(s)
- Anca Tutuianu
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Chinedu A. Anene
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Mikayla Shelton
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Valerie Speirs
- Institute of Medical Science, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland
| | - Donald C. Whitelaw
- Department of Diabetes and Endocrinology, Bradford Royal Infirmary, Bradford, United Kingdom
| | - Joanne Thorpe
- Department of Diabetes and Endocrinology, Bradford Royal Infirmary, Bradford, United Kingdom
| | - Wayne Roberts
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - James R. Boyne
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| |
Collapse
|
13
|
Lin Z, Wang Q, Zheng Z, Zhang B, Zhou S, Zheng D, Chen Z, Zheng S, Zhu S, Zhang X, Lan E, Zhang Y, Lin X, Zhuang Q, Qian H, Hu X, Zhuang Y, Jin Z, Jiang S, Ma Y. Identification and validation of a platelet-related signature for predicting survival and drug sensitivity in multiple myeloma. Front Pharmacol 2024; 15:1377370. [PMID: 38818376 PMCID: PMC11137312 DOI: 10.3389/fphar.2024.1377370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Background: Significant progress has been achieved in the management of multiple myeloma (MM) by implementing high-dose therapy and stem cell transplantation. Moreover, the prognosis of patients has been enhanced due to the introduction of novel immunomodulatory drugs and the emergence of new targeted therapies. However, predicting the survival rates of patients with multiple myeloma is still tricky. According to recent researches, platelets have a significant impact in affecting the biological activity of tumors and are essential parts of the tumor microenvironment. Nonetheless, it is still unclear how platelet-related genes (PRGs) connect to the prognosis of multiple myeloma. Methods: We analyzed the expression of platelet-related genes and their prognostic value in multiple myeloma patients in this study. We also created a nomogram combining clinical metrics. Furthermore, we investigated disparities in the biological characteristics, immunological microenvironment, and reaction to immunotherapy, along with analyzing the drug susceptibility within diverse risk groups. Results: By using the platelet-related risk model, we were able to predict patients' prognosis more accurately. Subjects in the high-risk cohort exhibited inferior survival outcomes, both in the training and validation datasets, as compared to those in the low-risk cohort (p < 0.05). Moreover, there were differences in the immunological microenvironments, biological processes, clinical features, and chemotherapeutic drug sensitivity between the groups at high and low risk. Using multivariable Cox regression analyses, platelet-related risk score was shown to be an independent prognostic influence in MM (p < 0.001, hazard ratio (HR) = 2.001%, 95% confidence interval (CI): 1.467-2.730). Furthermore, the capacity to predict survival was further improved when a combined nomogram was utilized. In training cohort, this outperformed the predictive value of International staging system (ISS) alone from a 5-years area under curve (AUC) = 0.668 (95% CI: 0.611-0.725) to an AUC = 0.721 (95% CI: 0.665-0.778). Conclusion: Our study revealed the potential benefits of PRGs in terms of survival prognosis of MM patients. Furthermore, we verified its potential as a drug target for MM patients. These findings open up novel possibilities for prognostic evaluation and treatment choices for MM.
Collapse
Affiliation(s)
- Zhili Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Quanqiang Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziwei Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingxin Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shujuan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dong Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zixing Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sisi Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuxia Zhu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyi Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Enqing Lan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuanru Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Honglan Qian
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xudong Hu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhouxiang Jin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, China
| |
Collapse
|
14
|
Man ZR, Gong XK, Qu KL, Pang Q, Wu BQ. Albumin-bilirubin grade as a predictor of survival in hepatocellular carcinoma patients with thrombocytopenia. World J Gastrointest Oncol 2024; 16:1763-1772. [PMID: 38764822 PMCID: PMC11099442 DOI: 10.4251/wjgo.v16.i5.1763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 03/25/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND The models for assessing liver function, mainly the Child-Pugh (CP), albuminbilirubin (ALBI), and platelet-ALBI (PALBI) classifications, have been validated for use in estimating the prognosis of hepatocellular carcinoma (HCC) patients. However, thrombocytopenia is a common finding and may influence the prognostic value of the three models in HCC. AIM To investigate and compare the prognostic performance of the above three models in thrombocytopenic HCC patients. METHODS A total of 135 patients with thrombocytopenic HCC who underwent radical surgery were retrospectively analyzed. Preoperative scores on the CP, ALBI and PALBI classifications were estimated accordingly. Kaplan-Meier curves with log-rank tests and Cox regression models were used to explore the significant factors associated with overall survival (OS) and recurrence-free survival (RFS). RESULTS The preoperative platelet counts were significantly different among the CP, ALBI and PALBI groups. After a median follow-up of 28 mo, 39.3% (53/135) of the patients experienced postoperative recurrence, and 36.3% (49/135) died. Univariate analysis suggested that α-fetoprotein levels, tumor size, vascular invasion, and ALBI grade were significant predictors of OS and RFS. According to the multivariate Cox regression model, ALBI was identified as an independent prognostic factor. However, CP and PALBI grades were not statistically significant prognostic indicators. CONCLUSION The ALBI grade, rather than CP or PALBI grade, is a significant prognostic indicator for thrombocytopenic HCC patients.
Collapse
Affiliation(s)
- Zhong-Ran Man
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Xuan-Kun Gong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Kang-Lin Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Qing Pang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
- Department of Hepatobiliary Surgery, Anhui No. 2 Provincial People’s Hospital, Hefei 230041, Anhui Province, China
| | - Bin-Quan Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| |
Collapse
|
15
|
Kus F, Smolenski RT, Tomczyk M. Chain-length dependent effects of inorganic polyphosphate on endothelial function and nucleotide pool. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:751-760. [PMID: 38743961 DOI: 10.1080/15257770.2024.2348742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Endothelial cells (ECs) are the first line that comes into contact with blood pathogens, pathogen-derived molecules, and factors that stimulate coagulation and inflammation. Inorganic polyphosphate (polyP) - a polymer of orthophosphate units synthesized by bacteria under stress and released by platelets upon their activation is among these factors. Bacterial and platelet polyPs differ in length, and both variants elicit different effects in eukaryotes. This study aimed to investigate how bacterial-like long-chain polyP (Lc-polyP) and platelet-like short-chain polyP (Sc-polyP) affect the functionality of cultured endothelial cells. Murine immortalized heart endothelial cells (H5V) were exposed to polyP of different chain lengths to assess the effects of these stimuli on intracellular energetics, permeability, and endothelial adhesion. We observed varying effects between Lc-polyP and Sc-polyP treatments. Lc-polyP more potently disturbs the intracellular ATP pool, a parameter strongly connected with vascular injury, whereas Sc-polyP robustly stimulates cellular adhesion to the endothelium. Both polymers similarly enhance endothelial permeability, suggesting potent immunomodulatory properties. This study provides evidence that polyP elicits profound cellular responses in endothelium depending on the polymer's length.
Collapse
Affiliation(s)
- Filip Kus
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
- Laboratory of Protein Biochemistry, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, Gdansk, Poland
| | | | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
16
|
Stares M, Brown LR, Abhi D, Phillips I. Prognostic Biomarkers of Systemic Inflammation in Non-Small Cell Lung Cancer: A Narrative Review of Challenges and Opportunities. Cancers (Basel) 2024; 16:1508. [PMID: 38672590 PMCID: PMC11048253 DOI: 10.3390/cancers16081508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common malignancy and is associated with poor survival outcomes. Biomarkers of systemic inflammation derived from blood tests collected as part of routine clinical care offer prognostic information for patients with NSCLC that may assist clinical decision making. They are an attractive tool, as they are inexpensive, easily measured, and reproducible in a variety of healthcare settings. Despite the wealth of evidence available to support them, these inflammatory biomarkers are not yet routinely used in clinical practice. In this narrative review, the key inflammatory indices reported in the literature and their prognostic significance in NSCLC are described. Key challenges limiting their clinical application are highlighted, including the need to define the optimal biomarker of systemic inflammation, a lack of understanding of the systemic inflammatory landscape of NSCLC as a heterogenous disease, and the lack of clinical relevance in reported outcomes. These challenges may be overcome with standardised recording and reporting of inflammatory biomarkers, clinicopathological factors, and survival outcomes. This will require a collaborative approach, to which this field of research lends itself. This work may be aided by the rise of data-driven research, including the potential to utilise modern electronic patient records and advanced data-analysis techniques.
Collapse
Affiliation(s)
- Mark Stares
- Edinburgh Cancer Centre, NHS Lothian, Edinburgh EH4 2XU, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Leo R. Brown
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Dhruv Abhi
- Edinburgh Cancer Centre, NHS Lothian, Edinburgh EH4 2XU, UK
| | - Iain Phillips
- Edinburgh Cancer Centre, NHS Lothian, Edinburgh EH4 2XU, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| |
Collapse
|
17
|
Lyu DW. Immunomodulatory effects of exercise in cancer prevention and adjuvant therapy: a narrative review. Front Physiol 2024; 14:1292580. [PMID: 38239881 PMCID: PMC10794543 DOI: 10.3389/fphys.2023.1292580] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Successful application of cancer immunotherapy has rekindled hope in cancer patients. However, a number of patients are unresponsive to immunotherapy and related treatments. This unresponsiveness in cancer patients toward different treatment regimens can be mainly attributed to severe immune dysfunction in such patients. Several reports indicate that physical exercise can significantly lead to improved cancer patient outcomes. Since exercise gets immense response from the immune system, it can be utilized to improve immune function. Leukocytes with enhanced functions are substantially mobilized into the circulation by a single bout of intense physical exercise. Chronic physical exercise results in greater muscle endurance and strength and improved cardiorespiratory function. This exercise regime is also useful in improving T-cell abundance and reducing dysfunctional T cells. The current available data strongly justify for future clinical trials to investigate physical exercise use as an adjuvant in cancer therapy; however, optimal parameters using exercise for a defined outcome are yet to be established. The components of the immune system associate with almost every tumorigenesis step. The inter-relationship between inflammation, cancer, and innate immunity has recently gained acceptance; however, the underlying cellular and molecular mechanisms behind this relationship are yet to be solved. Several studies suggest physical exercise-mediated induction of immune cells to elicit anti-tumorigenic effects. This indicates the potential of exercising in modulating the behavior of immune cells to inhibit tumor progression. However, further mechanistic details behind physical exercise-driven immunomodulation and anticancer effects have to be determined. This review aims to summarize and discuss the association between physical exercise and immune function modulation and the potential of exercise as an adjuvant therapy in cancer prevention and treatment.
Collapse
Affiliation(s)
- Da-wei Lyu
- Physical Education and Health School, East China Jiaotong University, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Zhan K, Yang X, Li S, Bai Y. Correlation of endoplasmic reticulum stress patterns with the immune microenvironment in hepatocellular carcinoma: a prognostic signature analysis. Front Immunol 2023; 14:1270774. [PMID: 38143739 PMCID: PMC10748430 DOI: 10.3389/fimmu.2023.1270774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Backgrounds The extended duration of endoplasmic reticulum stress (ERS) can impact the progression of hepatocellular carcinoma (HCC) and the efficacy of immunotherapies by interacting with immune cells that have infiltrated the tumor microenvironment (TME). Methods and results The study utilized a training cohort of 364 HCC patients with complete information from The Cancer Genome Atlas Program (TCGA) database, and a validation cohort of 231 HCC patients from the International Cancer Genome Consortium (ICGC) database. The genes related to ERS exhibiting a strong correlation with overall survival (OS) were identified using univariate Cox regression analysis. A 13-gene predictive signature was then produced through the least absolute shrinkage and selection operator (LASSO) regression approach. The data revealed that the ERS-associated gene signature effectively stratified patients into high- or low-risk groups regarding OS in both the training and validation cohorts (P < 0.0001 and P = 0.00029, respectively). Using the multivariate method, it is still an independent prognostic factor in both the training and validation cohorts (P < 0.001 and P = 0.008, respectively). Moreover, several metabolic pathways were identified to be enriched among the 13 genes in the predictive signature. When the ERS-associated gene signature was combined with the tumor-node-metastasis (TNM) stage, the ERS nomogram performed better than either the gene signature or the TNM stage alone (C-index values: 0.731, 0.729, and 0.573, respectively). Further analysis revealed that patients in the high-risk group exhibited increased infiltration of immune cells. Additionally, GP6 was downregulated in HCC tissues among these signature genes (P < 0.05), which was related to poor OS. Conclusions The data suggest that this novel ERS-associated gene signature could contribute to personalized cancer management for HCC. Moreover, targeting GP6 inhibition might be a potential method for HCC therapy.
Collapse
Affiliation(s)
- Ke Zhan
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Li
- Department of Gastrointestinal Surgery, Jinshan Hospital, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Geng X, Ma J, Dhilipkannah P, Jiang F. MicroRNA Profiling of Red Blood Cells for Lung Cancer Diagnosis. Cancers (Basel) 2023; 15:5312. [PMID: 38001571 PMCID: PMC10670279 DOI: 10.3390/cancers15225312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Despite extensive endeavors to establish cell-free circulating biomarkers for lung cancer diagnosis, clinical adoption remains elusive. Noteworthy, emergent evidence suggests the pivotal roles of red blood cells (RBCs) and their derivatives in tumorigenesis, illuminating potential avenues for diagnostic advancements using blood cell-derived microRNAs (miRNAs). METHODS We executed microarray analyses on three principal blood cell types-RBCs, peripheral blood mononuclear cells (PBMCs), and neutrophils-encompassing 26 lung cancer patients and 26 healthy controls. Validation was performed using droplet digital PCR within an additional cohort comprising 42 lung cancer and 39 control cases. RESULTS Our investigation unearthed distinct miRNA profiles associated with lung cancer across all examined blood cell types. Intriguingly, RBC-miRNAs emerged as potential novel biomarkers for lung cancer, an observation yet to be documented. Importantly, integrating miRNAs from disparate blood cell types yielded a superior diagnostic accuracy for lung cancer over individual cell-type miRNAs. Subsequently, we formulated three diagnostic panels, adeptly discerning non-small cell lung cancer, adenocarcinoma, and squamous cell carcinoma, maintaining consistency across various disease stages. CONCLUSION RBC-derived molecules introduce novel cancer biomarkers, and exploiting miRNA profiles across varied blood cell types unveils a promising frontier for lung cancer's early detection and histological classification.
Collapse
Affiliation(s)
| | | | | | - Feng Jiang
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Ward J, Martin P. Live-imaging studies reveal how microclots and the associated inflammatory response enhance cancer cell extravasation. J Cell Sci 2023; 136:jcs261225. [PMID: 37671502 PMCID: PMC10561694 DOI: 10.1242/jcs.261225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
Previous clinical studies and work in mouse models have indicated that platelets and microclots might enable the recruitment of immune cells to the pre-metastatic cancer niche, leading to efficacious extravasation of cancer cells through the vessel wall. Here, we investigated the interaction between platelets, endothelial cells, inflammatory cells, and engrafted human and zebrafish cancer cells by live-imaging studies in translucent zebrafish larvae, and show how clotting (and clot resolution) act as foci and as triggers for extravasation. Fluorescent tagging in each lineage revealed their dynamic behaviour and potential roles in these events, and we tested function by genetic and drug knockdown of the contributing players. Morpholino knockdown of fibrinogen subunit α (fga) and warfarin treatment to inhibit clotting both abrogated extravasation of cancer cells. The inflammatory phenotype appeared fundamental, and we show that forcing a pro-inflammatory, tnfa-positive phenotype is inhibitory to extravasation of cancer cells.
Collapse
Affiliation(s)
- Juma Ward
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Paul Martin
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
21
|
Ma Y, Jiang Q, Yang B, Hu X, Shen G, Shen W, Xu J. Platelet mitochondria, a potent immune mediator in neurological diseases. Front Physiol 2023; 14:1210509. [PMID: 37719457 PMCID: PMC10502307 DOI: 10.3389/fphys.2023.1210509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Dysfunction of the immune response is regarded as a prominent feature of neurological diseases, including neurodegenerative diseases, malignant tumors, acute neurotraumatic insult, and cerebral ischemic/hemorrhagic diseases. Platelets play a fundamental role in normal hemostasis and thrombosis. Beyond those normal functions, platelets are hyperactivated and contribute crucially to inflammation and immune responses in the central nervous system (CNS). Mitochondria are pivotal organelles in platelets and are responsible for generating most of the ATP that is used for platelet activation and aggregation (clumping). Notably, platelet mitochondria show marked morphological and functional alterations under heightened inflammatory/oxidative stimulation. Mitochondrial dysfunction not only leads to platelet damage and apoptosis but also further aggravates immune responses. Improving mitochondrial function is hopefully an effective strategy for treating neurological diseases. In this review, the authors discuss the immunomodulatory roles of platelet-derived mitochondria (PLT-mitos) in neurological diseases and summarize the neuroprotective effects of platelet mitochondria transplantation.
Collapse
Affiliation(s)
- Yan Ma
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Jiang
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxin Yang
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Hu
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Shen
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
| | - Wei Shen
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Xu
- Wuhan Blood Center, Wuhan, Hubei, China
| |
Collapse
|
22
|
Kang Y, Amoafo EB, Entsie P, Beatty GL, Liverani E. A role for platelets in metabolic reprogramming of tumor-associated macrophages. Front Physiol 2023; 14:1250982. [PMID: 37693009 PMCID: PMC10484008 DOI: 10.3389/fphys.2023.1250982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Cancer incidence and mortality are growing worldwide. With a lack of optimal treatments across many cancer types, there is an unmet need for the development of novel treatment strategies for cancer. One approach is to leverage the immune system for its ability to survey for cancer cells. However, cancer cells evolve to evade immune surveillance by establishing a tumor microenvironment (TME) that is marked by remarkable immune suppression. Macrophages are a predominant immune cell within the TME and have a major role in regulating tumor growth. In the TME, macrophages undergo metabolic reprogramming and differentiate into tumor-associated macrophages (TAM), which typically assume an immunosuppressive phenotype supportive of tumor growth. However, the plasticity of macrophage biology offers the possibility that macrophages may be promising therapeutic targets. Among the many determinants in the TME that may shape TAM biology, platelets can also contribute to cancer growth and to maintaining immune suppression. Platelets communicate with immune cells including macrophages through the secretion of immune mediators and cell-cell interaction. In other diseases, altering platelet secretion and cell-cell communication has been shown to reprogram macrophages and ameliorate inflammation. Thus, intervening on platelet-macrophage biology may be a novel therapeutic strategy for cancer. This review discusses our current understanding of the interaction between platelets and macrophages in the TME and details possible strategies for reprogramming macrophages into an anti-tumor phenotype for suppressing tumor growth.
Collapse
Affiliation(s)
- Ying Kang
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Emmanuel Boadi Amoafo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Philomena Entsie
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Gregory L. Beatty
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Elisabetta Liverani
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
23
|
Razzaghi H, Khabbazpour M, Heidary Z, Heiat M, Shirzad Moghaddam Z, Derogar P, Khoncheh A, Zaki-Dizaji M. Emerging Role of Tumor-Educated Platelets as a New Liquid Biopsy Tool for Colorectal Cancer. ARCHIVES OF IRANIAN MEDICINE 2023; 26:447-454. [PMID: 38301107 PMCID: PMC10685733 DOI: 10.34172/aim.2023.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/03/2023] [Indexed: 02/03/2024]
Abstract
Colorectal cancer (CRC) is a major cause of cancer-associated death universally. Currently, the diagnosis, prognosis, and treatment monitoring of CRC mostly depends on endoscopy integrated with tissue biopsy. Recently, liquid biopsy has gained more and more attention in the area of molecular detection and monitoring of tumors due to ease of sampling, and its safe, non-invasive, and dynamic nature. Platelets, despite their role in hemostasis and thrombosis, are known to have an active, bifacial relationship with cancers. Platelets are the second most common type of cell in the blood and are one of the wealthy liquid biopsy biosources. These cells have the potential to absorb nucleic acids and proteins and modify their transcriptome with regard to external signals, which are termed tumor-educated platelets (TEPs). Liquid biopsies depend on TEPs' biomarkers which can be used to screen and also detect cancer in terms of prognosis, personalized treatment, monitoring, and prediction of recurrence. The value of TEPs as an origin of tumor biomarkers is relatively new, but platelets are commonly isolated using formidable and rapid techniques in clinical practice. Numerous preclinical researches have emphasized the potential of platelets as a new liquid biopsy biosource for detecting several types of tumors. This review discusses the potential use of platelets as a liquid biopsy for CRC.
Collapse
Affiliation(s)
- Hossein Razzaghi
- Department of Laboratory Sciences, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
| | - Milad Khabbazpour
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zohreh Heidary
- Vali-e-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirzad Moghaddam
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Derogar
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ahmad Khoncheh
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Shafqat A, Omer MH, Ahmed EN, Mushtaq A, Ijaz E, Ahmed Z, Alkattan K, Yaqinuddin A. Reprogramming the immunosuppressive tumor microenvironment: exploiting angiogenesis and thrombosis to enhance immunotherapy. Front Immunol 2023; 14:1200941. [PMID: 37520562 PMCID: PMC10374407 DOI: 10.3389/fimmu.2023.1200941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
This review focuses on the immunosuppressive effects of tumor angiogenesis and coagulation on the tumor microenvironment (TME). We summarize previous research efforts leveraging these observations and targeting these processes to enhance immunotherapy outcomes. Clinical trials have documented improved outcomes when combining anti-angiogenic agents and immunotherapy. However, their overall survival benefit over conventional therapy remains limited and certain tumors exhibit poor response to anti-angiogenic therapy. Additionally, whilst preclinical studies have shown several components of the tumor coagulome to curb effective anti-tumor immune responses, the clinical studies reporting combinations of anticoagulants with immunotherapies have demonstrated variable treatment outcomes. By reviewing the current state of the literature on this topic, we address the key questions and future directions in the field, the answers of which are crucial for developing effective strategies to reprogram the TME in order to further the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Ali Mushtaq
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Eman Ijaz
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Zara Ahmed
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
25
|
Dong H, Gao M, Lu L, Gui R, Fu Y. Doxorubicin-Loaded Platelet Decoys for Enhanced Chemoimmunotherapy Against Triple-Negative Breast Cancer in Mice Model. Int J Nanomedicine 2023; 18:3577-3593. [PMID: 37409026 PMCID: PMC10319348 DOI: 10.2147/ijn.s403339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/18/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) is a highly aggressive subtype with a poor prognosis. Current single-agent checkpoint therapy has limited effectiveness in TNBC patients. In this study, we developed doxorubicin-loaded platelet decoys (PD@Dox) for chemotherapy and induction of tumor immunogenic cell death (ICD). By combining PD-1 antibody, PD@Dox has the potential to enhance tumor therapy through chemoimmunotherapy in vivo. Methods Platelet decoys were prepared using 0.1% Triton X-100 and co-incubated with doxorubicin to obtain PD@Dox. Characterization of PDs and PD@Dox was performed using electron microscopy and flow cytometry. We evaluated the properties of PD@Dox to retain platelets through sodium dodecyl sulfate-polyacrylamide gel electrophoresis, flow cytometry, and thromboelastometry. In vitro experiments assessed drug-loading capacity, release kinetics, and the enhanced antitumor activity of PD@Dox. The mechanism of PD@Dox was investigated through cell viability assays, apoptosis assays, Western blot analysis, and immunofluorescence staining. In vivo studies were performed using a TNBC tumor-bearing mouse model to assess the anticancer effects. Results Electron microscopic observations confirmed that platelet decoys and PD@Dox exhibited a round shape similar to normal platelets. Platelet decoys demonstrated superior drug uptake and loading capacity compared to platelets. Importantly, PD@Dox retained the ability to recognize and bind tumor cells. The released doxorubicin induced ICD, resulting in the release of tumor antigens and damage-related molecular patterns that recruit dendritic cells and activate antitumor immunity. Notably, the combination of PD@Dox and immune checkpoint blockade therapy using PD-1 antibody achieved significant therapeutic efficacy by blocking tumor immune escape and promoting ICD-induced T cell activation. Conclusion Our results suggest that PD@Dox, in combination with immune checkpoint blockade therapy, holds promise as a potential strategy for TNBC treatment.
Collapse
Affiliation(s)
- Hang Dong
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Meng Gao
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lu Lu
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rong Gui
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yunfeng Fu
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
26
|
Ding S, Dong X, Song X. Tumor educated platelet: the novel BioSource for cancer detection. Cancer Cell Int 2023; 23:91. [PMID: 37170255 PMCID: PMC10176761 DOI: 10.1186/s12935-023-02927-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/15/2023] [Indexed: 05/13/2023] Open
Abstract
Platelets, involved in the whole process of tumorigenesis and development, constantly absorb and enrich tumor-specific substances in the circulation during their life span, thus called "Tumor Educated Platelets" (TEPs). The alterations of platelet mRNA profiles have been identified as tumor markers due to the regulatory mechanism of post-transcriptional splicing. Small nuclear RNAs (SnRNAs), the important spliceosome components in platelets, dominate platelet RNA splicing and regulate the splicing intensity of pre-mRNA. Endogenous variation at the snRNA levels leads to widespread differences in alternative splicing, thereby driving the development and progression of neoplastic diseases. This review systematically expounds the bidirectional tumor-platelets interactions, especially the tumor induced alternative splicing in TEP, and further explores whether molecules related to alternative splicing such as snRNAs can serve as novel biomarkers for cancer diagnostics.
Collapse
Affiliation(s)
- Shanshan Ding
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Xiaohan Dong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China.
| |
Collapse
|
27
|
Detopoulou P, Panoutsopoulos GI, Mantoglou M, Michailidis P, Pantazi I, Papadopoulos S, Rojas Gil AP. Relation of Mean Platelet Volume (MPV) with Cancer: A Systematic Review with a Focus on Disease Outcome on Twelve Types of Cancer. Curr Oncol 2023; 30:3391-3420. [PMID: 36975471 PMCID: PMC10047416 DOI: 10.3390/curroncol30030258] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Inflammatory proteins activate platelets, which have been observed to be directly related to cancer progression and development. The aim of this systematic review is to investigate the possible association between Mean Platelet Volume (MPV) and cancer (diagnostic capacity of MPV, relation to survival, the severity of the disease, and metastasis). A literature review was performed in the online database PubMed and Google Scholar for the period of 2010–2022. In total, 83 studies including 21,034 participants with 12 different types of cancer (i.e., gastric cancer, colon cancer, esophageal squamous cell carcinoma, renal cancer, breast cancer, ovarian cancer, endometrial cancer, thyroid cancer, lung cancer, bladder cancer, gallbladder cancer, and multiple myeloma) were identified. The role of MPV has been extensively investigated in several types of cancer, such as gastric, colon, breast, and lung cancer, while few data exist for other types, such as renal, gallbladder cancer, and multiple myeloma. Most studies in gastric, breast, endometrium, thyroid, and lung cancer documented an elevated MPV in cancer patients. Data were less clear-cut for esophageal, ovarian, and colon cancer, while reduced MPV was observed in renal cell carcinoma and gallbladder cancer. Several studies on colon cancer (4 out of 6) and fewer on lung cancer (4 out of 10) indicated an unfavorable role of increased MPV regarding mortality. As far as other cancer types are concerned, fewer studies were conducted. MPV can be used as a potential biomarker in cancer diagnosis and could be a useful tool for the optimization of treatment strategies. Possible underlying mechanisms between cancer and MPV are discussed. However, further studies are needed to elucidate the exact role of MPV in cancer progression and metastasis.
Collapse
Affiliation(s)
- Paraskevi Detopoulou
- Department of Clinical Nutrition, General Hospital Korgialenio Benakio, Athanassaki 2, 11526 Athens, Greece
| | - George I. Panoutsopoulos
- Department of Nutritional Science and Dietetics, Faculty of Health Sciences, University of Peloponnese, New Building, Antikalamos, 24100 Kalamata, Greece
| | - Marina Mantoglou
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripoli, Greece
| | - Periklis Michailidis
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripoli, Greece
| | - Ifigenia Pantazi
- Department of Clinical Nutrition, General Hospital Korgialenio Benakio, Athanassaki 2, 11526 Athens, Greece
| | - Spyros Papadopoulos
- Department of Clinical Nutrition, General Hospital Korgialenio Benakio, Athanassaki 2, 11526 Athens, Greece
| | - Andrea Paola Rojas Gil
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripoli, Greece
- Correspondence:
| |
Collapse
|
28
|
Dinca AL, Diaconu A, Birla RD, Coculescu BI, Dinca VG, Manole G, Marica C, Tudorache IS, Panaitescu E, Constantinoiu SM, Coculescu EC. Systemic inflammation factors as survival prognosis markers in ovarian neoplasm and the relationship with cancer-associated inflammatory mediators-a review. Int J Immunopathol Pharmacol 2023; 37:3946320231178769. [PMID: 37246293 DOI: 10.1177/03946320231178769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
At the level of the genital system, ovarian neoplasm is the most frequent cause of morbidity and mortality. In the specialized literature, the coexistence of an inflammatory process is admitted from the early stages of the evolution of this pathology. Starting from the importance of this process, both in determinism and in the evolution of carcinogenesis and summarizing the field of knowledge, for this study we considered two objectives: the first was the presentation of the pathogenic mechanism, through which chronic +ovarian inflammation is involved in the process of carcinogenesis, and the second is the justification of the clinical utility of the three parameters, accepted as biomarkers of systemic inflammation: neutrophil-lymphocyte ratio, platelet lymphocyte ratio, and lymphocyte-monocyte ratio in the assessment of prognosis. The study highlights the acceptance of these hematological parameters, with practical utility, as prognostic biomarkers in ovarian cancer, based on the intrinsic link with cancer-associated inflammatory mediators. Based on the data from the specialized literature, the conclusion is that in ovarian cancer, the inflammatory process induced by the presence of the tumor, induces changes in the types of circulating leukocytes, with immediate effects on the markers of systemic inflammation.
Collapse
Affiliation(s)
| | - Adriana Diaconu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Rodica Daniela Birla
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan-Ioan Coculescu
- Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Cantacuzino National Medico-Military Institute for Research and Development, Bucharest, Romania
| | | | - Gheorghe Manole
- Romanian Academy of Medical Sciences
- Faculty of General Nursing, Bioterra University, Bucharest, Romania
| | - Cristian Marica
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Eugenia Panaitescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Elena Claudia Coculescu
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
29
|
Allegra A, Cancemi G, Mirabile G, Tonacci A, Musolino C, Gangemi S. Circulating Tumour Cells, Cell Free DNA and Tumour-Educated Platelets as Reliable Prognostic and Management Biomarkers for the Liquid Biopsy in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14174136. [PMID: 36077672 PMCID: PMC9454477 DOI: 10.3390/cancers14174136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Even though the presently employed biomarkers in the detection and management of multiple myeloma are demonstrating encouraging results, the mortality percentage of the malignancy is still elevated. Thus, searching for new diagnostic or prognostic markers is pivotal. Liquid biopsy allows the examination of circulating tumour DNA, cell-free DNA, extracellular RNA, and cell free proteins, which are released into the bloodstream due to the breakdown of tumour cells or exosome delivery. Liquid biopsy can now be applied in clinical practice to diagnose, and monitor multiple myeloma, probably allowing a personalized treatment of the disease. Abstract Liquid biopsy is one of the fastest emerging fields in cancer evaluation. Circulating tumour cells and tumour-originated DNA in plasma have become the new targets for their possible employ in tumour diagnosis, and liquid biopsy can define tumour burden without invasive procedures. Multiple Myeloma, one of the most frequent hematologic tumors, has been the target of therapeutic progresses in the last few years. Bone marrow aspirate is the traditional tool for diagnosis, prognosis, and genetic evaluation in multiple myeloma patients. However, this painful procedure presents a relevant drawback for regular disease examination as it requires an invasive practice. Moreover, new data demonstrated that a sole bone marrow aspirate is incapable of expressing the multifaceted multiple myeloma genetic heterogeneity. In this review, we report the emerging usefulness of the assessment of circulating tumour cells, cell-free DNA, extracellular RNA, cell-free proteins, extracellular vesicles, and tumour-educated platelets to evaluate the changing mutational profile of multiple myeloma, as early markers of disease, reliable predictors of prognosis, and as useful tools to perform less invasive monitoring in multiple myeloma.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
- Correspondence:
| | - Gabriella Cancemi
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|