1
|
Jannatdoust P, Valizadeh P, Saeedi N, Valizadeh G, Salari HM, Saligheh Rad H, Gity M. Computer-Aided Detection (CADe) and Segmentation Methods for Breast Cancer Using Magnetic Resonance Imaging (MRI). J Magn Reson Imaging 2025; 61:2376-2390. [PMID: 39781684 DOI: 10.1002/jmri.29687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025] Open
Abstract
Breast cancer continues to be a major health concern, and early detection is vital for enhancing survival rates. Magnetic resonance imaging (MRI) is a key tool due to its substantial sensitivity for invasive breast cancers. Computer-aided detection (CADe) systems enhance the effectiveness of MRI by identifying potential lesions, aiding radiologists in focusing on areas of interest, extracting quantitative features, and integrating with computer-aided diagnosis (CADx) pipelines. This review aims to provide a comprehensive overview of the current state of CADe systems in breast MRI, focusing on the technical details of pipelines and segmentation models including classical intensity-based methods, supervised and unsupervised machine learning (ML) approaches, and the latest deep learning (DL) architectures. It highlights recent advancements from traditional algorithms to sophisticated DL models such as U-Nets, emphasizing CADe implementation of multi-parametric MRI acquisitions. Despite these advancements, CADe systems face challenges like variable false-positive and negative rates, complexity in interpreting extensive imaging data, variability in system performance, and lack of large-scale studies and multicentric models, limiting the generalizability and suitability for clinical implementation. Technical issues, including image artefacts and the need for reproducible and explainable detection algorithms, remain significant hurdles. Future directions emphasize developing more robust and generalizable algorithms, integrating explainable AI to improve transparency and trust among clinicians, developing multi-purpose AI systems, and incorporating large language models to enhance diagnostic reporting and patient management. Additionally, efforts to standardize and streamline MRI protocols aim to increase accessibility and reduce costs, optimizing the use of CADe systems in clinical practice. LEVEL OF EVIDENCE: NA TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Payam Jannatdoust
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Parya Valizadeh
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Nikoo Saeedi
- Student Research Committee, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Gelareh Valizadeh
- Quantitative MR Imaging and Spectroscopy Group (QMISG), Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Mobarak Salari
- Quantitative MR Imaging and Spectroscopy Group (QMISG), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Saligheh Rad
- Quantitative MR Imaging and Spectroscopy Group (QMISG), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Gity
- Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Huang Y, Leotta NJ, Hirsch L, Gullo RL, Hughes M, Reiner J, Saphier NB, Myers KS, Panigrahi B, Ambinder E, Di Carlo P, Grimm LJ, Lowell D, Yoon S, Ghate SV, Parra LC, Sutton EJ. Cross-site Validation of AI Segmentation and Harmonization in Breast MRI. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:1642-1652. [PMID: 39320547 DOI: 10.1007/s10278-024-01266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
This work aims to perform a cross-site validation of automated segmentation for breast cancers in MRI and to compare the performance to radiologists. A three-dimensional (3D) U-Net was trained to segment cancers in dynamic contrast-enhanced axial MRIs using a large dataset from Site 1 (n = 15,266; 449 malignant and 14,817 benign). Performance was validated on site-specific test data from this and two additional sites, and common publicly available testing data. Four radiologists from each of the three clinical sites provided two-dimensional (2D) segmentations as ground truth. Segmentation performance did not differ between the network and radiologists on the test data from Sites 1 and 2 or the common public data (median Dice score Site 1, network 0.86 vs. radiologist 0.85, n = 114; Site 2, 0.91 vs. 0.91, n = 50; common: 0.93 vs. 0.90). For Site 3, an affine input layer was fine-tuned using segmentation labels, resulting in comparable performance between the network and radiologist (0.88 vs. 0.89, n = 42). Radiologist performance differed on the common test data, and the network numerically outperformed 11 of the 12 radiologists (median Dice: 0.85-0.94, n = 20). In conclusion, a deep network with a novel supervised harmonization technique matches radiologists' performance in MRI tumor segmentation across clinical sites. We make code and weights publicly available to promote reproducible AI in radiology.
Collapse
Affiliation(s)
- Yu Huang
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Nicholas J Leotta
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Lukas Hirsch
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Roberto Lo Gullo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mary Hughes
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jeffrey Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Nicole B Saphier
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kelly S Myers
- Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD, 21224, USA
| | - Babita Panigrahi
- Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD, 21224, USA
| | - Emily Ambinder
- Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD, 21224, USA
| | - Philip Di Carlo
- Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD, 21224, USA
| | - Lars J Grimm
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Dorothy Lowell
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sora Yoon
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sujata V Ghate
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA.
| | - Elizabeth J Sutton
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
3
|
Guo Y, Li N, Song C, Yang J, Quan Y, Zhang H. Artificial intelligence-based automated breast ultrasound radiomics for breast tumor diagnosis and treatment: a narrative review. Front Oncol 2025; 15:1578991. [PMID: 40406239 PMCID: PMC12095238 DOI: 10.3389/fonc.2025.1578991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Breast cancer (BC) is the most common malignant tumor among women worldwide, posing a substantial threat to their health and overall quality of life. Consequently, for early-stage BC, timely screening, accurate diagnosis, and the development of personalized treatment strategies are crucial for enhancing patient survival rates. Automated Breast Ultrasound (ABUS) addresses the limitations of traditional handheld ultrasound (HHUS), such as operator dependency and inter-observer variability, by providing a more comprehensive and standardized approach to BC detection and diagnosis. Radiomics, an emerging field, focuses on extracting high-dimensional quantitative features from medical imaging data and utilizing them to construct predictive models for disease diagnosis, prognosis, and treatment evaluation. In recent years, the integration of artificial intelligence (AI) with radiomics has significantly enhanced the process of analyzing and extracting meaningful features from large and complex radiomic datasets through the application of machine learning (ML) and deep learning (DL) algorithms. Recently, AI-based ABUS radiomics has demonstrated significant potential in the diagnosis and therapeutic evaluation of BC. However, despite the notable performance and application potential of ML and DL models based on ABUS, the inherent variability in the analyzed data highlights the need for further evaluation of these models to ensure their reliability in clinical applications.
Collapse
Affiliation(s)
- Yinglin Guo
- Faculty of Life Science and Technology & The Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Ning Li
- Department of Radiology, Faculty of Life Science and Technology & The Affiliated Anning First People's Hospital, Kunming University of Science and Technology, Kunming, China
| | - Chonghui Song
- Faculty of Life Science and Technology & The Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Juan Yang
- Faculty of Life Science and Technology & The Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Yinglan Quan
- Faculty of Life Science and Technology & The Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Hongjiang Zhang
- Department of Radiology, Faculty of Life Science and Technology & The Affiliated Anning First People's Hospital, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
4
|
Kim JM, Ha SM. Clinical Application of Artificial Intelligence in Breast MRI. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2025; 86:227-235. [PMID: 40201613 PMCID: PMC11973112 DOI: 10.3348/jksr.2025.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
Breast MRI is the most sensitive imaging modality for detecting breast cancer. However, its widespread use is limited by factors such as extended examination times, need for contrast agents, and susceptibility to motion artifacts. Artificial intelligence (AI) has emerged as a promising solution for these challenges by enhancing the efficiency and accuracy of breast MRI in multiple domains. AI-driven image reconstruction techniques have significantly reduced scan times while preserving image quality. This method outperforms traditional parallel imaging and compressed sensing. AI has also shown great promise for lesion classification and segmentation, with convolutional neural networks and U-Net architectures improving the differentiation between benign and malignant lesions. AI-based segmentation methods enable accurate tumor detection and characterization, thereby aiding personalized treatment planning. An AI triaging system has demonstrated the potential to streamline workflow efficiency by identifying low-suspicion cases and reducing the workload of radiologists. Another promising application is synthetic breast MR image generation, which aims to generate contrast enhanced images from non-contrast sequences, thereby improving accessibility and patient safety. Further research is required to validate AI models across diverse populations and imaging protocols. As AI continues to evolve, it is expected to play an important role in the optimization of breast MRI.
Collapse
|
5
|
Abdullah KA, Marziali S, Nanaa M, Escudero Sánchez L, Payne NR, Gilbert FJ. Deep learning-based breast cancer diagnosis in breast MRI: systematic review and meta-analysis. Eur Radiol 2025:10.1007/s00330-025-11406-6. [PMID: 39907762 DOI: 10.1007/s00330-025-11406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/10/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
OBJECTIVES The aim of this work is to evaluate the performance of deep learning (DL) models for breast cancer diagnosis with MRI. MATERIALS AND METHODS A literature search was conducted on Web of Science, PubMed, and IEEE Xplore for relevant studies published from January 2015 to February 2024. The study was registered with the PROSPERO International Prospective Register of Systematic Reviews (protocol no. CRD42024485371). The quality assessment of diagnostic accuracy studies-2 (QUADAS2) tool and the Must AI Criteria-10 (MAIC-10) checklist were used to assess quality and risk of bias. The meta-analysis included studies reporting DL for breast cancer diagnosis and their performance, from which pooled summary estimates for the area under the curve (AUC), sensitivity, and specificity were calculated. RESULTS A total of 40 studies were included, of which only 21 were eligible for quantitative analysis. Convolutional neural networks (CNNs) were used in 62.5% (25/40) of the implemented models, with the remaining 37.5% (15/40) hybrid composite models (HCMs). The pooled estimates of AUC, sensitivity, and specificity were 0.90 (95% CI: 0.87, 0.93), 88% (95% CI: 86, 91%), and 90% (95% CI: 87, 93%), respectively. CONCLUSIONS DL models used for breast cancer diagnosis on MRI achieve high performance. However, there is considerable inherent variability in this analysis. Therefore, continuous evaluation and refinement of DL models is essential to ensure their practicality in the clinical setting. KEY POINTS Question Can DL models improve diagnostic accuracy in breast MRI, addressing challenges like overfitting and heterogeneity in study designs and imaging sequences? Findings DL achieved high diagnostic accuracy (AUC 0.90, sensitivity 88%, specificity 90%) in breast MRI, with training size significantly impacting performance metrics (p < 0.001). Clinical relevance DL models demonstrate high accuracy in breast cancer diagnosis using MRI, showing the potential to enhance diagnostic confidence and reduce radiologist workload, especially with larger datasets minimizing overfitting and improving clinical reliability.
Collapse
Affiliation(s)
- Kamarul Amin Abdullah
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
- Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Sara Marziali
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
- Department of Radiology and Radiotherapy, Istituto Nazionale dei Tumori, Milan, Italy
| | - Muzna Nanaa
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Lorena Escudero Sánchez
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
- Cancer Research UK Cambridge Centre, Li Ka Shing Centre, Cambridge, UK
| | - Nicholas R Payne
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Fiona J Gilbert
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Radiology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
6
|
Luo L, Wang X, Lin Y, Ma X, Tan A, Chan R, Vardhanabhuti V, Chu WC, Cheng KT, Chen H. Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions. IEEE Rev Biomed Eng 2025; 18:130-151. [PMID: 38265911 DOI: 10.1109/rbme.2024.3357877] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. This paper provides an extensive review of deep learning-based breast cancer imaging research, covering studies on mammograms, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are elaborated and discussed. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.
Collapse
|
7
|
Wang J, Wang L, Yang Z, Tan W, Liu Y. Application of machine learning in the analysis of multiparametric MRI data for the differentiation of treatment responses in breast cancer: retrospective study. Eur J Cancer Prev 2025; 34:56-65. [PMID: 38743632 DOI: 10.1097/cej.0000000000000892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
OBJECTIVE The objective of this study is to develop and validate a multiparametric MRI model employing machine learning to predict the effectiveness of treatment and the stage of breast cancer. METHODS The study encompassed 400 female patients diagnosed with breast cancer, with 200 individuals allocated to both the control and experimental groups, undergoing examinations in Shenzhen, China, during the period 2017-2023. This study pertains to retrospective research. Multiparametric MRI was employed to extract data concerning tumor size, blood flow, and metabolism. RESULTS The model achieved high accuracy, predicting treatment outcomes with an accuracy of 92%, sensitivity of 88%, and specificity of 95%. The model effectively classified breast cancer stages: stage I, 38% ( P = 0.027); stage II, 72% ( P = 0.014); stage III, 50% ( P = 0.032); and stage IV, 45% ( P = 0.041). CONCLUSIONS The developed model, utilizing multiparametric MRI and machine learning, exhibits high accuracy in predicting the effectiveness of treatment and breast cancer staging. These findings affirm the model's potential to enhance treatment strategies and personalize approaches for patients diagnosed with breast cancer. Our study presents an innovative approach to the diagnosis and treatment of breast cancer, integrating MRI data with machine learning algorithms. We demonstrate that the developed model exhibits high accuracy in predicting treatment efficacy and differentiating cancer stages. This underscores the importance of utilizing MRI and machine learning algorithms to enhance the diagnosis and individualization of treatment for this disease.
Collapse
Affiliation(s)
- Jinhua Wang
- Medical Imaging Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- The Third of Clinical Medicine, Southern Medical University
| | - Liang Wang
- Interventional Department, The University of Hong Kong-Shenzhen Hospital, Shenzhen
| | - Zhongxian Yang
- Medical Imaging Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- The Third of Clinical Medicine, Southern Medical University
| | - Wanchang Tan
- Department of Radiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Yubao Liu
- Medical Imaging Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- The Third of Clinical Medicine, Southern Medical University
| |
Collapse
|
8
|
Gullo RL, Brunekreef J, Marcus E, Han LK, Eskreis-Winkler S, Thakur SB, Mann R, Lipman KG, Teuwen J, Pinker K. AI Applications to Breast MRI: Today and Tomorrow. J Magn Reson Imaging 2024; 60:2290-2308. [PMID: 38581127 PMCID: PMC11452568 DOI: 10.1002/jmri.29358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/08/2024] Open
Abstract
In breast imaging, there is an unrelenting increase in the demand for breast imaging services, partly explained by continuous expanding imaging indications in breast diagnosis and treatment. As the human workforce providing these services is not growing at the same rate, the implementation of artificial intelligence (AI) in breast imaging has gained significant momentum to maximize workflow efficiency and increase productivity while concurrently improving diagnostic accuracy and patient outcomes. Thus far, the implementation of AI in breast imaging is at the most advanced stage with mammography and digital breast tomosynthesis techniques, followed by ultrasound, whereas the implementation of AI in breast magnetic resonance imaging (MRI) is not moving along as rapidly due to the complexity of MRI examinations and fewer available dataset. Nevertheless, there is persisting interest in AI-enhanced breast MRI applications, even as the use of and indications of breast MRI continue to expand. This review presents an overview of the basic concepts of AI imaging analysis and subsequently reviews the use cases for AI-enhanced MRI interpretation, that is, breast MRI triaging and lesion detection, lesion classification, prediction of treatment response, risk assessment, and image quality. Finally, it provides an outlook on the barriers and facilitators for the adoption of AI in breast MRI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 6.
Collapse
Affiliation(s)
- Roberto Lo Gullo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joren Brunekreef
- AI for Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Eric Marcus
- AI for Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lynn K Han
- Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA
| | - Sarah Eskreis-Winkler
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sunitha B Thakur
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ritse Mann
- AI for Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kevin Groot Lipman
- AI for Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jonas Teuwen
- AI for Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
9
|
Zhang B, Zhu J, Zhang P, Wei Y, Li Y, Xu A, Zhang Y, Zheng H, Dong X, Yang K, Dong C, Chen Z, Li X, Cheng L. A background parenchymal enhancement quantification framework of breast magnetic resonance imaging. Quant Imaging Med Surg 2023; 13:8350-8357. [PMID: 38106260 PMCID: PMC10721989 DOI: 10.21037/qims-23-514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/15/2023] [Indexed: 12/19/2023]
Abstract
Background Background parenchymal enhancement (BPE) is defined as the enhanced proportion of normal fibroglandular tissue on enhanced magnetic resonance imaging. BPE shows promise as a quantitative imaging biomarker (QIB). However, the lack of consensus among radiologists in their semi-quantitative grading of BPE limits its clinical utility. Methods The main objective of this study was to develop a BPE quantification model according to clinical expertise, with the BPE integral being used as a QIB to incorporate both the volume and intensity of the enhancement metrics. The model was applied to 2,786 cases to compare our quantitative results with radiologists' semi-quantitative BPE grading to evaluate the effectiveness of using the BPE integral as a QIB for analyzing BPE. Comparisons between multiple groups of nonnormally distributed BPE integrals were performed using the Kruskal-Wallis test. Results Our study found a considerable degree of concordance between our BPE quantitative integral and radiologists' semi-quantitative assessments. Specifically, our research results revealed significant variability in BPE integral attained through the BPE quantification framework among all semi-quantitative BPE grading groups labeled by experienced radiologists, including mild-moderate (P<0.001), mild-marked (P<0.001), and moderate-marked (P<0.001). Furthermore, there was an apparent correlation between BPE integral and BPE grades, with marked BPE displaying the highest BPE integral, followed by moderate BPE, with mild BPE exhibiting the lowest BPE integral value. Conclusions The study developed and implemented a BPE quantification framework, which incorporated both the volume and intensity of enhancement and which could serve as a QIB for BPE.
Collapse
Affiliation(s)
- Boya Zhang
- School of Medicine, Nankai University, Tianjin, China
- Department of General Surgery, The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Jingjin Zhu
- School of Medicine, Nankai University, Tianjin, China
- Department of General Surgery, The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Peifang Zhang
- Department of Big Data Center, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yufan Wei
- School of Medicine, Nankai University, Tianjin, China
- Department of General Surgery, The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Yan Li
- Department of General Surgery, The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Aoxi Xu
- School of Medicine, Nankai University, Tianjin, China
- Department of General Surgery, The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Yiheng Zhang
- Department of General Surgery, The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Hongye Zheng
- School of Medicine, Nankai University, Tianjin, China
- Department of General Surgery, The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Xiaohan Dong
- Department of Radiology, The Sixth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Kaizhou Yang
- Department of Radiology, The Sixth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Chuang Dong
- Department of Radiology, The Sixth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Zhengming Chen
- Department of Radiology, The Sixth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Xiru Li
- School of Medicine, Nankai University, Tianjin, China
- Department of General Surgery, The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Liuquan Cheng
- Department of Radiology, The Sixth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
10
|
Hagiwara A, Fujita S, Kurokawa R, Andica C, Kamagata K, Aoki S. Multiparametric MRI: From Simultaneous Rapid Acquisition Methods and Analysis Techniques Using Scoring, Machine Learning, Radiomics, and Deep Learning to the Generation of Novel Metrics. Invest Radiol 2023; 58:548-560. [PMID: 36822661 PMCID: PMC10332659 DOI: 10.1097/rli.0000000000000962] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Indexed: 02/25/2023]
Abstract
ABSTRACT With the recent advancements in rapid imaging methods, higher numbers of contrasts and quantitative parameters can be acquired in less and less time. Some acquisition models simultaneously obtain multiparametric images and quantitative maps to reduce scan times and avoid potential issues associated with the registration of different images. Multiparametric magnetic resonance imaging (MRI) has the potential to provide complementary information on a target lesion and thus overcome the limitations of individual techniques. In this review, we introduce methods to acquire multiparametric MRI data in a clinically feasible scan time with a particular focus on simultaneous acquisition techniques, and we discuss how multiparametric MRI data can be analyzed as a whole rather than each parameter separately. Such data analysis approaches include clinical scoring systems, machine learning, radiomics, and deep learning. Other techniques combine multiple images to create new quantitative maps associated with meaningful aspects of human biology. They include the magnetic resonance g-ratio, the inner to the outer diameter of a nerve fiber, and the aerobic glycolytic index, which captures the metabolic status of tumor tissues.
Collapse
Affiliation(s)
- Akifumi Hagiwara
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shohei Fujita
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Christina Andica
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Madani M, Behzadi MM, Nabavi S. The Role of Deep Learning in Advancing Breast Cancer Detection Using Different Imaging Modalities: A Systematic Review. Cancers (Basel) 2022; 14:5334. [PMID: 36358753 PMCID: PMC9655692 DOI: 10.3390/cancers14215334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2022] Open
Abstract
Breast cancer is among the most common and fatal diseases for women, and no permanent treatment has been discovered. Thus, early detection is a crucial step to control and cure breast cancer that can save the lives of millions of women. For example, in 2020, more than 65% of breast cancer patients were diagnosed in an early stage of cancer, from which all survived. Although early detection is the most effective approach for cancer treatment, breast cancer screening conducted by radiologists is very expensive and time-consuming. More importantly, conventional methods of analyzing breast cancer images suffer from high false-detection rates. Different breast cancer imaging modalities are used to extract and analyze the key features affecting the diagnosis and treatment of breast cancer. These imaging modalities can be divided into subgroups such as mammograms, ultrasound, magnetic resonance imaging, histopathological images, or any combination of them. Radiologists or pathologists analyze images produced by these methods manually, which leads to an increase in the risk of wrong decisions for cancer detection. Thus, the utilization of new automatic methods to analyze all kinds of breast screening images to assist radiologists to interpret images is required. Recently, artificial intelligence (AI) has been widely utilized to automatically improve the early detection and treatment of different types of cancer, specifically breast cancer, thereby enhancing the survival chance of patients. Advances in AI algorithms, such as deep learning, and the availability of datasets obtained from various imaging modalities have opened an opportunity to surpass the limitations of current breast cancer analysis methods. In this article, we first review breast cancer imaging modalities, and their strengths and limitations. Then, we explore and summarize the most recent studies that employed AI in breast cancer detection using various breast imaging modalities. In addition, we report available datasets on the breast-cancer imaging modalities which are important in developing AI-based algorithms and training deep learning models. In conclusion, this review paper tries to provide a comprehensive resource to help researchers working in breast cancer imaging analysis.
Collapse
Affiliation(s)
- Mohammad Madani
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Mohammad Mahdi Behzadi
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Sheida Nabavi
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|