1
|
Muttiah B, Muhammad Fuad ND, Jaafar F, Abdullah NAH. Extracellular Vesicles in Ovarian Cancer: From Chemoresistance Mediators to Therapeutic Vectors. Biomedicines 2024; 12:1806. [PMID: 39200270 PMCID: PMC11351885 DOI: 10.3390/biomedicines12081806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Ovarian cancer (OC) remains the deadliest gynecological malignancy, with alarming projections indicating a 42% increase in new cases and a 51% rise in mortality by 2040. This review explores the challenges in OC treatment, focusing on chemoresistance mechanisms and the potential of extracellular vesicles (EVs) as drug delivery agents. Despite advancements in treatment strategies, including cytoreductive surgery, platinum-based chemotherapy, and targeted therapies, the high recurrence rate underscores the need for innovative approaches. Key resistance mechanisms include drug efflux, apoptosis disruption, enhanced DNA repair, cancer stem cells, immune evasion, and the complex tumor microenvironment. Cancer-associated fibroblasts and extracellular vesicles play crucial roles in modulating the tumor microenvironment and facilitating chemoresistance. EVs, naturally occurring nanovesicles, emerge as promising drug carriers due to their low toxicity, high biocompatibility, and inherent targeting capabilities. They have shown potential in delivering chemotherapeutics like doxorubicin, cisplatin, and paclitaxel, as well as natural compounds such as curcumin and berry anthocyanidins, enhancing therapeutic efficacy while reducing systemic toxicity in OC models. However, challenges such as low production yields, heterogeneity, rapid clearance, and inefficient drug loading methods need to be addressed for clinical application. Ongoing research aims to optimize EV production, loading efficiency, and targeting, paving the way for novel and more effective therapeutic strategies in OC treatment. Overcoming these obstacles is crucial to unlocking the full potential of EV-based therapies and improving outcomes for OC patients.
Collapse
Affiliation(s)
- Barathan Muttiah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Nur Dina Muhammad Fuad
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Faizul Jaafar
- Jeffrey Cheah School of Medicine and Health Sciences, Faculty of Medicine, Monash University, Bandar Sunway, Subang Jaya 47500, Malaysia;
| | - Nur Atiqah Haizum Abdullah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
2
|
Larbi A. From Genesis to Old Age: Exploring the Immune System One Cell at a Time with Flow Cytometry. Biomedicines 2024; 12:1469. [PMID: 39062042 PMCID: PMC11275137 DOI: 10.3390/biomedicines12071469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The immune system is a highly complex and tightly regulated system that plays a crucial role in protecting the body against external threats, such as pathogens, and internal abnormalities, like cancer cells. It undergoes development during fetal stages and continuously learns from each encounter with pathogens, allowing it to develop immunological memory and provide a wide range of immune protection. Over time, after numerous encounters and years of functioning, the immune system can begin to show signs of erosion, which is commonly named immunosenescence. In this review, we aim to explore how the immune system responds to initial encounters with antigens and how it handles persistent stimulations throughout a person's lifetime. Our understanding of the immune system has greatly benefited from advanced technologies like flow cytometry. In this context, we will discuss the valuable contribution of flow cytometry in enhancing our knowledge of the immune system behavior in aging, with a specific focus on T-cells. Moreover, we will expand our discussion to the flow cytometry-based assessment of extracellular vesicles, a recently discovered communication channel in biology, and their implications for immune system functioning.
Collapse
Affiliation(s)
- Anis Larbi
- Medical and Scientific Affairs, Beckman Coulter Life Sciences, 22 Avenue des Nations, 93420 Villepinte, France;
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
3
|
Ajam-Hosseini M, Akhoondi F, Parvini F, Fahimi H. Gram-negative bacterial sRNAs encapsulated in OMVs: an emerging class of therapeutic targets in diseases. Front Cell Infect Microbiol 2024; 13:1305510. [PMID: 38983695 PMCID: PMC11232669 DOI: 10.3389/fcimb.2023.1305510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/26/2023] [Indexed: 07/11/2024] Open
Abstract
Small regulatory RNAs (sRNAs) encapsulated in outer membrane vesicles (OMVs) are critical post-transcriptional regulators of gene expression in prokaryotic and eukaryotic organisms. OMVs are small spherical structures released by Gram-negative bacteria that serve as important vehicles for intercellular communication and can also play an important role in bacterial virulence and host-pathogen interactions. These molecules can interact with mRNAs or proteins and affect various cellular functions and physiological processes in the producing bacteria. This review aims to provide insight into the current understanding of sRNA localization to OMVs in Gram-negative bacteria and highlights the identification, characterization and functional implications of these encapsulated sRNAs. By examining the research gaps in this field, we aim to inspire further exploration and progress in investigating the potential therapeutic applications of OMV-encapsulated sRNAs in various diseases.
Collapse
Affiliation(s)
- Mobarakeh Ajam-Hosseini
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Akhoondi
- Department of Molecular Biology of The Cell, Faculty of Bioscience, University of Milan, Milan, Italy
| | - Farshid Parvini
- Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Casagrande N, Borghese C, Avanzo M, Aldinucci D. In Doxorubicin-Adapted Hodgkin Lymphoma Cells, Acquiring Multidrug Resistance and Improved Immunosuppressive Abilities, Doxorubicin Activity Was Enhanced by Chloroquine and GW4869. Cells 2023; 12:2732. [PMID: 38067159 PMCID: PMC10706762 DOI: 10.3390/cells12232732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Classical Hodgkin lymphoma (cHL) is a highly curable disease (70-80%), even though long-term toxicities, drug resistance, and predicting clinical responses to therapy are major challenges in cHL treatment. To solve these problems, we characterized two cHL cell lines with acquired resistance to doxorubicin, KM-H2dx and HDLM-2dx (HRSdx), generated from KM-H2 and HDLM-2 cells, respectively. HRSdx cells developed cross-resistance to vinblastine, bendamustin, cisplatin, dacarbazine, gemcitabine, brentuximab vedotin (BV), and γ-radiation. Both HDLM-2 and HDLM-2dx cells had intrinsic resistance to BV but not to the drug MMAE. HDLM-2dx acquired cross-resistance to caelyx. HRSdx cells had in common decreased CD71, CD80, CD54, cyt-ROS, HLA-DR, DDR1, and CD44; increased Bcl-2, CD58, COX2, CD26, CCR5, and invasive capability; increased CCL5, TARC, PGE2, and TGF-β; and the capability of hijacking monocytes. In HRSdx cells less sensitive to DNA damage and oxidative stress, the efflux drug transporters MDR1 and MRP1 were not up-regulated, and doxorubicin accumulated in the cytoplasm rather than in the nucleus. Both the autophagy inhibitor chloroquine and extracellular vesicle (EV) release inhibitor GW4869 enhanced doxorubicin activity and counteracted doxorubicin resistance. In conclusion, this study identifies common modulated antigens in HRSdx cells, the associated cross-resistance patterns, and new potential therapeutic options to enhance doxorubicin activity and overcome resistance.
Collapse
Affiliation(s)
- Naike Casagrande
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (C.B.); (D.A.)
| | - Cinzia Borghese
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (C.B.); (D.A.)
| | - Michele Avanzo
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Donatella Aldinucci
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (C.B.); (D.A.)
| |
Collapse
|
5
|
Brázda V, Mergny JL. Quadruplexes and aging: G4-binding proteins regulate the presence of miRNA in small extracellular vesicles (sEVs). Biochimie 2023; 214:69-72. [PMID: 36690199 DOI: 10.1016/j.biochi.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
The interaction between proteins and nucleic acids is a core element of life. Many proteins bind nucleic acids via a sequence-specific manner, but there are also many types of proteins that recognize various structural motifs. Researchers have recently found that proteins that can recognize DNA and RNA G-quadruplexes (G4s) are very important for basic cellular processes, particularly in eukaryotes. Some of these proteins are located outside the nucleus and interact with RNA, potentially affecting miRNA functions in intercellular communication, which is facilitated by small extracellular vesicles (sEVs). Imbalances in the production of sEVs are associated with various pathologies and senescence in humans. The distribution of miRNA into sEVs is regulated by two RNA-binding proteins, Alyref and FUS. Both proteins possess G-rich recognition motifs that are compatible with the formation of RNA parallel G4 structures. This lends credence to the new hypothesis that G4-formation in RNAs and their interaction with G4-binding proteins can affect the fate of miRNAs and control their distribution in sEVs that are associated with senescence and aging.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| |
Collapse
|
6
|
Brambilla M, Frigerio R, Becchetti A, Gori A, Cretich M, Conti M, Mazza A, Pengo M, Camera M. Head-to-Head Comparison of Tissue Factor-Dependent Procoagulant Potential of Small and Large Extracellular Vesicles in Healthy Subjects and in Patients with SARS-CoV-2 Infection. BIOLOGY 2023; 12:1233. [PMID: 37759632 PMCID: PMC10525820 DOI: 10.3390/biology12091233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
The relative contribution of small (sEVs) and large extracellular vesicles (lEVs) to the total plasma procoagulant potential is not yet well defined. Thus, we compared total and TFpos-sEVs and -lEVs isolated from healthy subjects and COVID-19 patients during the acute phase of the infection and after symptom remission in terms of (1) vesicle enumeration using nanoparticle tracking assay, imaging flow cytometry, and TF immunofluorescence localization in a single-vesicle analysis using microarrays; (2) cellular origin; and (3) TF-dependent Xa generation capacity, as well as assessing the contribution of the TF inhibitor, TFPI. In healthy subjects, the plasma concentration of CD9/CD63/CD81pos sEVs was 30 times greater than that of calceinpos lEVs, and both were mainly released by platelets. Compared to lEVs, the levels of TFpos-sEVs were 2-fold higher. The TF-dependent Xa generation capacity of lEVs was three times greater than that of sEVs, with the latter being hindered by TFPI. Compared to HSs, the amounts of total and TFpos-sEVs and -lEVs were significantly greater in acute COVID-19 patients, which reverted to the physiological values at the 6-month follow-up. Interestingly, the FXa generation of lEVs only significantly increased during acute infection, with that of sEV being similar to that of HSs. Thus, in both healthy subjects and COVID-19 patients, the TF-dependent procoagulant potential is mostly sustained by large vesicles.
Collapse
Affiliation(s)
- Marta Brambilla
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.B.)
| | - Roberto Frigerio
- National Research Council of Italy (SCITEC-CNR), 20133 Milan, Italy
| | | | - Alessandro Gori
- National Research Council of Italy (SCITEC-CNR), 20133 Milan, Italy
| | - Marina Cretich
- National Research Council of Italy (SCITEC-CNR), 20133 Milan, Italy
| | - Maria Conti
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.B.)
| | - Antonella Mazza
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.B.)
| | - Martino Pengo
- Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy
| | - Marina Camera
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.B.)
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
7
|
Araldi RP, Delvalle DA, da Costa VR, Alievi AL, Teixeira MR, Dias Pinto JR, Kerkis I. Exosomes as a Nano-Carrier for Chemotherapeutics: A New Era of Oncology. Cells 2023; 12:2144. [PMID: 37681875 PMCID: PMC10486723 DOI: 10.3390/cells12172144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Despite the considerable advancements in oncology, cancer remains one of the leading causes of death worldwide. Drug resistance mechanisms acquired by cancer cells and inefficient drug delivery limit the therapeutic efficacy of available chemotherapeutics drugs. However, studies have demonstrated that nano-drug carriers (NDCs) can overcome these limitations. In this sense, exosomes emerge as potential candidates for NDCs. This is because exosomes have better organotropism, homing capacity, cellular uptake, and cargo release ability than synthetic NDCs. In addition, exosomes can serve as NDCs for both hydrophilic and hydrophobic chemotherapeutic drugs. Thus, this review aimed to summarize the latest advances in cell-free therapy, describing how the exosomes can contribute to each step of the carcinogenesis process and discussing how these nanosized vesicles could be explored as nano-drug carriers for chemotherapeutics.
Collapse
Affiliation(s)
- Rodrigo Pinheiro Araldi
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Structural and Functional Biology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
- BioDecision Analytics Ltd.a., São Paulo 13271-650, SP, Brazil;
| | - Denis Adrián Delvalle
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Structural and Functional Biology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Vitor Rodrigues da Costa
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Structural and Functional Biology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Anderson Lucas Alievi
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Endocrinology and Metabology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Michelli Ramires Teixeira
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Endocrinology and Metabology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | | | - Irina Kerkis
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
| |
Collapse
|
8
|
Anitua E, Troya M, Falcon-Pérez JM, López-Sarrio S, González E, Alkhraisat MH. Advances in Platelet Rich Plasma-Derived Extracellular Vesicles for Regenerative Medicine: A Systematic-Narrative Review. Int J Mol Sci 2023; 24:13043. [PMID: 37685849 PMCID: PMC10488108 DOI: 10.3390/ijms241713043] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The use of platelet-rich plasma (PRP) has gained increasing interest in recent decades. The platelet secretome contains a multitude of growth factors, cytokines, chemokines, and other biological biomolecules. In recent years, developments in the field of platelets have led to new insights, and attention has been focused on the platelets' released extracellular vesicles (EVs) and their role in intercellular communication. In this context, the aim of this review was to compile the current evidence on PRP-derived extracellular vesicles to identify the advantages and limitations fortheir use in the upcoming clinical applications. A total of 172 articles were identified during the systematic literature search through two databases (PubMed and Web of Science). Twenty publications met the inclusion criteria and were included in this review. According to the results, the use of PRP-EVs in the clinic is an emerging field of great interest that represents a promising therapeutic option, as their efficacy has been demonstrated in the majority of fields of applications included in this review. However, the lack of standardization along the procedures in both the field of PRP and the EVs makes it extremely challenging to compare results among studies. Establishing standardized conditions to ensure optimized and detailed protocols and define parameters such as the dose or the EV origin is therefore urgent. Further studies to elucidate the real contribution of EVs to PRP in terms of composition and functionality should also be performed. Nevertheless, research on the field provides promising results and a novel basis to deal with the regenerative medicine and drug delivery fields in the future.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, 01007 Vitoria-Gasteiz, Spain; (M.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - María Troya
- BTI-Biotechnology Institute, 01007 Vitoria-Gasteiz, Spain; (M.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - Juan Manuel Falcon-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, 48160 Derio, Spain; (J.M.F.-P.); (S.L.-S.); (E.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas, 28029 Madrid, Spain
- Metabolomics Platform, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Silvia López-Sarrio
- Exosomes Laboratory, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, 48160 Derio, Spain; (J.M.F.-P.); (S.L.-S.); (E.G.)
| | - Esperanza González
- Exosomes Laboratory, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, 48160 Derio, Spain; (J.M.F.-P.); (S.L.-S.); (E.G.)
| | - Mohammad H. Alkhraisat
- BTI-Biotechnology Institute, 01007 Vitoria-Gasteiz, Spain; (M.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| |
Collapse
|
9
|
Benito-Martín A, Jasiulionis MG, García-Silva S. Extracellular vesicles and melanoma: New perspectives on tumor microenvironment and metastasis. Front Cell Dev Biol 2023; 10:1061982. [PMID: 36704194 PMCID: PMC9871288 DOI: 10.3389/fcell.2022.1061982] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Secreted extracellular vesicles (EVs) are lipid bilayer particles without functional nucleus naturally released from cells which constitute an intercellular communication system. There is a broad spectrum of vesicles shed by cells based on their physical properties such as size (small EVs and large EVs), biogenesis, cargo and functions, which provide an increasingly heterogenous landscape. In addition, they are involved in multiple physiological and pathological processes. In cancer, EV release is opted by tumor cells as a beneficial process for tumor progression. Cutaneous melanoma is a cancer that originates from the melanocyte lineage and shows a favorable prognosis at early stages. However, when melanoma cells acquire invasive capacity, it constitutes the most aggressive and deadly skin cancer. In this context, extracellular vesicles have been shown their relevance in facilitating melanoma progression through the modulation of the microenvironment and metastatic spreading. In agreement with the melanosome secretory capacity of melanocytes, melanoma cells display an enhanced EV shedding activity that has contributed to the utility of melanoma models for unravelling EV cargo and functions within a cancer scenario. In this review, we provide an in-depth overview of the characteristics of melanoma-derived EVs and their role in melanoma progression highlighting key advances and remaining open questions in the field.
Collapse
Affiliation(s)
- Alberto Benito-Martín
- Facultad de Medicina, Unidad de Investigación Biomédica, Universidad Alfonso X El Sabio (UAX), Villanueva de la Cañada, Spain,*Correspondence: Alberto Benito-Martín, ; Miriam Galvonas Jasiulionis, ; Susana García-Silva,
| | - Miriam Galvonas Jasiulionis
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil,*Correspondence: Alberto Benito-Martín, ; Miriam Galvonas Jasiulionis, ; Susana García-Silva,
| | - Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain,*Correspondence: Alberto Benito-Martín, ; Miriam Galvonas Jasiulionis, ; Susana García-Silva,
| |
Collapse
|
10
|
Feng L, Guo L, Tanaka Y, Su L. Tumor-Derived Small Extracellular Vesicles Involved in Breast Cancer Progression and Drug Resistance. Int J Mol Sci 2022; 23:ijms232315236. [PMID: 36499561 PMCID: PMC9736664 DOI: 10.3390/ijms232315236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Breast cancer is one of the most serious and terrifying threats to the health of women. Recent studies have demonstrated that interaction among cancer cells themselves and those with other cells, including immune cells, in a tumor microenvironment potentially and intrinsically regulate and determine cancer progression and metastasis. Small extracellular vesicles (sEVs), a type of lipid-bilayer particles derived from cells, with a size of less than 200 nm, are recognized as one form of important mediators in cell-to-cell communication. sEVs can transport a variety of bioactive substances, including proteins, RNAs, and lipids. Accumulating evidence has revealed that sEVs play a crucial role in cancer development and progression, with a significant impact on proliferation, invasion, and metastasis. In addition, sEVs systematically coordinate physiological and pathological processes, such as coagulation, vascular leakage, and stromal cell reprogramming, to bring about premetastatic niche formation and to determine metastatic organ tropism. There are a variety of oncogenic factors in tumor-derived sEVs that mediate cellular communication between local stromal cells and distal microenvironment, both of which are important in cancer progression and metastasis. Tumor-derived sEVs contain substances that are similar to parental tumor cells, and as such, sEVs could be biomarkers in cancer progression and potential therapeutic targets, particularly for predicting and preventing future metastatic development. Here, we review the mechanisms underlying the regulation by tumor-derived sEVs on cancer development and progression, including proliferation, metastasis, drug resistance, and immunosuppression, which coordinately shape the pro-metastatic microenvironment. In addition, we describe the application of sEVs to the development of cancer biomarkers and potential therapeutic modalities and discuss how they can be engineered and translated into clinical practice.
Collapse
Affiliation(s)
- Lingyun Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lijuan Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
- Correspondence: (Y.T.); (L.S.); Tel.: +81-95-819-7063 (Y.T.); +86-27-8779-2024 (L.S.); Fax: +81-95-819-2189 (Y.T.); +86-27-8779-2072 (L.S.)
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (Y.T.); (L.S.); Tel.: +81-95-819-7063 (Y.T.); +86-27-8779-2024 (L.S.); Fax: +81-95-819-2189 (Y.T.); +86-27-8779-2072 (L.S.)
| |
Collapse
|