1
|
Moughnyeh MM, Green M, Katuwal B, Hammoud ZT. Current landscape of immunotherapy in esophageal cancer: a literature review. J Thorac Dis 2024; 16:8807-8814. [PMID: 39831204 PMCID: PMC11740023 DOI: 10.21037/jtd-24-1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/29/2024] [Indexed: 01/22/2025]
Abstract
Background and Objective Esophageal cancer has witnessed a significant shift in its epidemiology within the United States. Adenocarcinoma of the esophagus is now the fastest-growing solid malignancy, surpassing esophageal squamous cell carcinoma (ESCC) in frequency. There has been a concentrated effort to establish new therapies for dealing with this malignancy including immunotherapy in conjunction with surgery and radiotherapy. Our objective is to provide a comprehensive review of the current therapeutic strategies for esophageal cancer, with a particular focus on the emerging role of immunotherapy in combination with surgery and radiotherapy, and its impact on treatment outcomes. Methods A thorough search was done using keywords of "esophageal cancer", "immunotherapy in esophageal cancer", and "immunotherapy" in PubMed, MEDLINE, and Google Scholar databases. All studies that were identified in this search were analyzed for relevance and content. Key Content and Findings A total of 1,555 studies were identified which were checked for relevance and content. Fifteen articles were reviewed which focused on esophageal cancer and the immunotherapy directed towards this condition. This review article summarizes the most recent and available evidence on immunotherapy directed towards the treatment of esophageal cancer. Conclusions Esophageal cancer treatment is undergoing a paradigm shift with the advent of immunotherapy, particularly programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors. These therapies hold promise for both second-line and first-line settings, with evolving biomarkers guiding treatment decisions. Combination strategies and personalized approaches are actively investigated to overcome resistance mechanisms and enhance treatment outcomes in this challenging cancer type.
Collapse
Affiliation(s)
- Mohamad M. Moughnyeh
- Department of Surgery and Thoracic Surgery, Ascension Providence Hospital, Michigan State University College of Human Medicine, Southfield, MI, USA
| | - Mary Green
- Department of Surgery and Thoracic Surgery, Ascension Providence Hospital, Michigan State University College of Human Medicine, Southfield, MI, USA
| | - Binit Katuwal
- Department of Surgery and Thoracic Surgery, Ascension Providence Hospital, Michigan State University College of Human Medicine, Southfield, MI, USA
| | - Zane T. Hammoud
- Department of Surgery and Thoracic Surgery, Ascension Providence Hospital, Michigan State University College of Human Medicine, Southfield, MI, USA
- Department of Thoracic Surgery, John D. Dingell VA Medical Center, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
2
|
Tang Y, Shi T, Lin S, Fang T. Current status of research on the mechanisms of tumor-associated macrophages in esophageal cancer progression. Front Oncol 2024; 14:1450603. [PMID: 39678502 PMCID: PMC11638059 DOI: 10.3389/fonc.2024.1450603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/27/2024] [Indexed: 12/17/2024] Open
Abstract
Esophageal carcinoma (EC) is one of the most common tumors in China and seriously affects patient survival and quality of life. In recent years, increasing studies have shown that the tumor microenvironment is crucial in promoting tumor progression and metastasis. Tumor-associated macrophages (TAM) are key components of the tumor immune microenvironment and promote both tumor growth and antitumor immunity. Much evidence suggests that TAMs are closely associated with esophageal tumors. However, understanding of the clinical value and mechanism of action of TAM in esophageal cancer remains limited. Therefore, we reviewed the status of research on the role and mechanism of action of TAM in EC progression and summarized its potential clinical application value to provide a theoretical basis for the clinical treatment of EC.
Collapse
Affiliation(s)
- Yuchao Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Tingting Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, Australia
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
3
|
Dickinson K, Yee EJ, Vigil I, Schulick RD, Zhu Y. GPCRs: emerging targets for novel T cell immune checkpoint therapy. Cancer Immunol Immunother 2024; 73:253. [PMID: 39358616 PMCID: PMC11447192 DOI: 10.1007/s00262-024-03801-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Although immune checkpoint blockade (ICB) has become the mainstay of treatment for advanced solid organ malignancies, success in revitalizing the host anticancer immune response remains limited. G-protein coupled receptors (GPCRs) are a broad family of cell-surface proteins that have been regarded as main players in regulating the immune system, namely by mediating the activity of T lymphocytes. Among the most novel immunoregulatory GPCRs include GPR171, lysophosphatidic acid receptors (LPARs), GPR68, cannabinoid receptor 2 (CB2), and prostaglandin E receptors, many of which have shown promise in mediating antitumor response via activation of cytotoxic T cells, inhibiting immunosuppressive lymphocytes, and facilitating immune cell infiltration within the tumor microenvironment across multiple types of cancers. This paper reviews our current understanding of some of the most novel GPCRs-their expression patterns, evolving roles within the immune system and cancer, potential therapeutic applications, and perspective for future investigation.
Collapse
Affiliation(s)
- Kaitlyn Dickinson
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elliott J Yee
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Isaac Vigil
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard D Schulick
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yuwen Zhu
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
4
|
Sun D, Altalbawy FMA, Yumashev A, Hjazi A, Menon SV, Kaur M, Deorari M, Abdulwahid AS, Shakir MN, Gabal BC. Shedding Light on the Role of Exosomal PD-L1 (ExoPD-L1) in Cancer Progression: an Update. Cell Biochem Biophys 2024; 82:1709-1720. [PMID: 38907940 DOI: 10.1007/s12013-024-01340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 06/24/2024]
Abstract
Exosomes are the primary category of extracellular vesicles (EVs), which are lipid-bilayer vesicles with biological activity spontaneously secreted from either normal or tansformed cells. They serve a crucial role for intercellular communication and affect extracellular environment and the immune system. Tumor-derived exosomes (TEXs) enclose high levels of immunosuppressive proteins, including programmed death-ligand 1 (PD-L1). PD-L1 and its receptor PD-1 act as crucial immune checkpoint molecules, thus facilitating tumor advancement by inhibiting immune responses. PDL-1 is abundantly present on tumor cells and interacts with PD-1 on activated T cells, resulting in T cell suppression and allowing immune evasion of cancer cells. Various FDA-approved monoclonal antibodies inhibiting the PD-1/PD-L1 interaction are commonly used to treat a diverse range of tumors. Although the achieved results are significant, some individuals have a poor reaction to PD-1/PD-L1 blocking. PD-L1-enriched TEXs may mimic the impact of cell-surface PD-L1, consequently potentiating tumor resistance to PD1/PD-L1 based therapy. In light of this, a strong correlation between circulating exosomal PD-L1 levels and response rate to anti-PD-1/PD-L1 antibody treatment has been evinced. This article inspects the function of exosomal PDL-1 in developing resistance to anti-PD-1/PD-L1 therapy for opening new avenues for overcoming tumor resistance to such modalities and development of more favored combination therapy.
Collapse
Affiliation(s)
- Dongmei Sun
- Siping City Central People's Hospital, Siping, Jilin, 136000, P. R. China
| | - Farag M A Altalbawy
- Department of Biochemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Alzahraa S Abdulwahid
- Department of Medical Laboratories Technology, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Baneen Chasib Gabal
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Hua X, Xu Q, Wu R, Sun W, Gu Y, Zhu S, Liu X, Lv T, Song Y. ALKBH5 promotes non-small cell lung cancer progression and susceptibility to anti-PD-L1 therapy by modulating interactions between tumor and macrophages. J Exp Clin Cancer Res 2024; 43:164. [PMID: 38872221 PMCID: PMC11177518 DOI: 10.1186/s13046-024-03073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/19/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Understanding the mechanisms that mediate the interaction between tumor and immune cells may provide therapeutic benefit to patients with cancer. The N6-methyladenosine (m6A) demethylase, ALKBH5 (alkB homolog 5), is overexpressed in non-small cell lung cancer. However, its role in the tumor microenvironment is unknown. METHODS Datasets and tissue samples were used to determine the relationship between ALKBH5 expression and immunotherapy efficacy. Bioinformatic analysis, colorimetric assay to determine m6A RNA methylation, dual luciferase reporter assay, RNA/m6A-modified RNA immunoprecipitation, RNA stability assay, and RNA sequencing were used to investigate the regulatory mechanism of ALKBH5 in non-small cell lung cancer. In vitro and in vivo assays were performed to determine the contribution of ALKBH5 to the development of non-small cell lung cancer. RESULTS ALKBH5 was upregulated in primary non-small cell lung cancer tissues. ALKBH5 was positively correlated with programmed death-ligand 1 expression and macrophage infiltration and was associated with immunotherapy response. JAK2 was identified as a target of ALKBH5-mediated m6A modification, which activates the JAK2/p-STAT3 pathway to promote non-small cell lung cancer progression. ALKBH5 was found to recruit programmed death-ligand 1-positive tumor-associated macrophages and promote M2 macrophage polarization by inducing the secretion of CCL2 and CXCL10. ALKBH5 and tumor-associated macrophage-secreted IL-6 showed a synergistic effect to activate the JAK2/p-STAT3 pathway in cancer cells. CONCLUSIONS ALKBH5 promotes non-small cell lung cancer progression by regulating cancer and tumor-associated macrophage behavior through the JAK2/p-STAT3 pathway and the expression of CCL2 and CXCL10, respectively. These findings suggest that targeting ALKBH5 is a promising strategy of enhancing the anti-tumor immune response in patients with NSCLC and that identifying ALKBH5 status could facilitate prediction of clinical response to anti-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Xin Hua
- Medical School of Southeast University, Nanjing, 210003, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Qiuli Xu
- Medical School of Southeast University, Nanjing, 210003, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Ranpu Wu
- Medical School of Southeast University, Nanjing, 210003, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Wei Sun
- Medical School of Southeast University, Nanjing, 210003, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Yanli Gu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Xin Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Tangfeng Lv
- Medical School of Southeast University, Nanjing, 210003, China.
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Yong Song
- Medical School of Southeast University, Nanjing, 210003, China.
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
6
|
Zhang XJ, Yu Y, Zhao HP, Guo L, Dai K, Lv J. Mechanisms of tumor immunosuppressive microenvironment formation in esophageal cancer. World J Gastroenterol 2024; 30:2195-2208. [PMID: 38690024 PMCID: PMC11056912 DOI: 10.3748/wjg.v30.i16.2195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
As a highly invasive malignancy, esophageal cancer (EC) is a global health issue, and was the eighth most prevalent cancer and the sixth leading cause of cancer-related death worldwide in 2020. Due to its highly immunogenic nature, emer-ging immunotherapy approaches, such as immune checkpoint blockade, have demonstrated promising efficacy in treating EC; however, certain limitations and challenges still exist. In addition, tumors may exhibit primary or acquired resistance to immunotherapy in the tumor immune microenvironment (TIME); thus, understanding the TIME is urgent and crucial, especially given the im-portance of an immunosuppressive microenvironment in tumor progression. The aim of this review was to better elucidate the mechanisms of the suppressive TIME, including cell infiltration, immune cell subsets, cytokines and signaling pathways in the tumor microenvironment of EC patients, as well as the downregulated expression of major histocompatibility complex molecules in tumor cells, to obtain a better understanding of the differences in EC patient responses to immunotherapeutic strategies and accurately predict the efficacy of immunotherapies. Therefore, personalized treatments could be developed to maximize the advantages of immunotherapy.
Collapse
Affiliation(s)
- Xiao-Jun Zhang
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Lei Guo
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Kun Dai
- Department of Clinical Laboratory, Yanliang Railway Hospital of Xi’an, Xi’an 710089, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| |
Collapse
|
7
|
Rastin F, Oryani MA, Iranpour S, Javid H, Hashemzadeh A, Karimi-Shahri M. A new era in cancer treatment: harnessing ZIF-8 nanoparticles for PD-1 inhibitor delivery. J Mater Chem B 2024; 12:872-894. [PMID: 38193564 DOI: 10.1039/d3tb02471g] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
This review delves into the potential of zeolitic imidazolate framework-8 (ZIF-8) nanoparticles in augmenting the efficacy of cancer immunotherapy, with a special focus on the delivery of programmed cell death receptor 1 (PD-1) inhibitors. The multifunctional nature of ZIF-8 nanoparticles as drug carriers is emphasized, with their ability to encapsulate a range of therapeutic agents, including PD-1 inhibitors, and facilitate their targeted delivery to tumor locations. By manipulating the pore size and surface characteristics of ZIF-8 nanoparticles, controlled drug release can be realized. The strategic use of ZIF-8 nanoparticles to deliver PD-1 inhibitors presents a precise and targeted modality for cancer treatment, reducing off-target impacts and enhancing therapeutic effectiveness. This combined strategy addresses the existing challenges and constraints of current immunotherapy techniques, with the ultimate goal of enhancing patient outcomes in cancer therapy.
Collapse
Affiliation(s)
- Farangis Rastin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sonia Iranpour
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
8
|
Nian Z, Zhao Q, He Y, Xie R, Liu W, Chen T, Huang S, Dong L, Huang R, Yang L. Efficacy and Safety of First-line Therapies for Advanced Unresectable Oesophageal Squamous Cell Cancer: a Systematic Review and Network Meta-analysis. Clin Oncol (R Coll Radiol) 2024; 36:30-38. [PMID: 37827946 DOI: 10.1016/j.clon.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/27/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
AIM To compare the clinical efficacy and safety of first-line treatments for advanced unresectable oesophageal squamous cell cancer. MATERIALS AND METHODS A systematic review and network meta-analysis was carried out by retrieving and retaining relevant literature from databases. The studies were randomised controlled trials comparing first-line treatments for advanced unresectable oesophageal squamous cell cancer. A Bayesian network meta-analysis was used to assess clinical outcomes. RESULTS Nine studies including 4499 patients receiving first-line treatments were analysed. For all populations, toripalimab plus chemotherapy tended to provide the best overall survival (hazard ratio 0.58, 95% confidence intervals 0.43-0.78) and sintilimab plus chemotherapy provided the best progression-free survival (0.56, 0.46-0.68). Nivolumab plus chemotherapy presented the best objective response rate (odds ratio 2.45, 1.78-3.42) and camrelizumab plus chemotherapy (0.47, 0.29-0.74) appeared to be the safest. Sintilimab plus chemotherapy (0.55, 0.40-0.75) and nivolumab (0.54, 0.37-0.80) plus chemotherapy had the best overall survival in programmed death ligand 1 (PD-L1) tumour proportion score <1% and ≥1% subgroups. Toripalimab plus chemotherapy (0.61, 0.40-0.93) and pembrolizumab (0.57, 0.43-0.75) were the best in overall survival in combined positive score <10 and ≥10 subgroups, respectively. Toripalimab plus chemotherapy showed the best overall survival in the Asian group; pembrolizumab presented better overall survival in the Asian population than the non-Asian group. CONCLUSION Most immunotherapy combined with chemotherapy showed superior clinical benefits and sintilimab plus chemotherapy, toripalimab plus chemotherapy and tislelizumab plus chemotherapy had better comprehensive clinical efficacy. PD-L1 expression detection and ethnicity differences are still of great significance and most suitable regimens varied from each subgroup.
Collapse
Affiliation(s)
- Z Nian
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Q Zhao
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Y He
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - R Xie
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - W Liu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - T Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - S Huang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - L Dong
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - R Huang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - L Yang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
| |
Collapse
|
9
|
Ning XY, Ma JH, He W, Ma JT. Role of exosomes in metastasis and therapeutic resistance in esophageal cancer. World J Gastroenterol 2023; 29:5699-5715. [PMID: 38075847 PMCID: PMC10701334 DOI: 10.3748/wjg.v29.i42.5699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/13/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023] Open
Abstract
Esophageal cancer (EC) has a high incidence and mortality rate and is emerging as one of the most common health problems globally. Owing to the lack of sensitive detection methods, uncontrollable rapid metastasis, and pervasive treatment resistance, EC is often diagnosed in advanced stages and is susceptible to local recurrence. Exosomes are important components of intercellular communication and the exosome-mediated crosstalk between the cancer and surrounding cells within the tumor microenvironment plays a crucial role in the metastasis, progression, and therapeutic resistance of EC. Considering the critical role of exosomes in tumor pathogenesis, this review focused on elucidating the impact of exosomes on EC metastasis and therapeutic resistance. Here, we summarized the relevant signaling pathways involved in these processes. In addition, we discussed the potential clinical applications of exosomes for the early diagnosis, prognosis, and treatment of EC.
Collapse
Affiliation(s)
- Xing-Yu Ning
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Jin-Hu Ma
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Wei He
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Jun-Ting Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| |
Collapse
|
10
|
Castillo DR, Jeon WJ, Park D, Pham B, Yang C, Joung B, Moon JH, Lee J, Chong EG, Park K, Reeves ME, Duerksen-Hughes P, Mirshahidi HR, Mirshahidi S. Comprehensive Review: Unveiling the Pro-Oncogenic Roles of IL-1ß and PD-1/PD-L1 in NSCLC Development and Targeting Their Pathways for Clinical Management. Int J Mol Sci 2023; 24:11547. [PMID: 37511306 PMCID: PMC10380530 DOI: 10.3390/ijms241411547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
In the past decade, targeted therapies for solid tumors, including non-small cell lung cancer (NSCLC), have advanced significantly, offering tailored treatment options for patients. However, individuals without targetable mutations pose a clinical challenge, as they may not respond to standard treatments like immune-checkpoint inhibitors (ICIs) and novel targeted therapies. While the mechanism of action of ICIs seems promising, the lack of a robust response limits their widespread use. Although the expression levels of programmed death ligand 1 (PD-L1) on tumor cells are used to predict ICI response, identifying new biomarkers, particularly those associated with the tumor microenvironment (TME), is crucial to address this unmet need. Recently, inflammatory cytokines such as interleukin-1 beta (IL-1β) have emerged as a key area of focus and hold significant potential implications for future clinical practice. Combinatorial approaches of IL-1β inhibitors and ICIs may provide a potential therapeutic modality for NSCLC patients without targetable mutations. Recent advancements in our understanding of the intricate relationship between inflammation and oncogenesis, particularly involving the IL-1β/PD-1/PD-L1 pathway, have shed light on their application in lung cancer development and clinical outcomes of patients. Targeting these pathways in cancers like NSCLC holds immense potential to revolutionize cancer treatment, particularly for patients lacking targetable genetic mutations. However, despite these promising prospects, there remain certain aspects of this pathway that require further investigation, particularly regarding treatment resistance. Therefore, the objective of this review is to delve into the role of IL-1β in NSCLC, its participation in inflammatory pathways, and its intricate crosstalk with the PD-1/PD-L1 pathway. Additionally, we aim to explore the potential of IL-1β as a therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Dani Ran Castillo
- Division of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA; (D.R.C.); (E.G.C.); (M.E.R.); (H.R.M.)
| | - Won Jin Jeon
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.J.J.); (B.P.); (B.J.); (J.H.M.)
| | - Daniel Park
- Department of Internal Medicine, University of San Francisco-Fresno, Fresno, CA 93701, USA;
| | - Bryan Pham
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.J.J.); (B.P.); (B.J.); (J.H.M.)
| | - Chieh Yang
- Department of Internal Medicine, School of Medicine, University of California Riverside, Riverside, CA 92521, USA;
| | - Bowon Joung
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.J.J.); (B.P.); (B.J.); (J.H.M.)
| | - Jin Hyun Moon
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.J.J.); (B.P.); (B.J.); (J.H.M.)
| | - Jae Lee
- School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Esther G. Chong
- Division of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA; (D.R.C.); (E.G.C.); (M.E.R.); (H.R.M.)
| | - Kiwon Park
- Department of Pharmacy, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Mark E. Reeves
- Division of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA; (D.R.C.); (E.G.C.); (M.E.R.); (H.R.M.)
| | - Penelope Duerksen-Hughes
- Division of Biochemistry, Department of Medicine & Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Hamid R. Mirshahidi
- Division of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA; (D.R.C.); (E.G.C.); (M.E.R.); (H.R.M.)
| | - Saied Mirshahidi
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
- Division of Microbiology and Molecular Genetics, Department of Medicine & Basic Sciences, Loma Linda University, Loma Linda 92350, CA, USA
| |
Collapse
|