1
|
Wei L, Du Y, Gao S, Li D, Zhang K, He W, Lu Y, Zhu X. TGF-β1-induced m6A modifications accelerate onset of nuclear cataract in high myopia by modulating the PCP pathway. Nat Commun 2025; 16:3859. [PMID: 40274784 DOI: 10.1038/s41467-025-58995-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
High myopia is an important cause of visual impairment worldwide, characterized by early-onset nuclear cataracts, whose underlying mechanisms remain largely unexplained. Here, we identify conspicuously polarized and compacted lens fiber alignment, along with a simultaneous rise in N6-methyladenosine (m6A) modifications in patients with highly myopic cataracts (HMC), which is confirmed to be induced by elevated transforming growth factor-β1 (TGF-β1) in lens. Mechanistically, methyltransferase METTL3 and m6A reader insulin-like growth factor 2 mRNA binding protein 3 synergistically enhance planar cell polarity (PCP) signaling by affecting mRNA stability of dishevelled 2. This, in turn, alters proliferation, migration, and polarity formation of human lens epithelial cells. Moreover, Mettl3 conditional knockdown in mice leads to disrupted lens fiber arrangement and alleviates TGF-β1-induced increase in lens nuclear density. Collectively, these findings highlight the significance of m6A-modified PCP pathway in regulating postnatal lens fiber organization, which may hold great promise as a therapeutic target for HMC.
Collapse
Affiliation(s)
- Ling Wei
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Department of Ophthalmology, Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yu Du
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Shunxiang Gao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Keke Zhang
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Wenwen He
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xiangjia Zhu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Fan B, Chen G, Huang S, Li Y, Nabil ZUH, Yang Z. Summary of the mechanism of ferroptosis regulated by m6A modification in cancer progression. Front Cell Dev Biol 2025; 13:1507171. [PMID: 40271153 PMCID: PMC12014555 DOI: 10.3389/fcell.2025.1507171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
The most common form of internal RNA modification in eukaryotes is called n6-methyladenosine (m6A) methylation. It has become more and more well-known as a research issue in recent years since it alters RNA metabolism and is involved in numerous biological processes. Currently, m6A alteration offers new opportunities in clinical applications and is intimately linked to carcinogenesis. Ferroptosis-a form of iron-dependent, lipid peroxidation-induced regulated cell death-was discovered. In the development of cancer, it has become an important factor. According to newly available data, ferroptosis regulates tumor growth, and cancer exhibits aberrant m6A levels in crucial ferroptosis regulatory components. On the other hand, m6A has multiple roles in the development of tumors, and the relationship between m6A-modified ferroptosis and malignancies is quite intricate. In this review, we first give a thorough review of the regulatory and functional roles of m6A methylation, focusing on the molecular processes of m6A through the regulation of ferroptosis in human cancer progression and metastasis, which are strongly associated to cancer initiation, progression, and drug resistance. Therefore, it is crucial to clarify the relationship between m6A-mediated regulation of ferroptosis in cancer progression, providing a new strategy for cancer treatment with substantial clinical implications.
Collapse
Affiliation(s)
| | | | | | | | | | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| |
Collapse
|
3
|
Liu H, Liu Y, Wang X, Xiao Z, Ni Q, Yu X, Luo G. Antitumor potential of polyamines in cancer. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40103487 DOI: 10.3724/abbs.2025030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
The dysregulation of polyamines in tumors has made polyamine metabolism an appealing target for cancer therapy. Gene mutations drive the reprogramming of polyamine metabolism in tumors, presenting promising opportunities for clinical treatment. The proposed strategies involve inhibiting polyamine biosynthesis while also targeting the polyamine transport system as antitumor approaches. A growing number of drugs aimed at polyamine biosynthesis and transport systems are undergoing clinical trials. Polyamine metabolism plays a role in regulating cancer signaling pathways, suggesting potential combination therapies for cancer treatment. Furthermore, supplemental polyamine substances have demonstrated antitumor activity, indicating that combining polyamines with downstream targets or immunotherapy could offer significant clinical benefits. These discoveries open new avenues for leveraging polyamine metabolism in anticancer therapy.
Collapse
Affiliation(s)
- He Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xinyue Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Zhiwen Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Chen X, Song F, Xiao P, Yao Y, Li D, Fang Y, Lv S, Mou Y, Li Y, Song X. Spermine accumulation via spermine synthase promotes tumor cell proliferation in head and neck squamous cell carcinoma. BMC Cancer 2025; 25:402. [PMID: 40045286 PMCID: PMC11884143 DOI: 10.1186/s12885-025-13820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is among the most aggressive malignancies, underscoring the need for early diagnosis to improve patient outcomes. Tumor-derived exosomes, which can be non-invasively obtained and reflect the metabolic state of tumors in real-time, are under increasing investigation for their diagnostic potential. Herein we analyzed metabolite differences in exosomes, serum, and tissues from patients with HNSCC to identify potential diagnostic biomarkers of clinical relevance. METHODS Non-targeted metabolomics based on liquid chromatography-mass spectrometry was employed to quantify metabolites in exosome, serum, and tissue samples from 11 patients with HNSCC and six patients without cancer. The metabolic profiles of HNSCC were analyzed through univariate and multivariate statistical methods, differential metabolite analysis, and pathway enrichment analysis. RESULTS We identified three differential metabolites in exosomes, 45 in serum, and 33 in tissues. Notably, patients with HNSCC exhibited significant disruptions in protein and amino acid metabolism. Spermine was exclusively detected in exosomes and tissues from patients with HNSCC. We hypothesize that spermine is extracellularly secreted by malignant cells via exosomes and subsequently enters the bloodstream. Moreover, spermine synthase was highly expressed in HNSCC tissues. Knocking down spermine synthase markedly impaired HNSCC cell proliferation and migration. CONCLUSIONS This study provides a preliminarily characterization of the metabolic profile of HNSCC and highlights spermine and its synthetic pathways as potential diagnostic and therapeutic targets. Future studies are warranted to elucidate the mechanism of action of spermine in HNSCC and explore its utility in early diagnosis and therapeutic development.
Collapse
Affiliation(s)
- Xi Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, China
| | - Fei Song
- Ludong University, Yantai, Shandong, 264025, China
| | - Peng Xiao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, China
| | - Yisong Yao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, China
| | - Dongxian Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, China
| | - Yuhui Fang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, China
- The 2nd Medical College of Binzhou Medical University, Yantai, Shandong, 264000, China
| | - Shijun Lv
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, 264000, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, China.
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, 264000, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, China.
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, 264000, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, 264000, China.
| |
Collapse
|
5
|
Liu C, Li H, Hu X, Yan M, Fu Z, Zhang H, Wang Y, Du N. Spermine Synthase : A Potential Prognostic Marker for Lower-Grade Gliomas. J Korean Neurosurg Soc 2025; 68:75-96. [PMID: 39492653 PMCID: PMC11725456 DOI: 10.3340/jkns.2024.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE The objective of this study was to assess the relationship between spermine synthase (SMS) expression, tumor occurrence, and prognosis in lower-grade gliomas (LGGs). METHODS A total of 523 LGG patients and 1152 normal brain tissues were included as controls. Mann-Whitney U test was performed to evaluate SMS expression in the LGG group. Functional annotation analysis was conducted to explore the biological processes associated with high SMS expression. Immune cell infiltration analysis was performed to examine the correlation between SMS expression and immune cell types. The association between SMS expression and clinical and pathological features was assessed using Spearman correlation analysis. In vitro experiments were conducted to investigate the effects of overexpressing or downregulating SMS on cell proliferation, apoptosis, migration, invasion, and key proteins in the protein kinase B (AKT)/epithelialmesenchymal transition signaling pathway. RESULTS The study revealed a significant upregulation of SMS expression in LGGs compared to normal brain tissues. High SMS expression was associated with certain clinical and pathological features, including older age, astrocytoma, higher World Health Organization grade, poor disease-specific survival, disease progression, non-1p/19q codeletion, and wild-type isocitrate dehydrogenase. Cox regression analysis identified SMS as a risk factor for overall survival. Bioinformatics analysis showed enrichment of eosinophils, T cells, and macrophages in LGG samples, while proportions of dendritic (DC) cells, plasmacytoid DC (pDC) cells, and CD8+ T cells were decreased. CONCLUSION High SMS expression in LGGs may promote tumor occurrence through cellular proliferation and modulation of immune cell infiltration. These findings suggest the prognostic value of SMS in predicting clinical outcomes for LGG patients.
Collapse
Affiliation(s)
- Chen Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongqi Li
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Xiaolong Hu
- Department of Radiation Oncology, Beijing Geriatric Hospital, Beijing, China
| | - Maohui Yan
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Zhiguang Fu
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Hengheng Zhang
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Yingjie Wang
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Nan Du
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Guo YB, Wu YM, Lin ZZ. Enhancing the radiosensitivity of colorectal cancer cells by reducing spermine synthase through promoting autophagy and DNA damage. World J Gastrointest Oncol 2024; 16:4716-4727. [PMID: 39678812 PMCID: PMC11577379 DOI: 10.4251/wjgo.v16.i12.4716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 10/18/2024] [Indexed: 11/12/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC), the third most common cancer worldwide, has increasingly detrimental effects on human health. Radiotherapy resistance diminishes treatment efficacy. Studies suggest that spermine synthase (SMS) may serve as a potential target to enhance the radiosensitivity. AIM To investigate the association between SMS and radiosensitivity in CRC cells, along with a detailed elucidation of the underlying mechanisms. METHODS Western blot was adopted to assess SMS expression in normal colonic epithelial cells and CRC cell lines. HCT116 cells were transfected with control/SMS-specific shRNA or control/pcDNA3.1-SMS plasmids. Assessments included cell viability, colony formation, and apoptosis via MTT assays, colony formation assays, and flow cytometry. Radiosensitivity was studied in SMS-specific shRNA-transfected HCT116 cells post-4 Gy radiation, evaluating cell viability, colony formation, apoptosis, DNA damage (comet assays), autophagy (immunofluorescence), and mammalian target of rapamycin (mTOR) pathway protein expression (western blot). RESULTS Significant up-regulation of SMS expression levels was observed in the CRC cell lines. Upon down-regulation of SMS expression, cellular viability and colony-forming ability were markedly suppressed, concomitant with a notable increase in apoptotic indices. Furthermore, attenuation of SMS expression significantly augmented the sensitivity of HCT116 cells to radiation therapy, evidenced by a pronounced elevation in levels of cellular DNA damage and autophagy. Importantly, down-regulation of SMS corresponded with a marked reduction in the expression levels of proteins associated with the mTOR signaling pathway. CONCLUSION Knocking down SMS attenuates the mTOR signaling pathway, thereby promoting cellular autophagy and DNA damage to enhance the radiosensitivity of CRC cells.
Collapse
Affiliation(s)
- Yu-Bin Guo
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Yue-Ming Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Zhi-Zhao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
7
|
Xu C, Wang S, Sun Y. The role of KRT7 in metastasis and prognosis of pancreatic cancer. Cancer Cell Int 2024; 24:321. [PMID: 39300449 DOI: 10.1186/s12935-024-03500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE The aim of this study is to delve into the value of N6-Methyladenosine (m6A)-associated genes (MAGs) in pancreatic cancer (PC) prognosis. METHODS PC sequencing data and corresponding clinicopathological information were retrieved from GEO and TCGA databases. We filtered 19 MAGs in PC specimens and implemented functional annotation in biology. Later, the m6A modification pattern was stratified into m6Acluster A-B according to MAG expression levels, and further categorized into genecluster A-C based on differentially expressed genes between m6Acluster A and B. Next, a MAG-based prognostic prediction model was established by the least absolute shrinkage and selection operator (LASSO) regression analysis and multivariate Cox regression analysis. At last, the role of KRT7 in PC were explored. RESULTS We found m6Acluster A pattern presented enrichment pathways associated with cell apoptosis, proliferation, migration, and cancer pathways. Additionally, high-risk group displayed more dismal prognosis and a higher programmed death-ligand 1 expression. The survival prediction ability of the model was verified in three independent PC GEO datasets. KRT7 is the most momentous risk gene in the established prognostic model. Among 18 clinical samples, the KRT7 protein in the surviving patient samples is lower than that in the deceased patient samples. We also identified elevated expression of KRT7 in PC tumor tissues compared to normal tissues using GEPIA 2. Then, the metastasis of PC cells was promoted by overexpressed KRT7 in vitro and in vivo. And IGF2BP3 upregulated KRT7 by increasing the mRNA stability of KRT7. CONCLUSIONS The PPM built based on CXCL5, LY6K and KRT7 is an encouraging biomarker to define the prognosis. Additionally, IGF2BP3 promoted KRT7 by stabilizing mRNA of KRT7. And KRT7 promoted the metastasis of PC cells by promoting EMT.
Collapse
Affiliation(s)
- Chao Xu
- Department of General Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China.
| | - Shuming Wang
- Department of General Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China
| | - Yong Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| |
Collapse
|
8
|
Liu HT, Zhao Y, Wang HC, Liu QL. METTL3-mediated m 6A methylation of SLC38A1 stimulates cervical cancer growth. Biochem Biophys Res Commun 2024; 716:150039. [PMID: 38701556 DOI: 10.1016/j.bbrc.2024.150039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The objective of this study was to better characterize the role of the glutamine transporter SLC38A1 in cervical cancer and explore the underlying mechanisms. Data from public databases and clinical cervical cancer tissue samples were used to assess the expression of SLC38A1 and its prognostic significance. Immunohistochemical staining, qRT-PCR, and Western blotting were used to evaluate the expression of relevant genes and proteins. Cell viability, cell cycle, apoptosis, and intracellular glutamine content were measured using CCK-8, flow cytometry, and biochemical assays. Additionally, the RNA immunoprecipitation (RIP) assay was used to examine the impact of METTL3/IGF2BP3 on the m6A modification of the SLC38A1 3'UTR. Both cervical cancer specimens and cells showed significantly increased expression of SLC38A1 and its expression correlated with an unfavorable prognosis. Knockdown of SLC38A1 inhibited cell viability and cell cycle progression, induced apoptosis, and suppressed tumor growth in vivo. Glutaminase-1 inhibitor CB-839 reversed the effects of SLC38A1 overexpression. METTL3 promoted m6A modification of SLC38A1 and enhanced its mRNA stability through IGF2BP3 recruitment. Moreover, METTL3 silencing inhibited cell viability, cell cycle progression, intracellular glutamine content, and induced apoptosis, but these effects were reversed by SLC38A1 overexpression. In conclusion, METTL3-mediated m6A methylation of SLC38A1 stimulates cervical cancer progression. SLC38A1 inhibition is a potential therapeutic strategy for cervical cancer.
Collapse
Affiliation(s)
- Hai-Ting Liu
- Department of Medical Genetics, Zibo Maternal and Child Health Hospital, Zibo, 255000, China.
| | - Yun Zhao
- Department of Gynecology, Zibo Maternal and Child Health Hospital, Zibo, 255000, China
| | - Hong-Cai Wang
- Department of Gynecology, Zibo Maternal and Child Health Hospital, Zibo, 255000, China
| | - Qing-Ling Liu
- Department of Clinical Laboratory, Zibo Maternal and Child Health Hospital, Zibo, 255000, China
| |
Collapse
|
9
|
Li Z, Wu Y, Yang W, Wang W, Li J, Huang X, Yang Y, Zhang X, Ye X. Characterization of polyamine metabolism predicts prognosis, immune profile, and therapeutic efficacy in lung adenocarcinoma patients. Front Cell Dev Biol 2024; 12:1331759. [PMID: 38650895 PMCID: PMC11033315 DOI: 10.3389/fcell.2024.1331759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Background Polyamine modification patterns in lung adenocarcinoma (LUAD) and their impact on prognosis, immune infiltration, and anti-tumor efficacy have not been systematically explored. Methods Patients from The Cancer Genome Atlas (TCGA) were classified into subtypes according to polyamine metabolism-related genes using the consensus clustering method, and the survival outcomes and immune profile were compared. Meanwhile, the geneCluster was constructed according to the differentially expressed genes (DEGs) of the subtypes. Subsequently, the polyamine metabolism-related score (PMRS) system was established using the least absolute shrinkage and selection operator (LASSO) multivariate regression analysis in the TCGA training cohort (n = 245), which can be applied to characterize the prognosis. To verify the predictive performance of the PMRS, the internal cohort (n = 245) and the external cohort (n = 244) were recruited. The relationship between the PMRS and immune infiltration and antitumor responses was investigated. Results Two distinct patterns (C1 and C2) were identified, in which the C1 subtype presented an adverse prognosis, high CD8+ T cell infiltration, tumor mutational burden (TMB), immune checkpoint, and low tumor immune dysfunction and exclusion (TIDE). Furthermore, two geneClusters were established, and similar findings were observed. The PMRS, including three genes (SMS, SMOX, and PSMC6), was then constructed to characterize the polyamine metabolic patterns, and the patients were divided into high- and low-PMRS groups. As confirmed by the validation cohort, the high-PMRS group possessed a poor prognosis. Moreover, external samples and immunohistochemistry confirmed that the three genes were highly expressed in tumor samples. Finally, immunotherapy and chemotherapy may be beneficial to the high-PMRS group based on the immunotherapy cohorts and low half-maximal inhibitory concentration (IC50) values. Conclusion We identified distinct polyamine modification patterns and established a PMRS to provide new insights into the mechanism of polyamine action and improve the current anti-tumor strategy of LUAD.
Collapse
Affiliation(s)
- Zhouhua Li
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yue Wu
- Health Team, Jiangsu Marine Police Bureau, Nanjing, China
| | - Weichang Yang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenjun Wang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jinbo Li
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanqiang Yang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xinyi Zhang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaoqun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Murthy D, Attri KS, Suresh V, Rajacharya GH, Valenzuela CA, Thakur R, Zhao J, Shukla SK, Chaika NV, LaBreck D, Rao CV, Hollingsworth MA, Mehla K, Singh PK. The MUC1-HIF-1α signaling axis regulates pancreatic cancer pathogenesis through polyamine metabolism remodeling. Proc Natl Acad Sci U S A 2024; 121:e2315509121. [PMID: 38547055 PMCID: PMC10998584 DOI: 10.1073/pnas.2315509121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
Dysregulation of polyamine metabolism has been implicated in cancer initiation and progression; however, the mechanism of polyamine dysregulation in cancer is not fully understood. In this study, we investigated the role of MUC1, a mucin protein overexpressed in pancreatic cancer, in regulating polyamine metabolism. Utilizing pancreatic cancer patient data, we noted a positive correlation between MUC1 expression and the expression of key polyamine metabolism pathway genes. Functional studies revealed that knockdown of spermidine/spermine N1-acetyltransferase 1 (SAT1), a key enzyme involved in polyamine catabolism, attenuated the oncogenic functions of MUC1, including cell survival and proliferation. We further identified a regulatory axis whereby MUC1 stabilized hypoxia-inducible factor (HIF-1α), leading to increased SAT1 expression, which in turn induced carbon flux into the tricarboxylic acid cycle. MUC1-mediated stabilization of HIF-1α enhanced the promoter occupancy of the latter on SAT1 promoter and corresponding transcriptional activation of SAT1, which could be abrogated by pharmacological inhibition of HIF-1α or CRISPR/Cas9-mediated knockout of HIF1A. MUC1 knockdown caused a significant reduction in the levels of SAT1-generated metabolites, N1-acetylspermidine and N8-acetylspermidine. Given the known role of MUC1 in therapy resistance, we also investigated whether inhibiting SAT1 would enhance the efficacy of FOLFIRINOX chemotherapy. By utilizing organoid and orthotopic pancreatic cancer mouse models, we observed that targeting SAT1 with pentamidine improved the efficacy of FOLFIRINOX, suggesting that the combination may represent a promising therapeutic strategy against pancreatic cancer. This study provides insights into the interplay between MUC1 and polyamine metabolism, offering potential avenues for the development of treatments against pancreatic cancer.
Collapse
Affiliation(s)
- Divya Murthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198-5950
| | - Kuldeep S. Attri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198-5950
| | - Voddu Suresh
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Girish H. Rajacharya
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Carlos A. Valenzuela
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Ravi Thakur
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Junzhang Zhao
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Surendra K. Shukla
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Nina V. Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198-5950
| | - Drew LaBreck
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Chinthalapally V. Rao
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198-5950
| | - Kamiya Mehla
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Pankaj K. Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198-5950
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| |
Collapse
|
11
|
Ma H, Xiong L, Zhao B, Hahan Z, Wei M, Shi H, Yang S, Ren Q. Comprehensive investigation into the influence of glycosylation on head and neck squamous cell carcinoma and development of a prognostic model for risk assessment and anticipating immunotherapy. Front Immunol 2024; 15:1364082. [PMID: 38562924 PMCID: PMC10982401 DOI: 10.3389/fimmu.2024.1364082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background It has been well established that glycosylation plays a pivotal role in initiation, progression, and therapy resistance of several cancers. However, the correlations between glycosylation and head and neck squamous cell carcinoma (HNSCC) have not been elucidated in detail. Methods The paramount genes governing glycosylation were discerned via the utilization of the Protein-Protein Interaction (PPI) network and correlation analysis, coupled with single-cell RNA sequencing (scRNA-seq) analysis. To construct risk models exhibiting heightened predictive efficacy, cox- and lasso-regression methodologies were employed, and the veracity of these models was substantiated across both internal and external datasets. Subsequently, an exploration into the distinctions within the tumor microenvironment (TME), immunotherapy responses, and enriched pathways among disparate risk cohorts ensued. Ultimately, cell experiments were conducted to validate the consequential impact of SMS in Head and Neck Squamous Cell Carcinoma (HNSCC). Results A total of 184 genes orchestrating glycosylation were delineated for subsequent scrutiny. Employing cox- and lasso-regression methodologies, we fashioned a 3-gene signature, proficient in prognosticating the outcomes for patients afflicted with HNSCC. Noteworthy observations encompassed distinctions in the Tumor Microenvironment (TME), levels of immune cell infiltration, and the presence of immune checkpoint markers among divergent risk cohorts, holding potentially consequential implications for the clinical management of HNSCC patients. Conclusion The prognosis of HNSCC can be proficiently anticipated through risk signatures based on Glycosylation-related genes (GRGs). A thorough delineation of the GRGs signature in HNSCC holds the potential to facilitate the interpretation of HNSCC's responsiveness to immunotherapy and provide innovative strategies for cancer treatment.
Collapse
Affiliation(s)
- Heng Ma
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Ludan Xiong
- Department of GCP Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Bohui Zhao
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhuledesi Hahan
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Minghui Wei
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Hengmei Shi
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Susu Yang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianhe Ren
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Su X, Qu Y, Mu D. Methyltransferase-like 3 modifications of RNAs: Implications for the pathology in the endocrine system. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167010. [PMID: 38176459 DOI: 10.1016/j.bbadis.2023.167010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Methyltransferase-like 3 (METTL3) is the most well-known element of N6-methyladenosine modification on RNAs. METTL3 deposits a methyl group onto target RNAs to modify their expression, ultimately regulating various physiological and pathological events. Numerous studies have suggested the significant role of METTL3 in endocrine dysfunction and related disorders. However, reviews that summarize and interpret these studies are lacking. In this review, we systematically analyze such studies, including obesity, type 2 diabetes mellitus (T2DM), T2DM-induced diseases, pancreatic cancer, and thyroid carcinoma. This review indicates that METTL3 contributes remarkably to the endocrine dysfunction and progression of obesity, T2DM, T2DM-induced diseases, pancreatic cancer, and thyroid carcinoma. In conclusion, this review provides a comprehensive interpretation of the mechanism via which METTL3 functions on RNAs and regulates various endocrine dysfunction events and suggest potential associated correlations. Our review, thus, provides a valuable reference for further fundamental studies and clinical applications.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Jin Q, Qu H, Quan C. New insights into the regulation of METTL3 and its role in tumors. Cell Commun Signal 2023; 21:334. [PMID: 37996892 PMCID: PMC10732098 DOI: 10.1186/s12964-023-01360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
As one of the most abundant epigenetic modifications in RNA, N6-methyladenosine (m6A) affects RNA transcription, splicing, stability, and posttranscriptional translation. Methyltransferase-like 3 (METTL3), a key component of the m6A methyltransferase complex, dynamically regulates target genes expression through m6A modification. METTL3 has been found to play a critical role in tumorigenesis, tumor growth, metastasis, metabolic reprogramming, immune cell infiltration, and tumor drug resistance. As a result, the development of targeted drugs against METTL3 is becoming increasingly popular. This review systematically summarizes the factors that regulate METTL3 expression and explores the specific mechanisms by which METTL3 affects multiple tumor biological behaviors. We aim to provide fundamental support for tumor diagnosis and treatment, at the same time, to offer new ideas for the development of tumor-targeting drugs.
Collapse
Affiliation(s)
- Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Huinan Qu
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China.
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
14
|
Liu J, Gu X, Guan Z, Huang D, Xing H, Zheng L. Role of m6A modification in regulating the PI3K/AKT signaling pathway in cancer. J Transl Med 2023; 21:774. [PMID: 37915034 PMCID: PMC10619263 DOI: 10.1186/s12967-023-04651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays a crucial role in the pathogenesis of cancer. The dysregulation of this pathway has been linked to the development and initiation of various types of cancer. Recently, epigenetic modifications, particularly N6-methyladenosine (m6A), have been recognized as essential contributors to mRNA-related biological processes and translation. The abnormal expression of m6A modification enzymes has been associated with oncogenesis, tumor progression, and drug resistance. Here, we review the role of m6A modification in regulating the PI3K/AKT pathway in cancer and its implications in the development of novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Jie Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Zhenjie Guan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Huiwu Xing
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Lian Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
15
|
Wu Y, Shang J, Ruan Q, Tan X. Integrated single-cell and bulk RNA sequencing in pancreatic cancer identifies disulfidptosis-associated molecular subtypes and prognostic signature. Sci Rep 2023; 13:17577. [PMID: 37845218 PMCID: PMC10579418 DOI: 10.1038/s41598-023-43036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
Pancreatic cancer (PC) is known for its high degree of heterogeneity and exceptionally adverse outcome. While disulfidptosis is the most recently identified form of cell death, the predictive and therapeutic value of disulfidptosis-related genes (DRGs) for PC remains unknown. RNA sequencing data with the follow-up information, were retrieved from the TCGA and ICGC databases. Consensus clustering analysis was conducted on patient data using R software. Subsequently, the LASSO regression analysis was conducted to create a prognostic signature for foreseeing the outcome of PC. Differences in relevant pathways, mutational landscape, and tumor immune microenvironment were compared between PC samples with different risk levels. Finally, we experimentally confirmed the impact of DSG3 on the invasion and migration abilities of PC cells. All twenty DRGs were found to be hyperexpressed in PC tissues, and fourteen of them significantly associated with PC survival. Using consensus clustering analysis based on these DRGs, four DRclusters were identified. Additionally, altogether 223 differential genes were evaluated between clusters, indicating potential biological differences between them. Four gene clusters (geneClusters) were recognized according to these genes, and a 10-gene prognostic signature was created. High-risk patients were found to be primarily enriched in signaling pathways related to the cell cycle and p53. Furthermore, the rate of mutations was markedly higher in high-risk patients, besides important variations were present in terms of immune microenvironment and chemotherapy sensitivity among patients with different risk levels. DSG3 could appreciably enhance the invasion and migration of PC cells. This work, based on disulfidoptosis-related genes (DRGs), holds the promise of classifying PC patients and predicting their prognosis, mutational landscape, immune microenvironment, and drug therapy. These insights could boost an improvement in a better comprehension of the role of DRGs in PC as well as provide new opportunities for prognostic prediction and more effective treatment strategies.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Jin Shang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Qiang Ruan
- Virology Lab, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Xiaodong Tan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
16
|
Huang Y, Deng S, Jiang Q, Shi J. LncRNA RARA-AS1 could serve as a novel prognostic biomarker in pan-cancer and promote proliferation and migration in glioblastoma. Sci Rep 2023; 13:17376. [PMID: 37833349 PMCID: PMC10575974 DOI: 10.1038/s41598-023-44677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators of cancer progression and are potential biomarkers for diagnosis and treatment. This study investigates the role of RARA Antisense RNA 1 (RARA-AS1) in cancer and its implications for diagnosis and treatment. Various bioinformatics tools were conducted to analyze the expression patterns, immune-related functions, methylation, and gene expression correlations of RARA-AS1, mainly including the comparisons of different subgroups and correlation analyses between RARA-AS1 expression and other factors. Furthermore, we used short hairpin RNA to perform knockdown experiments, investigating the effects of RARA-AS1 on cell proliferation, invasion, and migration in glioblastoma. Our results revealed that RARA-AS1 has distinct expression patterns in different cancers and exhibits notable correlation with prognosis. Additionally, RARA-AS1 is highly correlated with certain immune checkpoints and mismatch repair genes, indicating its potential role in immune infiltration and related immunotherapy. Further analysis identified potential effective drugs for RARA-AS1 and demonstrated its potential RNA binding protein (RBP) mechanism in glioblastoma. Besides, a series of functional experiments indicated inhibiting RARA-AS1 could decrease cell proliferation, invasion, and migration of glioblastoma cell lines. Finally, RARA-AS1 could act as an independent prognostic factor for glioblastoma patients and may serve as a promising therapeutic target. All in all, Our study provides a comprehensive understanding of the functions and implications of RARA-AS1 in pan-cancer, highlighting it as a promising biomarker for survival. It is also an independent risk factor affecting prognosis in glioblastoma and an important factor affecting proliferation and migration in glioblastoma, setting the stage for further mechanistic investigations.
Collapse
Affiliation(s)
- Yue Huang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, No. 20 West Temple Road, Nantong, 226001, Jiangsu, China
| | - Song Deng
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, No. 20 West Temple Road, Nantong, 226001, Jiangsu, China
| | - Qiaoji Jiang
- Department of Neurosurgery, Affiliated Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224000, Jiangsu, China
| | - Jinlong Shi
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, No. 20 West Temple Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
17
|
Tsuji Y, Hara T, Meng S, Sato H, Arao Y, Ofusa K, Ishii H. Role of RNA methylation in the regulation of pancreatic cancer stem cells (Review). Oncol Lett 2023; 26:336. [PMID: 37427348 PMCID: PMC10326658 DOI: 10.3892/ol.2023.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 07/11/2023] Open
Abstract
Pancreatic cancer stem cells (CSCs) play a key role in the initiation and progression of pancreatic adenocarcinoma (PDAC). CSCs are responsible for resistance to chemotherapy and radiation, and for cancer metastasis. Recent studies have indicated that RNA methylation, a type of RNA modification, predominantly occurring as m6A methylation, plays an important role in controlling the stemness of cancer cells, therapeutic resistance against chemotherapy and radiation therapy, and their overall relevance to a patient's prognosis. CSCs regulate various behaviors of cancer through cell-cell communication by secreting factors, through their receptors, and through signal transduction. Recent studies have shown that RNA methylation is involved in the biology of the heterogeneity of PDAC. The present review provides an update on the current understanding of RNA modification-based therapeutic targets against deleterious PDAC. Several key pathways and agents that can specifically target CSCs have been identified, thus providing novel insights into the early diagnosis and efficient treatment of PDAC.
Collapse
Affiliation(s)
- Yoshiko Tsuji
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiromichi Sato
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ken Ofusa
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Prophoenix Division, Food and Life-Science Laboratory, IDEA Consultants, Inc., Osaka, Osaka 559-8519, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Chen J, Ye M, Bai J, Hu C, Lu F, Gu D, Yu P, Tang Q. Novel insights into the interplay between m6A modification and programmed cell death in cancer. Int J Biol Sci 2023; 19:1748-1763. [PMID: 37063421 PMCID: PMC10092764 DOI: 10.7150/ijbs.81000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/08/2023] [Indexed: 04/18/2023] Open
Abstract
N6-methyladenosine (m6A) methylation, the most prevalent and abundant RNA modification in eukaryotes, has recently become a hot research topic. Several studies have indicated that m6A modification is dysregulated during the progression of multiple diseases, especially in cancer development. Programmed cell death (PCD) is an active and orderly method of cell death in the development of organisms, including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis. As the study of PCD has become increasingly profound, accumulating evidence has revealed the mutual regulation of m6A modification and PCD, and their interaction can further influence the sensitivity of cancer treatment. In this review, we summarize the recent advances in m6A modification and PCD in terms of their interplay and potential mechanisms, as well as cancer therapeutic resistance. Our study provides promising insights and future directions for the examination and treatment of cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qiyun Tang
- ✉ Corresponding author: Qiyun Tang, Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China.
| |
Collapse
|