1
|
Li J, Li Z, Wang K. Targeting angiogenesis in gastrointestinal tumors: strategies from vascular disruption to vascular normalization and promotion strategies angiogenesis strategies in GI tumor therapy. Front Immunol 2025; 16:1550752. [PMID: 40330478 PMCID: PMC12052729 DOI: 10.3389/fimmu.2025.1550752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/12/2025] [Indexed: 05/08/2025] Open
Abstract
Angiogenesis plays a critical role in the progression of gastrointestinal (GI) tumors, making it an important therapeutic target. This review explores recent advancements in targeting angiogenesis for GI tumor therapy, highlighting strategies that range from vascular disruption to vascular promotion. The biological foundation of tumor angiogenesis is discussed, with a focus on the molecular mechanisms that regulate this process, including key players such as VEGF, HIFs, and non-coding RNAs. Current therapeutic strategies, including anti-angiogenic agents, vascular normalization approaches, and emerging vascular promotion therapies, are analyzed for their clinical applications and limitations. Additionally, the review examines combination strategies that integrate anti-angiogenic therapy with chemotherapy, immunotherapy, and other modalities to enhance efficacy and overcome resistance. Despite significant progress, challenges such as drug resistance, tumor heterogeneity, and adverse effects remain. Future research directions emphasize the discovery of novel molecular targets, development of personalized treatments, and innovative combination therapies to optimize outcomes for patients with GI tumors. This comprehensive review provides a foundation for advancing angiogenesis-targeted therapies in GI cancer treatment.
Collapse
Affiliation(s)
- Jiajia Li
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keliang Wang
- Department of Gastroenterology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Luo J, Liang M, Ma T, Dong B, Jia L, Su M. Identification of angiogenesis-related subtypes and risk models for predicting the prognosis of gastric cancer patients. Comput Biol Chem 2024; 112:108174. [PMID: 39191168 DOI: 10.1016/j.compbiolchem.2024.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Gastric cancer (GC) is a leading cause of cancer-related mortality and is characterized by significant heterogeneity, highlighting the need for further studies aimed at personalized treatment strategies. Tumor angiogenesis is critical for tumor development and metastasis, yet its role in molecular subtyping and prognosis prediction remains underexplored. This study aims to identify angiogenesis-related subtypes and develop a prognostic model for GC patients. Using data from The Cancer Genome Atlas (TCGA), we performed consensus cluster analysis on differentially expressed angiogenesis-related genes (ARGs), identifying two patient subtypes with distinct survival outcomes. Differentially expressed genes between the subtypes were analyzed via Cox and LASSO regression, leading to the establishment of a subtype-based prognostic model using a machine learning algorithm. Patients were classified into high- and low-risk groups based on the risk score. Validation was performed using independent datasets (ICGC and GSE15459). We utilized a deconvolution algorithm to investigate the tumor immune microenvironment in different risk groups and conducted analyses on genetic profiling, sensitivity and combination of anti-tumor drug. Our study identified ten prognostic signature genes, enabling the calculation of a risk score to predict prognosis and overall survival. This provides critical data for stratified diagnosis and treatment upon patient admission, monitoring disease progression throughout the entire course, evaluating immunotherapy efficacy, and selecting personalized medications for GC patients.
Collapse
Affiliation(s)
- Jie Luo
- Department of Medical Affairs, Huanggang Central Hospital, Huanggang, China
| | - Mengyun Liang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Tengfei Ma
- Clinical Trial Centers, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China
| | - Bizhen Dong
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Liping Jia
- Department of Respiratory and Critical Care Medicine, Huanggang Central Hospital, Huanggang, China.
| | - Meifang Su
- Department of Hematopathology, Huanggang Central Hospital, Huanggang, China.
| |
Collapse
|
3
|
Kong L, Li J, Bai Y, Xu S, Zhang L, Chen W, Gao L, Wang F. Inhibition of soluble epoxide hydrolase enhances the dentin-pulp complex regeneration mediated by crosstalk between vascular endothelial cells and dental pulp stem cells. J Transl Med 2024; 22:61. [PMID: 38229161 PMCID: PMC10790489 DOI: 10.1186/s12967-024-04863-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/06/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Revascularization and restoration of normal pulp-dentin complex are important for tissue-engineered pulp regeneration. Recently, a unique periodontal tip-like endothelial cells subtype (POTCs) specialized to dentinogenesis was identified. We have confirmed that TPPU, a soluble epoxide hydrolase (sEH) inhibitor targeting epoxyeicosatrienoic acids (EETs) metabolism, promotes bone growth and regeneration by angiogenesis and osteogenesis coupling. We hypothesized that TPPU could also promote revascularization and induce POTCs to contribute to pulp-dentin complex regeneration. Here, we in vitro and in vivo characterized the potential effect of TPPU on the coupling of angiogenesis and odontogenesis and investigated the relevant mechanism, providing new ideas for pulp-dentin regeneration by targeting sEH. METHODS In vitro effects of TPPU on the proliferation, migration, and angiogenesis of dental pulp stem cells (DPSCs), human umbilical vein endothelial cells (HUVECs) and cocultured DPSCs and HUVECs were detected using cell counting kit 8 (CCK8) assay, wound healing, transwell, tube formation and RT-qPCR. In vivo, Matrigel plug assay was performed to outline the roles of TPPU in revascularization and survival of grafts. Then we characterized the VEGFR2 + POTCs around odontoblast layer in the molar of pups from C57BL/6 female mice gavaged with TPPU. Finally, the root segments with DPSCs mixed with Matrigel were implanted subcutaneously in BALB/c nude mice treated with TPPU and the root grafts were isolated for histological staining. RESULTS In vitro, TPPU significantly promoted the migration and tube formation capability of cocultured DPSCs and HUVECs. ALP and ARS staining and RT-qPCR showed that TPPU promoted the osteogenic and odontogenic differentiation of cultured cells, treatment with an anti-TGF-β blocking antibody abrogated this effect. Knockdown of HIF-1α in HUVECs significantly reversed the effect of TPPU on the expression of angiogenesis, osteogenesis and odontogenesis-related genes in cocultured cells. Matrigel plug assay showed that TPPU increased VEGF/VEGFR2-expressed cells in transplanted grafts. TPPU contributed to angiogenic-odontogenic coupling featured by increased VEGFR2 + POTCs and odontoblast maturation during early dentinogenesis in molar of newborn pups from C57BL/6 female mice gavaged with TPPU. TPPU induced more dental pulp-like tissue with more vessels and collagen fibers in transplanted root segment. CONCLUSIONS TPPU promotes revascularization of dental pulp regeneration by enhancing migration and angiogenesis of HUVECs, and improves odontogenic differentiation of DPSCs by TGF-β. TPPU boosts the angiogenic-odontogenic coupling by enhancing VEGFR2 + POTCs meditated odontoblast maturation partly via upregulating HIF-1α, which contributes to increasing pulp-dentin complex for tissue-engineered pulp regeneration.
Collapse
Affiliation(s)
- Lingwenyao Kong
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Juanjuan Li
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Yuwen Bai
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Shaoyang Xu
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Lin Zhang
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Weixian Chen
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Lu Gao
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China.
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China.
- The Affiliated Stomatological Hospital of Dalian Medical University, Dalian, China.
| | - Fu Wang
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China.
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China.
- The Affiliated Stomatological Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
4
|
Michalkova R, Kello M, Cizmarikova M, Bardelcikova A, Mirossay L, Mojzis J. Chalcones and Gastrointestinal Cancers: Experimental Evidence. Int J Mol Sci 2023; 24:ijms24065964. [PMID: 36983038 PMCID: PMC10059739 DOI: 10.3390/ijms24065964] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Colorectal (CRC) and gastric cancers (GC) are the most common digestive tract cancers with a high incidence rate worldwide. The current treatment including surgery, chemotherapy or radiotherapy has several limitations such as drug toxicity, cancer recurrence or drug resistance and thus it is a great challenge to discover an effective and safe therapy for CRC and GC. In the last decade, numerous phytochemicals and their synthetic analogs have attracted attention due to their anticancer effect and low organ toxicity. Chalcones, plant-derived polyphenols, received marked attention due to their biological activities as well as for relatively easy structural manipulation and synthesis of new chalcone derivatives. In this study, we discuss the mechanisms by which chalcones in both in vitro and in vivo conditions suppress cancer cell proliferation or cancer formation.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martina Cizmarikova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Annamaria Bardelcikova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|