1
|
Huang M, Zhu X, Xu W, Zhu J, Xun X, Su B, Chen H. TTC7A-ALK, a novel ALK fusion variant identified in a patient with metastatic lung adenocarcinoma, exhibits excellent response to crizotinib. Transl Oncol 2025; 54:102345. [PMID: 40054123 PMCID: PMC11930134 DOI: 10.1016/j.tranon.2025.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/20/2025] [Accepted: 03/02/2025] [Indexed: 03/18/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide. ALK gene rearrangement has been identified in 3 % to 5 % of the patients with NSCLC. Thanks to the advancements in second-generation sequencing technology, an increasing number of novel fusion partners have been identified. In our research, we discovered a rare ALK fusion, TTC7A-ALK, in a patient with advanced lung adenocarcinoma using targeted next-generation sequencing (NGS). After being diagnosed with advanced lung adenocarcinoma with TTC7A-ALK fusion, the patient received crizotinib treatment and achieved a progression-free survival of 29 months. Additonanlly, we conducted further functional analyses on this fusion protein to assess its oncogenic potential. Similar to EML4-ALK, the TTC7A-ALK fusion protein can promote the growth of Ba/F3 cells under IL-3-independent conditions in vitro. In vivo studies demonstrate that the TTC7A-ALK fusion protein could enhance the tumorigenesis of NIH3T3 cells in nude mice, which can be suppressed by crizotinib. Mechanistic studies indicated that the ectopic expression of TTC7A-ALK in 293T cells led to the hyperactivation of downstream MAPK and PI3K/Akt pathways, which can be inhibited by crizotinib. Furthermore, upon tumor progression, the patient transitioned to alectinib, which provided rapid symptom relief and controlled the majority of lesions. Conclusionly, we identified and validated TTC7A-ALK as a oncogenic fusion in NSCLC. The patient demonstrated a significant clinical benefit from sequential treatment with crizotinib and alectinib, highlighting TTC7A-ALK as a novel therapeutic target for ALK inhibitors. These findings extend the spectrum of actionable ALK fusions and promote the inclusion of rare fusion detection in clinical diagnostic processes and treatment strategies.
Collapse
Affiliation(s)
- Meijin Huang
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, PLA, Yunnan, China
| | - Xiangqing Zhu
- Department of Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Yunnan, China
| | - Wenmang Xu
- Department of Pathology, 920th Hospital of Joint Logistics Support Force, PLA, Yunnan, China
| | - Jun Zhu
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, PLA, Yunnan, China
| | - Xin Xun
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, PLA, Yunnan, China
| | - Bin Su
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, PLA, Yunnan, China
| | - Hong Chen
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, PLA, Yunnan, China.
| |
Collapse
|
2
|
May L, Hu B, Jerajani P, Jagdeesh A, Alhawiti O, Cai L, Semenova N, Guo C, Isbell M, Deng X, Faber A, Pillappa R, Bandyopadhyay D, Wang XY, Neuwelt A, Koblinski J, Bos PD, Li H, Martin R, Landry JW. The Innate Immune System and the TRAIL-Bcl-XL Axis Mediate a Sex Bias in Lung Cancer and Confer a Therapeutic Vulnerability in Females. Cancer Res 2024; 84:4140-4155. [PMID: 39312191 PMCID: PMC11649478 DOI: 10.1158/0008-5472.can-24-0585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/21/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
There is a significant sex bias in lung cancer, with males showing increased mortality compared with females. A better mechanistic understanding of these differences could help identify therapeutic targets to personalize cancer therapies to each sex. After observing a clear sex bias in humanized mice, with male patient-derived xenograft lung tumors being more progressive and deadlier than female patient-derived xenograft lung tumors, we identified mouse tumor models of lung cancer with the same sex bias. This sex bias was not observed in models of breast, colon, melanoma, and renal cancers. In vivo, the sex bias in growth and lethality required intact ovaries, functional innate NK cells and monocytes/macrophages, and the activating receptor NKG2D. Ex vivo cell culture models were sensitized to the anticancer effects of NKG2D-mediated NK cell and macrophage killing through the TRAIL-Bcl-XL axis when cultured with serum from female mice with intact ovaries. In both flank and orthotopic models, the Bcl-XL inhibitor navitoclax (ABT-263) improved tumor growth control in female mice and required NK cells, macrophages, and the TRAIL signaling pathway. This research suggests that navitoclax and TRAIL pathway agonists could be used as a personalized therapy to improve outcomes in women with lung cancer. Significance: Lung cancers in females are more susceptible to killing through a TRAIL-Bcl-XL axis, indicating that targeting this axis therapeutically could represent a personalized approach to treat female patients with lung cancer.
Collapse
Affiliation(s)
- Lauren May
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Institute of Molecular Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Bin Hu
- VCU OVPRI, Virginia Commonwealth University, VCU Massey Comprehensive Cancer Center, Richmond, VA, 23298
| | - Preksha Jerajani
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Institute of Molecular Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Akash Jagdeesh
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Institute of Molecular Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Ohud Alhawiti
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Institute of Molecular Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Lillian Cai
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Institute of Molecular Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Nina Semenova
- Department of Pharmaceutical Science, Hampton University, Hampton VA, 23668
| | - Chunqing Guo
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Institute of Molecular Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Madison Isbell
- Department of Microbiology and Immunology, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA, 23298
| | - Xiaoyan Deng
- Department of Biostatistics, School of Population Health, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298
| | - Anthony Faber
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, VCU School of Dentistry, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298
| | - Raghavendra Pillappa
- Department of Pathology, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA, 23298
| | - Dipankar Bandyopadhyay
- Department of Biostatistics, School of Population Health, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Institute of Molecular Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Alexander Neuwelt
- Department of Internal Medicine, Division of Hematology, Oncology, and Palliative Care, Virginia Commonwealth University, Richmond, VA, 23298
- Staff Physician, Department of Internal Medicine, Division of Hematology and Oncology, Richmond VA Medical Center, Richmond, VA, 23249
| | - Jennifer Koblinski
- VCU OVPRI, Virginia Commonwealth University, VCU Massey Comprehensive Cancer Center, Richmond, VA, 23298
| | - Paula D. Bos
- Department of Pathology, VCU School of Medicine, VCU Massey Comprehensive Cancer, Richmond, VA, 23298
| | - Howard Li
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401
| | - Rebecca Martin
- Department of Microbiology and Immunology, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA, 23298
| | - Joseph W. Landry
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Institute of Molecular Medicine, VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
3
|
Ray-Coquard I, Casali PG, Croce S, Fennessy FM, Fischerova D, Jones R, Sanfilippo R, Zapardiel I, Amant F, Blay JY, Martἰn-Broto J, Casado A, Chiang S, Dei Tos AP, Haas R, Hensley ML, Hohenberger P, Kim JW, Kim SI, Meydanli MM, Pautier P, Abdul Razak AR, Sehouli J, van Houdt W, Planchamp F, Friedlander M. ESGO/EURACAN/GCIG guidelines for the management of patients with uterine sarcomas. Int J Gynecol Cancer 2024; 34:1499-1521. [PMID: 39322612 DOI: 10.1136/ijgc-2024-005823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Affiliation(s)
- Isabelle Ray-Coquard
- Department of Medical Oncology, Centre Leon Berard, Lyon, France
- Hesper Laboratory, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Paolo Giovanni Casali
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Sabrina Croce
- Department of Biopathology, Institut Bergonié, Bordeaux, France
| | - Fiona M Fennessy
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Daniela Fischerova
- Department of Gynecology, Obstetrics and Neonatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| | - Robin Jones
- Royal Marsden Hospital NHS Trust, London, UK
| | - Roberta Sanfilippo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ignacio Zapardiel
- Gynecologic Oncology Unit, La Paz University Hospital, Madrid, Spain
| | - Frédéric Amant
- Department of Oncology, KU Leuven, Leuven, Flanders, Belgium
- Department of Gynecology, Antoni van Leeuwenhoek Nederlands Kanker Instituut afdeling Gynaecologie, Amsterdam, Netherlands
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Leon Berard, Lyon, France
| | - Javier Martἰn-Broto
- Department of Medical Oncology, Fundación Jimenez Diaz University Hospital, Madrid, Spain
- University Hospital General de Villalba, Madrid, Spain
| | - Antonio Casado
- Department of Medical Oncology, University Hospital San Carlos, Madrid, Spain
| | - Sarah Chiang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Angelo Paolo Dei Tos
- Department of Integrated Diagnostics, Azienda Ospedale-Università Padova, Padua, Italy
- Department of Medicine, University of Padua, Padua, Italy
| | - Rick Haas
- Department of Radiotherapy, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Radiotherapy, Leiden University Medical Center, Leiden, Netherlands
| | - Martee L Hensley
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Peter Hohenberger
- Division of Surgical Oncology and Thoracic Surgery, Mannheim University Medical Centre, University of Heidelberg, Mannheim, Germany
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | | | - Patricia Pautier
- Department of Medical Oncology, Institut Gustave-Roussy, Villejuif, Île-de-France, France
| | - Albiruni R Abdul Razak
- Division of Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre Gynecologic Site Group, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jalid Sehouli
- Department of Gynecology with Center for Oncological Surgery, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Winan van Houdt
- Department of Surgery, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Michael Friedlander
- Department of Medical Oncology, School of Clinical Medicine, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Department of Medical Oncology, Prince of Wales and Royal Hospital for Women, Randwick, New South Wales, Australia
| |
Collapse
|
4
|
Hicks DG, Turner BM. Optimized biomarker evaluation and molecular testing in the era of breast cancer precision medicine. Biotech Histochem 2024; 99:357-369. [PMID: 39258585 DOI: 10.1080/10520295.2024.2390179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Ground breaking advances in medicine, driven in part by major technologic developments in molecular biology have led us to a new model for cancer care that has been termed personalized, or precision medicine. Precision medicine is a model for making medical decisions that employs an innovative clinical approach and advanced tumor testing methods that are tailored to understanding an individual patient's tumor biology and the molecular drivers of their disease. This medical model includes a combination of diagnostic testing and specific treatment options that can be offered to patients at presentation and in theory throughout the course of their disease as new mutations arise with the development of disease recurrence. Although the precision medicine model offers incredible potential to transform cancer care, these advances are only meaningful when they reach the correct patients. The evolving paradigm of precision medicine is changing the practice of pathology, and the pathology community needs to be mindful of these changes because every tissue specimen represents a patient's life, and those patients are depending on the pathology community to handle their tissue correctly. The diagnostic tests performed in the pathology laboratory for precision medicine are increasingly complex, and pathologists along with the entire laboratory and clinical communities need to take steps to ensure that the right diagnosis is given to the right patient to inform the right treatment options, at the right time, along every step of the continuum of care for cancer patients. While hormone receptors and human epidermal growth factor receptor 2 (HER2) overexpression and/or amplification have been the mainstay for risk-stratification, and treatment decision making in breast cancer since the early 2000's, the seminal work on gene expression by Perou and colleagues in the early 2000's opened the door for molecular testing in the prognostic and predictive assessment of breast cancer. Molecular testing is now part of the standard of care in the precision medicine model for breast cancer care. In this article, the reader will gain a better understanding of how the lack of standardization of pre-analytic factors has the potential to negatively impact the quality of the tissue specimen for downstream biomarker and molecular testing, which ultimately can negatively affect patient care. The reader will also gain insight into the current climate surrounding molecular testing in breast cancer.
Collapse
Affiliation(s)
- David G Hicks
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Bradley M Turner
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
5
|
Szpechcinski A, Moes-Sosnowska J, Skronska P, Lechowicz U, Pelc M, Szolkowska M, Rudzinski P, Wojda E, Maszkowska-Kopij K, Langfort R, Orlowski T, Sliwinski P, Polaczek M, Chorostowska-Wynimko J. The Advantage of Targeted Next-Generation Sequencing over qPCR in Testing for Druggable EGFR Variants in Non-Small-Cell Lung Cancer. Int J Mol Sci 2024; 25:7908. [PMID: 39063150 PMCID: PMC11277480 DOI: 10.3390/ijms25147908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of targeted therapies in non-small-cell lung cancer (NSCLC), including inhibitors of epidermal growth factor receptor (EGFR) tyrosine kinase, has increased the need for robust companion diagnostic tests. Nowadays, detection of actionable variants in exons 18-21 of the EGFR gene by qPCR and direct DNA sequencing is often replaced by next-generation sequencing (NGS). In this study, we evaluated the diagnostic usefulness of targeted NGS for druggable EGFR variants testing in clinical NSCLC material previously analyzed by the IVD-certified qPCR test with respect to DNA reference material. We tested 59 NSCLC tissue and cytology specimens for EGFR variants using the NGS 'TruSight Tumor 15' assay (Illumina) and the qPCR 'cobas EGFR mutation test v2' (Roche Diagnostics). The sensitivity and specificity of targeted NGS assay were evaluated using the biosynthetic and biological DNA reference material with known allelic frequencies (VAF) of EGFR variants. NGS demonstrated a sufficient lower detection limit for diagnostic applications (VAF < 5%) in DNA reference material; all EGFR variants were correctly identified. NGS showed high repeatability of VAF assessment between runs (CV% from 0.02 to 3.98). In clinical material, the overall concordance between NGS and qPCR was 76.14% (Cohen's Kappa = 0.5933). The majority of discordant results concerned false-positive detection of EGFR exon 20 insertions by qPCR. A total of 9 out of 59 (15%) clinical samples showed discordant results for one or more EGFR variants in both assays. Additionally, we observed TP53 to be a frequently co-mutated gene in EGFR-positive NSCLC patients. In conclusion, targeted NGS showed a number of superior features over qPCR in EGFR variant detection (exact identification of variants, calculation of allelic frequency, high analytical sensitivity), which might enhance the basic diagnostic report.
Collapse
Affiliation(s)
- Adam Szpechcinski
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (J.M.-S.); (P.S.); (U.L.); (M.P.); (J.C.-W.)
| | - Joanna Moes-Sosnowska
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (J.M.-S.); (P.S.); (U.L.); (M.P.); (J.C.-W.)
| | - Paulina Skronska
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (J.M.-S.); (P.S.); (U.L.); (M.P.); (J.C.-W.)
| | - Urszula Lechowicz
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (J.M.-S.); (P.S.); (U.L.); (M.P.); (J.C.-W.)
| | - Magdalena Pelc
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (J.M.-S.); (P.S.); (U.L.); (M.P.); (J.C.-W.)
| | - Malgorzata Szolkowska
- Department of Pathology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (M.S.); (R.L.)
| | - Piotr Rudzinski
- Clinics of Thoracic Surgery, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (P.R.); (T.O.)
| | - Emil Wojda
- III Department of Lung Diseases and Oncology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (E.W.); (M.P.)
- II Department of Lung Diseases, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | | | - Renata Langfort
- Department of Pathology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (M.S.); (R.L.)
| | - Tadeusz Orlowski
- Clinics of Thoracic Surgery, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (P.R.); (T.O.)
| | - Pawel Sliwinski
- II Department of Lung Diseases, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | - Mateusz Polaczek
- III Department of Lung Diseases and Oncology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (E.W.); (M.P.)
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (J.M.-S.); (P.S.); (U.L.); (M.P.); (J.C.-W.)
| |
Collapse
|
6
|
Huang N, Hu C, Liu Z. Drug targets for lung cancer: A multi-omics Mendelian randomization study. Asian J Surg 2024:S1015-9584(24)01373-3. [PMID: 39033037 DOI: 10.1016/j.asjsur.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Affiliation(s)
- Nan Huang
- Clinical Pharmacy, Xiangtan Central Hospital, No. 120, Heping Road, Xiangtan, Hunan, 411100, China
| | - Chao Hu
- Pulmonary and Critial Care Medicine, Xiangtan Central Hospital, No. 120, Heping Road, Xiangtan, Hunan, 411100, China
| | - Zheng Liu
- Clinical Pharmacy, Xiangtan Central Hospital, No. 120, Heping Road, Xiangtan, Hunan, 411100, China.
| |
Collapse
|
7
|
Yamaguchi T, Shimizu J, Matsuzawa R, Watanabe N, Horio Y, Fujiwara Y. Efficacy of chemotherapy plus immune checkpoint inhibitors in patients with non-small cell lung cancer who have rare oncogenic driver mutations: a retrospective analysis. BMC Cancer 2024; 24:842. [PMID: 39009968 PMCID: PMC11247748 DOI: 10.1186/s12885-024-12554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Targeted therapy is now the standard of care in driver-oncogene-positive non-small cell lung cancer (NSCLC). Its initial clinical effects are remarkable. However, almost all patients experience treatment resistance to targeted therapy. Hence, chemotherapy is considered a subsequent treatment option. In patients with driver-oncogene-negative NSCLC, combined immune checkpoint inhibitors (ICIs) and chemotherapy as the first-line therapy has been found to be beneficial. However, the efficacy of ICI plus chemotherapy against driver-oncogene-positive NSCLC other than epidermal growth factor receptor mutation and anaplastic lymphoma kinase fusion is unclear. METHODS Using the hospital medical records, we retrospectively reviewed advanced or recurrent NSCLC patients who were treated with chemotherapy with or without ICIs at Aichi Cancer Center Hospital between January 2014 and January 2023. Patients with druggable rare mutations such as KRAS-G12C, MET exon 14 skipping, HER2 20 insertion, BRAF-V600E mutations, and ROS1 and RET rearrangements were analyzed. RESULTS In total, 61 patients were included in this analysis. ICI plus chemotherapy was administered in 36 patients (the ICI-chemo group) and chemotherapy in 25 patients (the chemo group). The median progression-free survival (PFS) rates were 14.0 months in the ICI-chemo group and 4.8 months in the chemo group (hazard ratio [HR] = 0.54, 95% confidence interval [CI] = 0.28-1.01). The median overall survival rates were 31.3 and 21.7 months in the ICI-chemo and chemo groups, respectively (HR = 0.70, 95% CI = 0.33-1.50). Multivariate Cox regression analysis of PFS revealed that HER2 exon 20 insertion mutation was significantly associated with a poorer PFS (HR: 2.39, 95% CI: 1.19-4.77, P = 0.014). Further, ICI-chemo treatment was significantly associated with a better PFS (HR: 0.48, 95% CI: 0.25-0.91, P = 0.025). CONCLUSION ICI plus chemotherapy improves treatment efficacy in rare driver-oncogene-positive NSCLC.
Collapse
Affiliation(s)
- Teppei Yamaguchi
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, 1-1, Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan.
| | - Junichi Shimizu
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, 1-1, Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Reiko Matsuzawa
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, 1-1, Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Naohiro Watanabe
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, 1-1, Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Yoshitsugu Horio
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, 1-1, Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Yutaka Fujiwara
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, 1-1, Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| |
Collapse
|
8
|
Primm KM, Zhao H, Adjei NN, Sun CC, Haas A, Meyer LA, Chang S. Effect of Medicaid expansion on cancer treatment and survival among Medicaid beneficiaries and the uninsured. Cancer Med 2024; 13:e7461. [PMID: 38970338 PMCID: PMC11226780 DOI: 10.1002/cam4.7461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND The Affordable Care Act expanded Medicaid coverage for people with low income in the United States. Expanded insurance coverage could promote more timely access to cancer treatment, which could improve overall survival (OS), yet the long-term effects of Medicaid expansion (ME) remain unknown. We evaluated whether ME was associated with improved timely treatment initiation (TTI) and 3-year OS among patients with breast, cervical, colon, and lung cancers who were affected by the policy. METHODS Medicaid-insured or uninsured patients aged 40-64 with stage I-III breast, cervical, colon, or non-small cell lung cancer within the National Cancer Database (NCDB). A difference-in-differences (DID) approach was used to compare changes in TTI (within 60 days) and 3-year OS between patients in ME states versus nonexpansion (NE) states before (2010-2013) and after (2015-2018) ME. Adjusted DID estimates for TTI and 3-year OS were calculated using multivariable linear regression and Cox proportional hazards regression models, respectively. RESULTS ME was associated with a relative increase in TTI within 60 days for breast (DID = 4.6; p < 0.001), cervical (DID = 5.0 p = 0.013), and colon (DID = 4.0, p = 0.008), but not lung cancer (p = 0.505). In Cox regression analysis, ME was associated with improved 3-year OS for breast (DID hazard ratio [HR] = 0.82, p = 0.009), cervical (DID-HR = 0.81, p = 0.048), and lung (DID-HR = 0.87, p = 0.003). Changes in 3-year OS for colon cancer were not statistically different between ME and NE states (DID-HR, 0.77; p = 0.075). CONCLUSIONS Findings suggest that expanded insurance coverage can improve treatment and survival outcomes among low income and uninsured patients with cancer. As the debate surrounding ME continues nationwide, our findings serve as valuable insights to inform the development of policies aimed at fostering accessible and affordable healthcare for all.
Collapse
Affiliation(s)
- Kristin M. Primm
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of Epidemiology and BiostatisticsThe University of California San FranciscoSan FranciscoCaliforniaUSA
| | - Hui Zhao
- Department of Health Services ResearchThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Naomi N. Adjei
- Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Charlotte C. Sun
- Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Alen Haas
- Department of Health Services ResearchThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Larissa A. Meyer
- Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Shine Chang
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
9
|
Li Y, Wang Y, Wu R, Li P, Cheng Z. HTR2B as a novel biomarker of chronic obstructive pulmonary disease with lung squamous cell carcinoma. Sci Rep 2024; 14:13206. [PMID: 38851806 PMCID: PMC11162446 DOI: 10.1038/s41598-024-63896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is often associated with lung squamous cell carcinoma (LUSC), which has the same etiology (smoking, inflammation, oxidative stress, microenvironmental changes, and genetics). Smoking, inflammation, and airway remodeling are the most important and classical mechanisms of COPD comorbidity in LUSC patients. Cancer can occur during repeated airway damage and repair (airway remodeling). Changes in the inflammatory and immune microenvironments, which can cause malignant transformation of some cells, are currently being revealed in both LUSC and COPD patients. We obtained the GSE76925 dataset from the Gene Expression Omnibus database. Screening for possible COPD biomarkers was performed using the LASSO regression model and a random forest classifier. The compositional patterns of the immune cell fraction in COPD patients were determined using CIBERSORT. HTR2B expression was analyzed using validation datasets (GSE47460, GSE106986, and GSE1650). HTR2B expression in COPD cell models was determined via real-time quantitative PCR. Epithelial-mesenchymal transition (EMT) marker expression levels were determined after knocking down or overexpressing HTR2B. HTR2B function and mechanism in LUSC were analyzed with the Kaplan‒Meier plotter database. HTR2B expression was inhibited to detect changes in LUSC cell proliferation. A total of 1082 differentially expressed genes (DEGs) were identified in the GSE76925 dataset (371 genes were significantly upregulated, and 711 genes were significantly downregulated). Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the DEGs were mainly enriched in the p53 signaling and β-alanine metabolism pathways. Gene Ontology enrichment analysis indicated that the DEGs were largely related to transcription initiation from the RNA polymerase I promoter and to the regulation of mononuclear cell proliferation. The LASSO regression model and random forest classifier results revealed that HTR2B, DPYS, FRY, and CD19 were key COPD genes. Immune cell infiltration analysis indicated that these genes were closely associated with immune cells. Analysis of the validation sets suggested that HTR2B was upregulated in COPD patients. HTR2B was significantly upregulated in COPD cell models, and its upregulation was associated with increased EMT marker expression. Compared with that in bronchial epithelial cells, HTR2B expression was upregulated in LUSC cells, and inhibiting HTR2B expression led to the inhibition of LUSC cell proliferation. In conclusions, HTR2B might be a new biomarker and therapeutic target in COPD patients with LUSC.
Collapse
MESH Headings
- Humans
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Epithelial-Mesenchymal Transition/genetics
- Receptor, Serotonin, 5-HT2B/genetics
- Receptor, Serotonin, 5-HT2B/metabolism
- Gene Expression Regulation, Neoplastic
- Cell Proliferation/genetics
- Cell Line, Tumor
Collapse
Affiliation(s)
- Yue Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ruhao Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Pengfei Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhe Cheng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
10
|
Hirsch FR, Kim C. The Importance of Biomarker Testing in the Treatment of Advanced Non-Small Cell Lung Cancer: A Podcast. Oncol Ther 2024; 12:223-231. [PMID: 38536631 PMCID: PMC11187040 DOI: 10.1007/s40487-024-00271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/06/2024] [Indexed: 06/20/2024] Open
Abstract
The identification of actionable biomarkers and development of targeted therapies have revolutionized the field of lung cancer treatment. In patients with advanced non-small cell lung cancer (NSCLC), biomarker testing can inform selection of effective targeted therapies as well as avoid therapies that are less likely to be effective in certain populations. A growing number of actionable targets, including those involving EGFR, ALK, ROS1, BRAF, MET, KRAS, NTRK, RET, HER2, and PD-L1, can be identified with biomarker testing. More than half of patients with advanced NSCLC have tumors that harbor genetic alterations that can be targeted. When these patients are treated with targeted therapy, survival and quality of life may be significantly improved. In addition, broad-based molecular testing may detect alterations identifying patients who are potentially eligible for current or future clinical trials. Comprehensive biomarker testing rates in communities are often low, and turnaround times for results can be unacceptably long. There is an unmet need for widespread, efficient, and routine testing of all biomarkers recommended by clinical guidelines. New testing techniques and technologies can make this an attainable goal. Panel-based sequencing platforms are becoming more accessible, and molecular biomarker analysis of circulating tumor DNA is becoming more common. In this podcast, we discuss the importance of biomarker testing in advanced NSCLC and explore topics such as testing methodologies, effect of biomarker testing on patient outcomes, emerging technologies, and strategies for improving testing rates in the United States. Supplementary file1 (MP4 121301 KB).
Collapse
Affiliation(s)
- Fred R Hirsch
- Icahn School of Medicine, Center for Thoracic Oncology, Tisch Cancer Center, Mount Sinai, New York, NY, USA.
| | - Chul Kim
- Georgetown University, Washington, DC, USA
| |
Collapse
|
11
|
Roskoski R. Cost in the United States of FDA-approved small molecule protein kinase inhibitors used in the treatment of neoplastic and non-neoplastic diseases. Pharmacol Res 2024; 199:107036. [PMID: 38096958 DOI: 10.1016/j.phrs.2023.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Because genetic alterations including mutations, overexpression, translocations, and dysregulation of protein kinases are involved in the pathogenesis of many illnesses, this enzyme family is the target of many drug discovery programs worldwide. The FDA has approved 80 small molecule protein kinase inhibitors with 77 drugs orally bioavailable. The data indicate that 69 of these medicinals are approved for the management of neoplasms including solid tumors such as breast and lung cancer as well as non-solid tumors such as leukemia. Moreover, the remaining 11 drugs target non-neoplastic diseases including psoriasis, rheumatoid arthritis, and ulcerative colitis. The cost of drugs was obtained from www.pharmacychecker.com using the FDA label to determine the dosage and number of tablets required per day. This methodology excludes any private or governmental insurance coverage, which would cover the entire cost or more likely a fraction of the stated price. The average monthly cost for the treatment of neoplastic diseases was $17,900 with a price of $44,000 for futibatinib (used to treat cholangiocarcinomas with FGFR2 fusions) and minimum of $5100 for binimetinib (melanoma). The average monthly cost for the treatment of non-neoplastic diseases was $6800 with a maximum of $17,000 for belumosudil (graft vs. host disease) and a minimum of $200 for netarsudil eye drops (glaucoma). There is a negative correlation of the cost of the drugs and the incidence of the targeted disease. Many of these agents are or were designated as orphan drugs meaning that there are fewer than 200,000 potential patients in the United States.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
12
|
Su Z, Wang Y, Cao J, Ma J, Wang G, Ren H, Zhang Y, Sheng K, Zhu X, Wang Y. Identification and validation of non-coding RNA-mediated high expression of IQGAP3 in poor prognosis of lung adenocarcinoma. J Gene Med 2024; 26:e3664. [PMID: 38282143 DOI: 10.1002/jgm.3664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The primary reason for tumor-related deaths worldwide is lung adenocarcinoma (LUAD). The oncogene IQ motif-containing GTPase activating protein 3 (IQGAP3) is crucial for contributing to tumor initiation and progression. However, the precise function and molecular mechanism of IQGAP3 in LUAD remain unknown. The present study aimed to investigate the expression, prognosis, mechanism and tumor immunity associated with IQGAP3 in LUAD. METHODS The relationship between IQGAP3 and the poor prognosis of LUAD was analyzed using The Cancer Genome Atlas (TCGA) database. This analysis was further validated on lung cancer tissues and cell lines. The function of IQGAP3 was investigated by silencing it in LUAD cell lines. To predict microRNA (miRNA) and long non-coding RNA associated with IQGAP3, the starBase database was utilized, and the predictions were verified by enhancing the function of miRNA. Finally, the relationship between IQGAP3 and tumor immunity was evaluated using Spearman's correlation analysis. RESULTS TCGA database revealed that higher levels of IQGAP3 were associated with advanced tumor stage, N stage and poor prognosis in LUAD patients. To confirm that, we conducted experiments on lung cancer tissues and cell lines and found that silencing IQGAP3 significantly inhibited tumor cell proliferation and migration. The expression of IQGAP3 showed a negative correlation with has-miR-101-3p and has-miR-135a-5p, whereas it showed a positive correlation with GSEC, AC005034.3 and TYMSOS. Furthermore, the introduction of miRNA-mimics into lung cancer cell resulted in a significant inhibition of cancer cell growth and migration. Following that, the level of IQGAP3 showed a positive correlation with the infiltration of immune cells in tumors. CONCLUSIONS These results reveal that IQGAP3 significantly promotes LUAD progression and could serve as a prognostic biomarker for LUAD. Furthermore, IQGAP3 is most likely regulated by the GSEC/TYMSOS-hsa-miR-101-3p axis and the AC005034.3-hsa-miR-135a-5p axis in LUAD.
Collapse
Affiliation(s)
- Ziwei Su
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Yang Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Jialing Cao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Jie Ma
- Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, Anhui, China
| | - Guangzhao Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Huijuan Ren
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Yihan Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Xueying Zhu
- Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| |
Collapse
|
13
|
Bruno R, Simbolo M, Petrini I. Editorial: Primary and acquired resistance in lung cancer. Front Oncol 2023; 13:1310331. [PMID: 38023142 PMCID: PMC10646579 DOI: 10.3389/fonc.2023.1310331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Rossella Bruno
- Unit of Pathological Anatomy, University Hospital of Pisa, Pisa, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Iacopo Petrini
- Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Smieja J. Mathematical Modeling Support for Lung Cancer Therapy-A Short Review. Int J Mol Sci 2023; 24:14516. [PMID: 37833963 PMCID: PMC10572824 DOI: 10.3390/ijms241914516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
The paper presents a review of models that can be used to describe dynamics of lung cancer growth and its response to treatment at both cell population and intracellular processes levels. To address the latter, models of signaling pathways associated with cellular responses to treatment are overviewed. First, treatment options for lung cancer are discussed, and main signaling pathways and regulatory networks are briefly reviewed. Then, approaches used to model specific therapies are discussed. Following that, models of intracellular processes that are crucial in responses to therapies are presented. The paper is concluded with a discussion of the applicability of the presented approaches in the context of lung cancer.
Collapse
Affiliation(s)
- Jaroslaw Smieja
- Department of Systems Biology and Engineering, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
| |
Collapse
|
15
|
Bhai P, Turowec J, Santos S, Kerkhof J, Pickard L, Foroutan A, Breadner D, Cecchini M, Levy MA, Stuart A, Welch S, Howlett C, Lin H, Sadikovic B. Molecular profiling of solid tumors by next-generation sequencing: an experience from a clinical laboratory. Front Oncol 2023; 13:1208244. [PMID: 37483495 PMCID: PMC10359709 DOI: 10.3389/fonc.2023.1208244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023] Open
Abstract
Background Personalized targeted therapies have transformed management of several solid tumors. Timely and accurate detection of clinically relevant genetic variants in tumor is central to the implementation of molecular targeted therapies. To facilitate precise molecular testing in solid tumors, targeted next-generation sequencing (NGS) assays have emerged as a valuable tool. In this study, we provide an overview of the technical validation, diagnostic yields, and spectrum of variants observed in 3,164 solid tumor samples that were tested as part of the standard clinical diagnostic assessment in an academic healthcare institution over a period of 2 years. Methods The Ion Ampliseq™ Cancer Hotspot Panel v2 assay (ThermoFisher) that targets ~2,800 COSMIC mutations from 50 oncogenes and tumor suppressor genes was validated, and a total of 3,164 tumor DNA samples were tested in 2 years. A total of 500 tumor samples were tested by the comprehensive panel containing all the 50 genes. Other samples, including 1,375 lung cancer, 692 colon cancer, 462 melanoma, and 135 brain cancer, were tested by tumor-specific targeted subpanels including a few clinically actionable genes. Results Of 3,164 patient samples, 2,016 (63.7%) tested positive for at least one clinically relevant variant. Of 500 samples tested by a comprehensive panel, 290 had a clinically relevant variant with TP53, KRAS, and PIK3CA being the most frequently mutated genes. The diagnostic yields in major tumor types were as follows: breast (58.4%), colorectal (77.6%), lung (60.4%), pancreatic (84.6%), endometrial (72.4%), ovary (57.1%), and thyroid (73.9%). Tumor-specific targeted subpanels also demonstrated high diagnostic yields: lung (69%), colon (61.2%), melanoma (69.7%), and brain (20.7%). Co-occurrence of mutations in more than one gene was frequently observed. Conclusions The findings of our study demonstrate the feasibility of integrating an NGS-based gene panel screen as part of a standard diagnostic protocol for solid tumor assessment. High diagnostic rates enable significant clinical impact including improved diagnosis, prognosis, and clinical management in patients with solid tumors.
Collapse
Affiliation(s)
- Pratibha Bhai
- Molecular Genetics Laboratory, London Health Sciences Centre, London, ON, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Jacob Turowec
- Molecular Genetics Laboratory, London Health Sciences Centre, London, ON, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Stephanie Santos
- Molecular Genetics Laboratory, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jennifer Kerkhof
- Molecular Genetics Laboratory, London Health Sciences Centre, London, ON, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - LeeAnne Pickard
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Aidin Foroutan
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Daniel Breadner
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Matthew Cecchini
- Molecular Genetics Laboratory, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael A. Levy
- Molecular Genetics Laboratory, London Health Sciences Centre, London, ON, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Alan Stuart
- Molecular Genetics Laboratory, London Health Sciences Centre, London, ON, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Stephen Welch
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Christopher Howlett
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Hanxin Lin
- Molecular Genetics Laboratory, Alberta Precision Laboratories, Edmonton, AB, Canada
| | - Bekim Sadikovic
- Molecular Genetics Laboratory, London Health Sciences Centre, London, ON, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|