1
|
Kwon WA, Joung JY. Precision Targeting in Metastatic Prostate Cancer: Molecular Insights to Therapeutic Frontiers. Biomolecules 2025; 15:625. [PMID: 40427518 PMCID: PMC12108645 DOI: 10.3390/biom15050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Metastatic prostate cancer (mPCa) remains a significant cause of cancer-related mortality in men. Advances in molecular profiling have demonstrated that the androgen receptor (AR) axis, DNA damage repair pathways, and the PI3K/AKT/mTOR pathway are critical drivers of disease progression and therapeutic resistance. Despite the established benefits of hormone therapy, chemotherapy, and bone-targeting agents, mPCa commonly becomes treatment-resistant. Recent breakthroughs have highlighted the importance of identifying actionable genetic alterations, such as BRCA2 or ATM defects, that render tumors sensitive to poly-ADP ribose polymerase (PARP) inhibitors. Parallel efforts have refined imaging-particularly prostate-specific membrane antigen (PSMA) positron emission tomography-computed tomography-to detect and localize metastatic lesions with high sensitivity, thereby guiding patient selection for PSMA-targeted radioligand therapies. Multi-omics innovations, including liquid biopsy technologies, enable the real-time tracking of emergent AR splice variants or reversion mutations, supporting adaptive therapy paradigms. Nonetheless, the complexity of mPCa necessitates combination strategies, such as pairing AR inhibition with PI3K/AKT blockade or PARP inhibitors, to inhibit tumor plasticity. Immuno-oncological approaches remain challenging for unselected patients; however, subsets with mismatch repair deficiency or neuroendocrine phenotypes may benefit from immune checkpoint blockade or targeted epigenetic interventions. We present these pivotal advances, and discuss how biomarker-guided integrative treatments can improve mPCa management.
Collapse
Affiliation(s)
- Whi-An Kwon
- Department of Urology, Hanyang University College of Medicine, Myongji Hospital, Goyang 10475, Republic of Korea
| | - Jae Young Joung
- Department of Urology, Urological Cancer Center, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
2
|
Duzgun D, Oltean S. Aberrant Splicing as a Mechanism for Resistance to Cancer Therapies. Cancers (Basel) 2025; 17:1381. [PMID: 40282556 PMCID: PMC12025770 DOI: 10.3390/cancers17081381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Cancer is biologically diverse, highly heterogeneous, and associated with molecular alterations, significantly contributing to mortality worldwide. Currently, cancer patients are subjected to single or combination treatments comprising chemotherapy, surgery, immunotherapy, radiation therapy, and targeted therapy. Chemotherapy remains the first line of treatment in cancer but faces a major obstacle in the form of chemoresistance. This obstacle has resulted in relapses and poor patient survival due to decreased treatment efficacy. Aberrant pre-mRNA alternative splicing can significantly modulate gene expression and function involved in the resistance mechanisms, potentially shaping the intricate landscape of tumour chemoresistance. Thus, novel strategies targeting abnormal pre-mRNA alternative splicing and understanding the molecular mechanisms of chemotherapy resistance could aid in overcoming the chemotherapeutic challenges. This review first highlights drug targets, drug pumps, detoxification mechanisms, DNA damage response, and evasion of apoptosis and cell death as key molecular mechanisms involved in chemotherapy resistance. Furthermore, the review discusses the progress of research on the dysregulation of alternative splicing and molecular targets involved in chemotherapy resistance in major cancer types.
Collapse
Affiliation(s)
| | - Sebastian Oltean
- Department of Clinical and Biomedical Sciences, Faculty of Health Sciences, University of Exeter, Exeter EX1 2LU, UK
| |
Collapse
|
3
|
Zammit CM, Nadel CM, Lin Y, Koirala S, Potts PR, Nomura DK. Covalent Destabilizing Degrader of AR and AR-V7 in Androgen-Independent Prostate Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637117. [PMID: 39990458 PMCID: PMC11844536 DOI: 10.1101/2025.02.12.637117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Androgen-independent prostate cancers, correlated with heightened aggressiveness and poor prognosis, are caused by mutations or deletions in the androgen receptor (AR) or expression of truncated variants of AR that are constitutively activated. Currently, drugs and drug candidates against AR target the steroid-binding domain to antagonize or degrade AR. However, these compounds cannot therapeutically access largely intrinsically disordered truncated splice variants of AR, such as AR-V7, that only possess the DNA binding domain and are missing the ligand binding domain. Targeting intrinsically disordered regions within transcription factors has remained challenging and is considered "undruggable". Herein, we leveraged a cysteine-reactive covalent ligand library in a cellular screen to identify degraders of AR and AR-V7 in androgen-independent prostate cancer cells. We identified a covalent compound EN1441 that selectively degrades AR and AR-V7 in a proteasome-dependent manner through direct covalent targeting of an intrinsically disordered cysteine C125 in AR and AR-V7. EN1441 causes significant and selective destabilization of AR and AR-V7, leading to aggregation of AR/AR-V7 and subsequent proteasome-mediated degradation. Consistent with targeting both AR and AR-V7, we find that EN1441 completely inhibits total AR transcriptional activity in androgen-independent prostate cancer cells expressing both AR and AR-V7 compared to AR antagonists or degraders that only target the ligand binding domain of full-length AR, such as enzalutamide and ARV-110. Our results put forth a pathfinder molecule EN1441 that targets an intrinsically disordered cysteine within AR to destabilize, degrade, and inhibit both AR and AR-V7 in androgen-independent prostate cancer cells and highlights the utility of covalent ligand discovery approaches in directly targeting, destabilizing, inhibiting, and degrading classically undruggable transcription factor targets.
Collapse
Affiliation(s)
- Charlotte M. Zammit
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Cory M. Nadel
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320 USA
| | - Ying Lin
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320 USA
| | - Sajjan Koirala
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320 USA
| | | | - Daniel K. Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| |
Collapse
|
4
|
Saini T, Srivastava D, Raut R, Mishra P, Misra A. Insulin-Like Growth Factor 2 mRNA-Binding Protein 2 (IGF2BP2) Promotes Castration-Resistant Prostate Cancer Progression by Regulating AR-V7 mRNA Stability. Cancer Rep (Hoboken) 2025; 8:e70096. [PMID: 39948708 PMCID: PMC11825379 DOI: 10.1002/cnr2.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND The emergence of constitutively active androgen receptor (AR) splice variant AR-V7 poses a formidable challenge in treating prostate cancer, as it lacks the ligand binding region targeted by androgen-deprivation therapies such as enzalutamide and abiraterone. AR-V7 is critical for castration-resistant prostate cancer (CRPC) development and progression; however, the molecular mechanisms regulating its expression and biological function remain poorly understood. Here, we investigate the role of IGF2BP2 in regulating AR-V7 expression and CRPC progression. METHODS To determine the clinical relevance of IGF2BP2 in CRPC, we analyzed the mRNA expression data for prostate cancer patients available in the Genomic Data Commons (GDC) Data Portal and cBioPortal. Next to investigate the role of IGF2BP2 in regulating AR-V7 expression and enzalutamide resistance, we performed shRNA-mediated IGF2BP2 knockdown and overexpression experiments followed by qRT-PCR, immunoblot, colony-formation, and MTT assays. Finally, we performed RIP-qPCR, actinomycin-D, and IGF2BP2 domain-deletion analysis to study the mechanism by which IGF2BP2 regulates AR-V7 stability, expression, and enzalutamide resistance in CRPC cells. RESULTS Our analysis revealed that IGF2BP2 is upregulated in CRPC patients and its expression positively correlates with increasing Gleason score in patients with CRPC. We demonstrate that IGF2BP2 silencing leads to downregulation of AR-V7 and its downstream target genes without affecting AR levels. Additionally, IGF2BP2 knockdown also enhances the sensitivity of CRPC cells to enzalutamide while overexpression increases AR-V7 expression and confers increased resistance to enzalutamide. Mechanistically, our experiments demonstrate that IGF2BP2 binds to the intronic splicing enhancer (ISE) region of AR-V7, thereby enhancing its mRNA stability. Furthermore, our domain-deletion analysis pinpoints the role of KH3 and KH4 domains of IGF2BP2 in regulating AR-V7 stability and enzalutamide resistance. CONCLUSIONS Taken together, our findings suggest that IGF2BP2 plays a critical role in regulating AR-V7 expression and stability, offering a novel target for developing therapeutic interventions for CRPC.
Collapse
MESH Headings
- Humans
- Male
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- RNA Stability
- Drug Resistance, Neoplasm/genetics
- Benzamides/pharmacology
- Disease Progression
- Nitriles
- Gene Expression Regulation, Neoplastic
- Phenylthiohydantoin/pharmacology
- Phenylthiohydantoin/analogs & derivatives
- Cell Line, Tumor
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Insulin-Like Peptides
Collapse
Affiliation(s)
- Taruna Saini
- Department of BiotechnologyIndian Institute of Technology HyderabadKandiSangareddyIndia
| | - Devesh Srivastava
- Department of BiotechnologyIndian Institute of Technology HyderabadKandiSangareddyIndia
| | - Rajnikant Raut
- Department of BiotechnologyIndian Institute of Technology HyderabadKandiSangareddyIndia
| | - Parul Mishra
- Department of Animal BiologySchool of Life Sciences, University of HyderabadHyderabadIndia
| | - Ashish Misra
- Department of BiotechnologyIndian Institute of Technology HyderabadKandiSangareddyIndia
| |
Collapse
|
5
|
Bae TH, Sung KW, Pham TM, Najy AJ, Zamiri A, Jang H, Mun SR, Kim S, Kwon HK, Son YS, Shi D, Kregel S, Heath EI, Cher ML, Kwon YT, Kim HRC. An Autophagy-Targeting Chimera Induces Degradation of Androgen Receptor Mutants and AR-v7 in Castration-Resistant Prostate Cancer. Cancer Res 2025; 85:342-359. [PMID: 39531508 PMCID: PMC11733533 DOI: 10.1158/0008-5472.can-24-0591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/13/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Genetic alterations play a pivotal role in various human diseases, particularly cancer. The androgen receptor (AR) is a crucial transcription factor driving prostate cancer progression across all stages. Current AR-targeting therapies utilize competitive AR antagonists or pathway suppressors. However, therapy resistance often emerges due to AR mutations and AR splice variants, such as AR-v7. To overcome this, we developed ATC-324, an AR degrader using the innovative protein degradation technology platform AUTOphagy-TArgeting Chimera (AUTOTAC). ATC-324 was designed to comprise enzalutamide, an AR inhibitor, as a target-binding ligand and YT 6-2, a ligand of the autophagy receptor p62/SQSTM1, as an autophagy-targeting ligand. ATC-324 induces the formation of the AR/p62 complex, leading to autophagy-lysosomal degradation of AR. Importantly, ATC-324 effectively degrades AR mutants frequently detected in prostate cancer and codegrades AR-v7 as a heterodimer with full-length AR. ATC-324 reduces nuclear AR levels and downregulates the target gene expression of AR and AR-v7, leading to cytotoxicity in AR-positive prostate cancer cells. We also provide evidence of the therapeutic potential of ATC-324 in vivo as well as ex vivo bone organ culture. Moreover, ATC-324 remains potent in enzalutamide-resistant prostate cancer cells. These results demonstrate the potential of the AUTOTAC platform to target previously considered undruggable proteins and overcome certain drug resistance mechanisms. Significance: The characterization of an AUTOTAC-based degrader capable of inducing autophagic degradation of wild-type and mutated androgen receptors demonstrates the potential of this approach for targeting castration-resistant prostate cancer and overcoming drug resistance.
Collapse
Affiliation(s)
- Tae Hyun Bae
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ki Woon Sung
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- AUTOTAC Bio Inc., Seoul, Republic of Korea
| | - Tri M. Pham
- Department of Pathology, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Abdo J. Najy
- Department of Pathology, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Alaleh Zamiri
- Department of Pathology, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Hyejeong Jang
- Department of Oncology, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, Michigan
- Biostatistics and Bioinformatics Core, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Su Ran Mun
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seongho Kim
- Department of Oncology, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, Michigan
- Biostatistics and Bioinformatics Core, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, Michigan
| | | | - Yeon Sung Son
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dongping Shi
- Department of Pathology, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Steven Kregel
- Department of Cancer Biology, Loyola University, Maywood, Illinois
| | - Elisabeth I. Heath
- Department of Oncology, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Michael L. Cher
- Department of Urology, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Yong Tae Kwon
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- AUTOTAC Bio Inc., Seoul, Republic of Korea
| | - Hyeong-Reh Choi Kim
- Department of Pathology, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, Michigan
- Department of Oncology, Barbara Ann Karmanos Institute, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
6
|
Massah S, Pinette N, Foo J, Datta S, Guo M, Bell R, Haegert A, Tekoglu TE, Terrado M, Volik S, Bihan SL, Bui JM, Lack NA, Gleave ME, Rhie SK, Collins CC, Gsponer J, Lallous N. AR-V7 condensates drive androgen-independent transcription in castration resistant prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631986. [PMID: 39868336 PMCID: PMC11760419 DOI: 10.1101/2025.01.08.631986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Biomolecular condensates organize cellular environments and regulate key processes such as transcription. We previously showed that full-length androgen receptor (AR-FL), a major oncogenic driver in prostate cancer (PCa), forms nuclear condensates upon androgen stimulation in androgen-sensitive PCa cells. Disrupting these condensates impairs AR-FL transcriptional activity, highlighting their functional importance. However, resistance to androgen deprivation therapy often leads to castration-resistant prostate cancer (CRPC), driven by constitutively active splice variants like AR variant 7 (AR-V7). The mechanisms underlying AR-V7's role in CRPC remain unclear. In this study, we characterized the condensate-forming ability of AR-V7 and compared its phase behavior with AR-FL across a spectrum of PCa models and in vitro conditions. Our findings indicate that cellular context can influence AR-V7's condensate-forming capacity. Unlike AR-FL, AR-V7 spontaneously forms condensates in the absence of androgen stimulation and functions independently of AR-FL in CRPC models. However, AR-V7 requires a higher concentration to form condensates, both in cellular contexts and in vitro . We further reveal that AR-V7 drives transcription via both condensate-dependent and condensate-independent mechanisms. Using an AR-V7 mutant incapable of forming condensates, while retaining nuclear localization and DNA-binding ability, we reveal that the condensate-dependent regime activates part of the oncogenic KRAS pathway in CRPC models. Genes under this condensate-dependent regime were found to harbor significantly higher numbers of AR-binding sites and exhibited boosted expression in response to AR-V7. These findings uncover a previously unrecognized role of AR-V7 condensate formation in driving oncogenic transcriptional programs and shed light on its unique contribution to CRPC progression. Highlights AR-V7 condensates form independently of both androgens and AR-FL in CRPC models.AR-V7 mediates condensate-dependent and independent transcriptionCondensate-dependent transcription enables boosted expression of oncogenic KRAS genesCondensate-dependent genes exhibit an exponential increase in expression, with a higher number of AR binding sites potentially playing a key role in their reliance on condensate formation.
Collapse
|
7
|
Yan Y, Shi L, Ma T, Wang L, Huang H. SNP rs9364554 Modulates Androgen Receptor Binding and Drug Response in Prostate Cancer. Biomolecules 2025; 15:64. [PMID: 39858458 PMCID: PMC11763896 DOI: 10.3390/biom15010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
(1) Background: Prostate cancer treatment efficacy is significantly influenced by androgen receptor (AR) signaling pathways. SLC22A3, a membrane transporter, has been linked to SNP rs9364554 risk loci for drug efficacy in prostate cancer. (2) Methods: We examined the location of SNP rs9364554 in the genome and utilized TCGA and other publicly available datasets to analyze the association of this SNP with SLC22A3 transcription levels. We verified onco-mining findings in prostate cancer cell lines using quantitative PCR and Western blots. Additionally, we employed electrophoretic mobility shift assay (EMSA) to detect the binding affinity of transcription factors to this SNP. The ChIP-Seq was used to analyze the enrichment of H3K27ac on the SLC22A3 promoter. (3) Results: In this study, we revealed that SNP rs9364554 resides in the SLC22A3 gene and affects its transcription. The downregulation of SLC22A3 is associated with drug resistance. More importantly, we found that this SNP has different binding affinities with transcription factors, specifically FOXA1 and AR, which significantly affects their regulation of SLC22A3 transcription. (4) Conclusions: Our findings highlight the potential of using this SNP as a biomarker for predicting chemotherapeutic outcomes and uncover possible mechanisms underlying drug resistance in advanced prostate cancers. More importantly, it provides a clinical foundation for targeting FOXA1 to enhance drug efficacy in prostate cancer patients.
Collapse
Affiliation(s)
- Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
- Department of Neurosurgery, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Lei Shi
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou 310025, China;
| | - Tao Ma
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Liguo Wang
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
8
|
Pandey SK, Sabharwal U, Tripathi S, Mishra A, Yadav N, Dwivedi-Agnihotri H. Androgen Signaling in Prostate Cancer: When a Friend Turns Foe. Endocr Metab Immune Disord Drug Targets 2025; 25:37-56. [PMID: 38831575 DOI: 10.2174/0118715303313528240523101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
Androgen (AR) signaling is the main signaling for the development of the prostate and its normal functioning. AR is highly specific for testosterone and dihydrotestosterone, significantly contributing to prostate development, physiology, and cancer. All these receptors have emerged as crucial therapeutic targets for PCa. In the year 1966, the Noble prize was awarded to Huggins and Hodge for their groundbreaking discovery of AR. As it is a pioneer transcription factor, it belongs to the steroid hormone receptor family and consists of domains, including DNA binding domain (DBD), hormone response elements (HRE), C-terminal ligand binding domain (LBD), and N-terminal regulatory domains. Structural variations in AR, such as AR gene amplification, LBD mutations, alternative splicing of exons, hypermethylation of AR, and co- regulators, are major contributors to PCa. It's signaling is crucial for the development and functioning of the prostate gland, with the AR being the key player. The specificity of AR for testosterone and dihydrotestosterone is important in prostate physiology. However, when it is dysregulated, AR contributes significantly to PCa. However, the structural variations in AR, such as gene amplification, mutations, alternative splicing, and epigenetic modifications, drive the PCa progression. Therefore, understanding AR function and dysregulation is essential for developing effective therapeutic strategies. Thus, the aim of this review was to examine how AR was initially pivotal for prostate development and how it turned out to show both positive and detrimental implications for the prostate.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Usha Sabharwal
- P. G. Department of Biosciences, Centre of Advanced Studies, Satellite Campus, Sardar Patel Maidan, 388120, Gujarat, India
| | - Swati Tripathi
- Section of Electron Microscopy, Supportive Centre for Brain Research, National Institute for Physiological Sciences (NIPS) Okazaki, 444-8787, Japan
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Neha Yadav
- Department of Biophysics, University of Delhi, South Campus, New Delhi, 110021, India
| | | |
Collapse
|
9
|
Scandlan OLM, Favetta LA. Do Delta-9-tetrahydrocannabinol and Cannabidiol have opposed effects on male fertility? Toxicol Lett 2025; 403:94-104. [PMID: 39657895 DOI: 10.1016/j.toxlet.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Cannabis sativa is a complex plant, renowned for its diverse array of bioactive compounds, the most prominent of which are delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). These compounds exhibit markedly opposing pharmacological effects, with THC being primarily psychoactive and CBD known for its non-psychoactive properties. In recent years, there has been growing interest in the potential health implications of these compounds, particularly concerning male reproductive health. Accumulating evidence over the past decade has alluded to the potential negative effects of THC, including its association with reduced sperm quality, altered hormone levels, changes in genetic and epigenetic profiles, and potential impacts on fertility. Conversely, emerging studies suggest that CBD may exert protective and beneficial effects on male reproductive health, possibly through its anti-inflammatory and antioxidant properties. This review aims to provide a comprehensive analysis of the current scientific literature, delineating the mechanisms by which THC and CBD influence male reproductive health, highlighting the disparities in their effects, and discussing the clinical and therapeutic implications of these findings.
Collapse
Affiliation(s)
- Olivia L M Scandlan
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Laura A Favetta
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
10
|
Maylin ZR, Smith C, Classen A, Asim M, Pandha H, Wang Y. Therapeutic Exploitation of Neuroendocrine Transdifferentiation Drivers in Prostate Cancer. Cells 2024; 13:1999. [PMID: 39682746 PMCID: PMC11639977 DOI: 10.3390/cells13231999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Neuroendocrine prostate cancer (NEPC), an aggressive and lethal subtype of prostate cancer (PCa), often arises as a resistance mechanism in patients undergoing hormone therapy for prostate adenocarcinoma. NEPC is associated with a significantly poor prognosis and shorter overall survival compared to conventional prostate adenocarcinoma due to its aggressive nature and limited response to standard of care therapies. This transdifferentiation, or lineage reprogramming, to NEPC is characterised by the loss of androgen receptor (AR) and prostate-specific antigen (PSA) expression, and the upregulation of neuroendocrine (NE) biomarkers such as neuron-specific enolase (NSE), chromogranin-A (CHGA), synaptophysin (SYP), and neural cell adhesion molecule 1 (NCAM1/CD56), which are critical for NEPC diagnosis. The loss of AR expression culminates in resistance to standard of care PCa therapies, such as androgen-deprivation therapy (ADT) which target the AR signalling axis. This review explores the drivers of NE transdifferentiation. Key genetic alterations, including those in the tumour suppressor genes RB1, TP53, and PTEN, and changes in epigenetic regulators, particularly involving EZH2 and cell-fate-determining transcription factors (TFs) such as SOX2, play significant roles in promoting NE transdifferentiation and facilitate the lineage switch from prostate adenocarcinoma to NEPC. The recent identification of several other key novel drivers of NE transdifferentiation, including MYCN, ASCL1, BRN2, ONECUT2, and FOXA2, further elucidates the complex regulatory networks and pathways involved in this process. We suggest that, given the multifactorial nature of NEPC, novel therapeutic strategies that combine multiple modalities are essential to overcome therapeutic resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Zoe R. Maylin
- Vancouver Prostate Centre, Department of Urological Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (A.C.); (Y.W.)
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 4E6, Canada
| | - Christopher Smith
- Targeted Cancer Therapy, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.A.); (H.P.)
| | - Adam Classen
- Vancouver Prostate Centre, Department of Urological Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (A.C.); (Y.W.)
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 4E6, Canada
| | - Mohammad Asim
- Targeted Cancer Therapy, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.A.); (H.P.)
| | - Hardev Pandha
- Targeted Cancer Therapy, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.A.); (H.P.)
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Department of Urological Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (A.C.); (Y.W.)
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 4E6, Canada
| |
Collapse
|
11
|
Holeckova KH, Hives M, Grendar M, Drobkova HB, Kliment J. Genetic Variations in TP53, RB1, and PTEN in a Selected Sample of Slovak Patients With Metastatic Castration-resistant Prostate Cancer. In Vivo 2024; 38:2610-2616. [PMID: 39477439 PMCID: PMC11535959 DOI: 10.21873/invivo.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND/AIM This report aimed to present identified variants with pathogenic potential in three genes - TP53, PTEN, and RB1 - in a selected sample of patients with metastatic castration-resistant prostate cancer (mCRPC) with or without the presence of circulating tumor cells (CTCs) and splice variant AR-V7. MATERIALS AND METHODS Next generation sequencing was performed on an Illumina platform to analyse the genetic profiles of 50 patients with mCRPC. Identified variants were validated using the Integrative Genomic Viewer, and the correlation between these variants and the presence of CTC/AR-V7 was subjected to statistical analysis. RESULTS The study revealed a total of 15 genetic alterations in the three examined genes. The presence of rs1042522 (TP53) in mCRPC patients was associated with a significantly reduced likelihood of AR-V7 occurrence (p<0.001), indicating a protective effect. Additionally, patients with AR-V7 showed a marked increase in prostate-specific antigen (PSA) levels. Higher PSA levels were correlated with an increased risk of AR-V7 presence. CONCLUSION The identified genetic mutations and PSA levels have a moderate predictive ability for determining AR-V7 status.
Collapse
Affiliation(s)
- Klaudia Hives Holeckova
- Department of Urology, Jessenius Faculty of Medicine in Martin and University Hospital Martin, Comenius University in Bratislava, Martin, Slovakia
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Mark Hives
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Marian Grendar
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Henrieta Blahusiak Drobkova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Kliment
- Department of Urology, Jessenius Faculty of Medicine in Martin and University Hospital Martin, Comenius University in Bratislava, Martin, Slovakia;
| |
Collapse
|
12
|
Zhang J, Xu X, Deng H, Liu L, Xiang Y, Feng J. Overcoming cancer drug-resistance calls for novel strategies targeting abnormal alternative splicing. Pharmacol Ther 2024; 261:108697. [PMID: 39025436 DOI: 10.1016/j.pharmthera.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Abnormal gene alternative splicing (AS) events are strongly associated with cancer progression. Here, we summarize AS events that contribute to the development of drug resistance and classify them into three categories: alternative cis-splicing (ACS), alternative trans-splicing (ATS), and alternative back-splicing (ABS). The regulatory mechanisms underlying AS processes through cis-acting regulatory elements and trans-acting factors are comprehensively described, and the distinct functions of spliced variants, including linear spliced variants derived from ACS, chimeric spliced variants arising from ATS, and circRNAs generated through ABS, are discussed. The identification of dysregulated spliced variants, which contribute to drug resistance and hinder effective cancer treatment, suggests that abnormal AS processes may together serve as a precise regulatory mechanism enabling drug-resistant cancer cell survival or, alternatively, represent an evolutionary pathway for cancer cells to adapt to changes in the external environment. Moreover, this review summarizes recent advancements in treatment approaches targeting AS-associated drug resistance, focusing on cis-acting regulatory elements, trans-acting factors, and specific spliced variants. Collectively, gaining an in-depth understanding of the mechanisms underlying aberrant alternative splicing events and developing strategies to target this process hold great promise for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xinyu Xu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hongwei Deng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou city, Sichuan 646000, China.
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
13
|
Yoshida S, Kajiwara D, Seki M, Tayama M, Tanaka Y, Mizutani H, Fujita R, Yamamura K, Okajima S, Asai M, Minamiguchi K. TAS3681, an androgen receptor antagonist, prevents drug resistance driven by aberrant androgen receptor signaling in prostate cancer. Mol Oncol 2024; 18:1980-2000. [PMID: 38600681 PMCID: PMC11306513 DOI: 10.1002/1878-0261.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/04/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024] Open
Abstract
Second-generation androgen receptor (AR) signaling inhibitors (ARSIs), such as abiraterone and enzalutamide, prolong the life of patients with castration-resistant prostate cancer (CRPC). However, patients receiving ARSIs ultimately develop resistance through various complex mechanisms, including AR mutations, constitutively active AR-splice variants (AR-Vs), and AR overexpression. Here, we characterized a novel AR pure antagonist, TAS3681, which inhibits AR transcriptional activity and downregulates AR-full length (AR-FL) and AR-Vs. TAS3681 reduced the protein levels of AR-FL and AR-Vs including AR-V7 in enzalutamide-resistant cells (SAS MDV No. 3-14), in vitro and in vivo, showing strong antitumor efficacy in an AR-V7-positive xenograft model. In AR-overexpressing VCaP (prostate cancer) cells, conversely to enzalutamide, TAS3681 effectively suppressed cell proliferation and downregulated AR expression. Importantly, TAS3681 blocked the transcriptional activity of various mutant ARs, including mutations F877L/T878A and H875Y/T878A, which confer resistance to enzalutamide, and V716M and H875Y mutations, which confer resistance to darolutamide. Our results demonstrate that TAS3681 suppresses the reactivation of AR signaling, which causes resistance to ARSIs, via a newly identified mechanism of action. Therefore, TAS3681 could be a new therapeutic option for CRPC treatment.
Collapse
MESH Headings
- Male
- Humans
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Androgen Receptor Antagonists/pharmacology
- Androgen Receptor Antagonists/therapeutic use
- Cell Line, Tumor
- Animals
- Signal Transduction/drug effects
- Mice, Nude
- Mice
- Xenograft Model Antitumor Assays
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Cell Proliferation/drug effects
- Phenylthiohydantoin/pharmacology
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/therapeutic use
- Benzamides/pharmacology
- Nitriles/pharmacology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
Collapse
Affiliation(s)
- Shohei Yoshida
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Daisuke Kajiwara
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Masanao Seki
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Manabu Tayama
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Yuki Tanaka
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Hiroya Mizutani
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Ryoto Fujita
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Keisuke Yamamura
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Shigeo Okajima
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Masanori Asai
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Kazuhisa Minamiguchi
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| |
Collapse
|
14
|
Paralkar D, Akbari A, Aron M. Prostatic adenocarcinoma: molecular underpinnings and treatment-related options. Urol Oncol 2024; 42:203-210. [PMID: 38508940 DOI: 10.1016/j.urolonc.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/28/2024] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
Prostate cancer is heterogeneous with varied pathologic features and presents with a wide spectrum of clinical manifestations from indolent to advanced cancer. Interrogation of the molecular landscape of prostate cancer has unveiled the complex genomic alterations in these tumors, which significantly impacts tumor biology. The documented array of chromosomal alterations, gene fusions, and epigenetic changes not only play a crucial role in oncogenesis and disease progression, but also impacts response and resistance to various therapeutic modalities. Various gene expression assays have been developed and are currently recommended in aiding clinical decision making in these clinically and molecularly heterogeneous cancer. In this review, we provide an overview of the molecular underpinnings of prostate cancer, and briefly review the current status of molecular testing and therapeutic options in the management of these tumors.
Collapse
Affiliation(s)
- Divyangi Paralkar
- Department of Urology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Room 2409, HC4, Los Angeles, California
| | - Amir Akbari
- Department of Pathology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Room 2409, HC4, Los Angeles, California
| | - Manju Aron
- Department of Urology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Room 2409, HC4, Los Angeles, California; Department of Pathology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Room 2409, HC4, Los Angeles, California.
| |
Collapse
|
15
|
Li X, Xiong H, Mou X, Huang C, Thomas ER, Yu W, Jiang Y, Chen Y. Androgen receptor cofactors: A potential role in understanding prostate cancer. Biomed Pharmacother 2024; 173:116338. [PMID: 38417290 DOI: 10.1016/j.biopha.2024.116338] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
Prostate cancer (PCa) is witnessing a concerning rise in incidence annually, with the androgen receptor (AR) emerging as a pivotal contributor to its growth and progression. Mounting evidence underscores the AR's ability to recruit cofactors, influencing downstream gene transcription and thereby fueling the proliferation and metastasis of PCa cells. Although, clinical strategies involving AR antagonists provide some relief, managing castration resistant prostate cancer (CRPC) remains a formidable challenge. Thus, the need of the hour lies in unearthing new drugs or therapeutic targets to effectively combat PCa. This review encapsulates the pivotal roles played by coactivators and corepressors of AR, notably androgen receptor-associated protein (ARA) and steroid receptor Coactivators (SRC) in PCa. Our data unveils how these cofactors intricately modulate histone modifications, cell cycling, SUMOylation, and apoptosis through their interactions with AR. Among the array of cofactors scrutinised, such as ARA70β, ARA24, ARA160, ARA55, ARA54, PIAS1, PIAS3, SRC1, SRC2, SRC3, PCAF, p300/CBP, MED1, and CARM1, several exhibit upregulation in PCa. Conversely, other cofactors like ARA70α, PIASy, and NCoR/SMRT demonstrate downregulation. This duality underscores the complexity of AR cofactor dynamics in PCa. Based on our findings, we propose that manipulating cofactor regulation to modulate AR function holds promise as a novel therapeutic avenue against advanced PCa. This paradigm shift offers renewed hope in the quest for effective treatments in the face of CRPC's formidable challenges.
Collapse
Affiliation(s)
- Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Haojun Xiong
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingzhu Mou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Cancan Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | | | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yu Jiang
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
16
|
Jathal MK, Siddiqui S, Vasilatis DM, Durbin Johnson BP, Drake C, Mooso BA, D'Abronzo LS, Batra N, Mudryj M, Ghosh PM. Androgen receptor transcriptional activity is required for heregulin-1β-mediated nuclear localization of the HER3/ErbB3 receptor tyrosine kinase. J Biol Chem 2023; 299:104973. [PMID: 37380074 PMCID: PMC10407237 DOI: 10.1016/j.jbc.2023.104973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023] Open
Abstract
Prostate cancer is initially regulated by the androgen receptor (AR), a ligand-activated, transcription factor, and is in a hormone-dependent state (hormone-sensitive prostate cancer (HSPC)), but eventually becomes androgen-refractory (castration-resistant prostate cancer (CRPC)) because of mechanisms that bypass the AR, including by activation of ErbB3, a member of the epidermal growth factor receptor family. ErbB3 is synthesized in the cytoplasm and transported to the plasma membrane for ligand binding and dimerization, where it regulates downstream signaling, but nuclear forms are reported. Here, we demonstrate in prostatectomy samples that ErbB3 nuclear localization is observed in malignant, but not benign prostate, and that cytoplasmic (but not nuclear) ErbB3 correlated positively with AR expression but negatively with AR transcriptional activity. In support of the latter, androgen depletion upregulated cytoplasmic, but not nuclear ErbB3, while in vivo studies showed that castration suppressed ErbB3 nuclear localization in HSPC, but not CRPC tumors. In vitro treatment with the ErbB3 ligand heregulin-1β (HRG) induced ErbB3 nuclear localization, which was androgen-regulated in HSPC but not in CRPC. In turn, HRG upregulated AR transcriptional activity in CRPC but not in HSPC cells. Positive correlation between ErbB3 and AR expression was demonstrated in AR-null PC-3 cells where stable transfection of AR restored HRG-induced ErbB3 nuclear transport, while AR knockdown in LNCaP reduced cytoplasmic ErbB3. Mutations of ErbB3's kinase domain did not affect its localization but was responsible for cell viability in CRPC cells. Taken together, we conclude that AR expression regulated ErbB3 expression, its transcriptional activity suppressed ErbB3 nuclear translocation, and HRG binding to ErbB3 promoted it.
Collapse
Affiliation(s)
- Maitreyee K Jathal
- Research Service, VA Northern California Health Care System, Mather, California, USA; Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, USA
| | - Salma Siddiqui
- Research Service, VA Northern California Health Care System, Mather, California, USA
| | - Demitria M Vasilatis
- Research Service, VA Northern California Health Care System, Mather, California, USA; Department of Urologic Surgery, University of California Davis, Sacramento, California, USA
| | - Blythe P Durbin Johnson
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, California, USA
| | - Christiana Drake
- Department of Statistics, University of California Davis, Davis, California, USA
| | - Benjamin A Mooso
- Research Service, VA Northern California Health Care System, Mather, California, USA
| | - Leandro S D'Abronzo
- Department of Urologic Surgery, University of California Davis, Sacramento, California, USA
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
| | - Maria Mudryj
- Research Service, VA Northern California Health Care System, Mather, California, USA; Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, USA
| | - Paramita M Ghosh
- Research Service, VA Northern California Health Care System, Mather, California, USA; Department of Urologic Surgery, University of California Davis, Sacramento, California, USA; Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA.
| |
Collapse
|